src/HOL/Complete_Lattice.thy
author hoelzl
Tue Aug 24 14:41:37 2010 +0200 (2010-08-24)
changeset 38705 aaee86c0e237
parent 37767 a2b7a20d6ea3
child 39302 d7728f65b353
permissions -rw-r--r--
moved generic lemmas in Probability to HOL
haftmann@32139
     1
(*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
wenzelm@11979
     2
haftmann@32139
     3
header {* Complete lattices, with special focus on sets *}
haftmann@32077
     4
haftmann@32139
     5
theory Complete_Lattice
haftmann@32139
     6
imports Set
haftmann@32139
     7
begin
haftmann@32077
     8
haftmann@32077
     9
notation
haftmann@34007
    10
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@32077
    11
  less (infix "\<sqsubset>" 50) and
haftmann@34007
    12
  inf (infixl "\<sqinter>" 70) and
haftmann@34007
    13
  sup (infixl "\<squnion>" 65) and
haftmann@32678
    14
  top ("\<top>") and
haftmann@32678
    15
  bot ("\<bottom>")
haftmann@32077
    16
haftmann@32139
    17
haftmann@32879
    18
subsection {* Syntactic infimum and supremum operations *}
haftmann@32879
    19
haftmann@32879
    20
class Inf =
haftmann@32879
    21
  fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
haftmann@32879
    22
haftmann@32879
    23
class Sup =
haftmann@32879
    24
  fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
haftmann@32879
    25
haftmann@32139
    26
subsection {* Abstract complete lattices *}
haftmann@32139
    27
haftmann@34007
    28
class complete_lattice = bounded_lattice + Inf + Sup +
haftmann@32077
    29
  assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
haftmann@32077
    30
     and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
haftmann@32077
    31
  assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
haftmann@32077
    32
     and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
haftmann@32077
    33
begin
haftmann@32077
    34
haftmann@32678
    35
lemma dual_complete_lattice:
haftmann@36635
    36
  "class.complete_lattice Sup Inf (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) \<top> \<bottom>"
haftmann@36635
    37
  by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
haftmann@34007
    38
    (unfold_locales, (fact bot_least top_greatest
haftmann@34007
    39
        Sup_upper Sup_least Inf_lower Inf_greatest)+)
haftmann@32678
    40
haftmann@34007
    41
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
haftmann@32077
    42
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@32077
    43
haftmann@34007
    44
lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
haftmann@32077
    45
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@32077
    46
haftmann@34007
    47
lemma Inf_empty:
haftmann@34007
    48
  "\<Sqinter>{} = \<top>"
haftmann@34007
    49
  by (auto intro: antisym Inf_greatest)
haftmann@32077
    50
haftmann@34007
    51
lemma Sup_empty:
haftmann@34007
    52
  "\<Squnion>{} = \<bottom>"
haftmann@34007
    53
  by (auto intro: antisym Sup_least)
haftmann@32077
    54
haftmann@32077
    55
lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
haftmann@32077
    56
  by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
haftmann@32077
    57
haftmann@32077
    58
lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
haftmann@32077
    59
  by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
haftmann@32077
    60
haftmann@32077
    61
lemma Inf_singleton [simp]:
haftmann@32077
    62
  "\<Sqinter>{a} = a"
haftmann@32077
    63
  by (auto intro: antisym Inf_lower Inf_greatest)
haftmann@32077
    64
haftmann@32077
    65
lemma Sup_singleton [simp]:
haftmann@32077
    66
  "\<Squnion>{a} = a"
haftmann@32077
    67
  by (auto intro: antisym Sup_upper Sup_least)
haftmann@32077
    68
haftmann@32077
    69
lemma Inf_binary:
haftmann@32077
    70
  "\<Sqinter>{a, b} = a \<sqinter> b"
haftmann@34007
    71
  by (simp add: Inf_empty Inf_insert)
haftmann@32077
    72
haftmann@32077
    73
lemma Sup_binary:
haftmann@32077
    74
  "\<Squnion>{a, b} = a \<squnion> b"
haftmann@34007
    75
  by (simp add: Sup_empty Sup_insert)
haftmann@32077
    76
haftmann@34007
    77
lemma Inf_UNIV:
haftmann@34007
    78
  "\<Sqinter>UNIV = bot"
haftmann@34007
    79
  by (simp add: Sup_Inf Sup_empty [symmetric])
haftmann@32077
    80
haftmann@34007
    81
lemma Sup_UNIV:
haftmann@34007
    82
  "\<Squnion>UNIV = top"
haftmann@34007
    83
  by (simp add: Inf_Sup Inf_empty [symmetric])
haftmann@32077
    84
huffman@35629
    85
lemma Sup_le_iff: "Sup A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
huffman@35629
    86
  by (auto intro: Sup_least dest: Sup_upper)
huffman@35629
    87
huffman@35629
    88
lemma le_Inf_iff: "b \<sqsubseteq> Inf A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
huffman@35629
    89
  by (auto intro: Inf_greatest dest: Inf_lower)
huffman@35629
    90
hoelzl@38705
    91
lemma Sup_mono:
hoelzl@38705
    92
  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<le> b"
hoelzl@38705
    93
  shows "Sup A \<le> Sup B"
hoelzl@38705
    94
proof (rule Sup_least)
hoelzl@38705
    95
  fix a assume "a \<in> A"
hoelzl@38705
    96
  with assms obtain b where "b \<in> B" and "a \<le> b" by blast
hoelzl@38705
    97
  from `b \<in> B` have "b \<le> Sup B" by (rule Sup_upper)
hoelzl@38705
    98
  with `a \<le> b` show "a \<le> Sup B" by auto
hoelzl@38705
    99
qed
hoelzl@38705
   100
hoelzl@38705
   101
lemma Inf_mono:
hoelzl@38705
   102
  assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b"
hoelzl@38705
   103
  shows "Inf A \<le> Inf B"
hoelzl@38705
   104
proof (rule Inf_greatest)
hoelzl@38705
   105
  fix b assume "b \<in> B"
hoelzl@38705
   106
  with assms obtain a where "a \<in> A" and "a \<le> b" by blast
hoelzl@38705
   107
  from `a \<in> A` have "Inf A \<le> a" by (rule Inf_lower)
hoelzl@38705
   108
  with `a \<le> b` show "Inf A \<le> b" by auto
hoelzl@38705
   109
qed
hoelzl@38705
   110
haftmann@32077
   111
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@32117
   112
  "SUPR A f = \<Squnion> (f ` A)"
haftmann@32077
   113
haftmann@32077
   114
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@32117
   115
  "INFI A f = \<Sqinter> (f ` A)"
haftmann@32077
   116
haftmann@32077
   117
end
haftmann@32077
   118
haftmann@32077
   119
syntax
haftmann@32077
   120
  "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
huffman@36364
   121
  "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   122
  "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
huffman@36364
   123
  "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   124
haftmann@32077
   125
translations
haftmann@32077
   126
  "SUP x y. B"   == "SUP x. SUP y. B"
haftmann@32077
   127
  "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
haftmann@32077
   128
  "SUP x. B"     == "SUP x:CONST UNIV. B"
haftmann@32077
   129
  "SUP x:A. B"   == "CONST SUPR A (%x. B)"
haftmann@32077
   130
  "INF x y. B"   == "INF x. INF y. B"
haftmann@32077
   131
  "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
haftmann@32077
   132
  "INF x. B"     == "INF x:CONST UNIV. B"
haftmann@32077
   133
  "INF x:A. B"   == "CONST INFI A (%x. B)"
haftmann@32077
   134
wenzelm@35115
   135
print_translation {*
wenzelm@35115
   136
  [Syntax.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"},
wenzelm@35115
   137
    Syntax.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"}]
wenzelm@35115
   138
*} -- {* to avoid eta-contraction of body *}
wenzelm@11979
   139
haftmann@32077
   140
context complete_lattice
haftmann@32077
   141
begin
haftmann@32077
   142
haftmann@34007
   143
lemma le_SUPI: "i : A \<Longrightarrow> M i \<sqsubseteq> (SUP i:A. M i)"
haftmann@32077
   144
  by (auto simp add: SUPR_def intro: Sup_upper)
haftmann@32077
   145
haftmann@34007
   146
lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<sqsubseteq> u) \<Longrightarrow> (SUP i:A. M i) \<sqsubseteq> u"
haftmann@32077
   147
  by (auto simp add: SUPR_def intro: Sup_least)
haftmann@32077
   148
haftmann@34007
   149
lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<sqsubseteq> M i"
haftmann@32077
   150
  by (auto simp add: INFI_def intro: Inf_lower)
haftmann@32077
   151
haftmann@34007
   152
lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<sqsubseteq> M i) \<Longrightarrow> u \<sqsubseteq> (INF i:A. M i)"
haftmann@32077
   153
  by (auto simp add: INFI_def intro: Inf_greatest)
haftmann@32077
   154
huffman@35629
   155
lemma SUP_le_iff: "(SUP i:A. M i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i \<in> A. M i \<sqsubseteq> u)"
huffman@35629
   156
  unfolding SUPR_def by (auto simp add: Sup_le_iff)
huffman@35629
   157
huffman@35629
   158
lemma le_INF_iff: "u \<sqsubseteq> (INF i:A. M i) \<longleftrightarrow> (\<forall>i \<in> A. u \<sqsubseteq> M i)"
huffman@35629
   159
  unfolding INFI_def by (auto simp add: le_Inf_iff)
huffman@35629
   160
haftmann@32077
   161
lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
haftmann@32077
   162
  by (auto intro: antisym SUP_leI le_SUPI)
haftmann@32077
   163
haftmann@32077
   164
lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
haftmann@32077
   165
  by (auto intro: antisym INF_leI le_INFI)
haftmann@32077
   166
hoelzl@38705
   167
lemma SUP_mono:
hoelzl@38705
   168
  "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> (SUP n:A. f n) \<le> (SUP n:B. g n)"
hoelzl@38705
   169
  by (force intro!: Sup_mono simp: SUPR_def)
hoelzl@38705
   170
hoelzl@38705
   171
lemma INF_mono:
hoelzl@38705
   172
  "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> (INF n:A. f n) \<le> (INF n:B. g n)"
hoelzl@38705
   173
  by (force intro!: Inf_mono simp: INFI_def)
hoelzl@38705
   174
haftmann@32077
   175
end
haftmann@32077
   176
hoelzl@38705
   177
lemma less_Sup_iff:
hoelzl@38705
   178
  fixes a :: "'a\<Colon>{complete_lattice,linorder}"
hoelzl@38705
   179
  shows "a < Sup S \<longleftrightarrow> (\<exists>x\<in>S. a < x)"
hoelzl@38705
   180
  unfolding not_le[symmetric] Sup_le_iff by auto
hoelzl@38705
   181
hoelzl@38705
   182
lemma Inf_less_iff:
hoelzl@38705
   183
  fixes a :: "'a\<Colon>{complete_lattice,linorder}"
hoelzl@38705
   184
  shows "Inf S < a \<longleftrightarrow> (\<exists>x\<in>S. x < a)"
hoelzl@38705
   185
  unfolding not_le[symmetric] le_Inf_iff by auto
haftmann@32077
   186
haftmann@32139
   187
subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
haftmann@32077
   188
haftmann@32077
   189
instantiation bool :: complete_lattice
haftmann@32077
   190
begin
haftmann@32077
   191
haftmann@32077
   192
definition
haftmann@32077
   193
  Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
haftmann@32077
   194
haftmann@32077
   195
definition
haftmann@32077
   196
  Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
haftmann@32077
   197
haftmann@32077
   198
instance proof
haftmann@32077
   199
qed (auto simp add: Inf_bool_def Sup_bool_def le_bool_def)
haftmann@32077
   200
haftmann@32077
   201
end
haftmann@32077
   202
haftmann@32077
   203
lemma Inf_empty_bool [simp]:
haftmann@32077
   204
  "\<Sqinter>{}"
haftmann@32077
   205
  unfolding Inf_bool_def by auto
haftmann@32077
   206
haftmann@32077
   207
lemma not_Sup_empty_bool [simp]:
haftmann@32077
   208
  "\<not> \<Squnion>{}"
haftmann@32077
   209
  unfolding Sup_bool_def by auto
haftmann@32077
   210
haftmann@32120
   211
lemma INFI_bool_eq:
haftmann@32120
   212
  "INFI = Ball"
haftmann@32120
   213
proof (rule ext)+
haftmann@32120
   214
  fix A :: "'a set"
haftmann@32120
   215
  fix P :: "'a \<Rightarrow> bool"
haftmann@32120
   216
  show "(INF x:A. P x) \<longleftrightarrow> (\<forall>x \<in> A. P x)"
haftmann@32120
   217
    by (auto simp add: Ball_def INFI_def Inf_bool_def)
haftmann@32120
   218
qed
haftmann@32120
   219
haftmann@32120
   220
lemma SUPR_bool_eq:
haftmann@32120
   221
  "SUPR = Bex"
haftmann@32120
   222
proof (rule ext)+
haftmann@32120
   223
  fix A :: "'a set"
haftmann@32120
   224
  fix P :: "'a \<Rightarrow> bool"
haftmann@32120
   225
  show "(SUP x:A. P x) \<longleftrightarrow> (\<exists>x \<in> A. P x)"
haftmann@32120
   226
    by (auto simp add: Bex_def SUPR_def Sup_bool_def)
haftmann@32120
   227
qed
haftmann@32120
   228
haftmann@32077
   229
instantiation "fun" :: (type, complete_lattice) complete_lattice
haftmann@32077
   230
begin
haftmann@32077
   231
haftmann@32077
   232
definition
haftmann@37767
   233
  Inf_fun_def: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
haftmann@32077
   234
haftmann@32077
   235
definition
haftmann@37767
   236
  Sup_fun_def: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
haftmann@32077
   237
haftmann@32077
   238
instance proof
haftmann@32077
   239
qed (auto simp add: Inf_fun_def Sup_fun_def le_fun_def
haftmann@32077
   240
  intro: Inf_lower Sup_upper Inf_greatest Sup_least)
haftmann@32077
   241
haftmann@32077
   242
end
haftmann@32077
   243
hoelzl@38705
   244
lemma SUPR_fun_expand:
hoelzl@38705
   245
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c\<Colon>{complete_lattice}"
hoelzl@38705
   246
  shows "(SUP y:A. f y) = (\<lambda>x. SUP y:A. f y x)"
hoelzl@38705
   247
  by (auto intro!: arg_cong[where f=Sup] ext[where 'a='b]
hoelzl@38705
   248
           simp: SUPR_def Sup_fun_def)
hoelzl@38705
   249
hoelzl@38705
   250
lemma INFI_fun_expand:
hoelzl@38705
   251
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c\<Colon>{complete_lattice}"
hoelzl@38705
   252
  shows "(INF y:A. f y) x = (INF y:A. f y x)"
hoelzl@38705
   253
  by (auto intro!: arg_cong[where f=Inf] ext[where 'a='b]
hoelzl@38705
   254
           simp: INFI_def Inf_fun_def)
hoelzl@38705
   255
haftmann@32077
   256
lemma Inf_empty_fun:
haftmann@32077
   257
  "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
haftmann@32135
   258
  by (simp add: Inf_fun_def)
haftmann@32077
   259
haftmann@32077
   260
lemma Sup_empty_fun:
haftmann@32077
   261
  "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
haftmann@32135
   262
  by (simp add: Sup_fun_def)
haftmann@32077
   263
haftmann@32077
   264
haftmann@32139
   265
subsection {* Union *}
haftmann@32115
   266
haftmann@32587
   267
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   268
  "Union S \<equiv> \<Squnion>S"
haftmann@32115
   269
haftmann@32115
   270
notation (xsymbols)
haftmann@32115
   271
  Union  ("\<Union>_" [90] 90)
haftmann@32115
   272
haftmann@32135
   273
lemma Union_eq:
haftmann@32135
   274
  "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
haftmann@32115
   275
proof (rule set_ext)
haftmann@32115
   276
  fix x
haftmann@32135
   277
  have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
haftmann@32115
   278
    by auto
haftmann@32135
   279
  then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
haftmann@32587
   280
    by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
haftmann@32115
   281
qed
haftmann@32115
   282
blanchet@35828
   283
lemma Union_iff [simp, no_atp]:
haftmann@32115
   284
  "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
haftmann@32115
   285
  by (unfold Union_eq) blast
haftmann@32115
   286
haftmann@32115
   287
lemma UnionI [intro]:
haftmann@32115
   288
  "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
haftmann@32115
   289
  -- {* The order of the premises presupposes that @{term C} is rigid;
haftmann@32115
   290
    @{term A} may be flexible. *}
haftmann@32115
   291
  by auto
haftmann@32115
   292
haftmann@32115
   293
lemma UnionE [elim!]:
haftmann@32115
   294
  "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A\<in>X \<Longrightarrow> X\<in>C \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@32115
   295
  by auto
haftmann@32115
   296
haftmann@32135
   297
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A"
haftmann@32135
   298
  by (iprover intro: subsetI UnionI)
haftmann@32135
   299
haftmann@32135
   300
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C"
haftmann@32135
   301
  by (iprover intro: subsetI elim: UnionE dest: subsetD)
haftmann@32135
   302
haftmann@32135
   303
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
haftmann@32135
   304
  by blast
haftmann@32135
   305
haftmann@32135
   306
lemma Union_empty [simp]: "Union({}) = {}"
haftmann@32135
   307
  by blast
haftmann@32135
   308
haftmann@32135
   309
lemma Union_UNIV [simp]: "Union UNIV = UNIV"
haftmann@32135
   310
  by blast
haftmann@32135
   311
haftmann@32135
   312
lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B"
haftmann@32135
   313
  by blast
haftmann@32135
   314
haftmann@32135
   315
lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B"
haftmann@32135
   316
  by blast
haftmann@32135
   317
haftmann@32135
   318
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
haftmann@32135
   319
  by blast
haftmann@32135
   320
blanchet@35828
   321
lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
haftmann@32135
   322
  by blast
haftmann@32135
   323
blanchet@35828
   324
lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
haftmann@32135
   325
  by blast
haftmann@32135
   326
haftmann@32135
   327
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
haftmann@32135
   328
  by blast
haftmann@32135
   329
haftmann@32135
   330
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
haftmann@32135
   331
  by blast
haftmann@32135
   332
haftmann@32135
   333
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
haftmann@32135
   334
  by blast
haftmann@32135
   335
haftmann@32135
   336
lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B"
haftmann@32135
   337
  by blast
haftmann@32135
   338
haftmann@32115
   339
haftmann@32139
   340
subsection {* Unions of families *}
haftmann@32077
   341
haftmann@32606
   342
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
   343
  "UNION \<equiv> SUPR"
haftmann@32077
   344
haftmann@32077
   345
syntax
wenzelm@35115
   346
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
huffman@36364
   347
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   348
haftmann@32077
   349
syntax (xsymbols)
wenzelm@35115
   350
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
huffman@36364
   351
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32077
   352
haftmann@32077
   353
syntax (latex output)
wenzelm@35115
   354
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
   355
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32077
   356
haftmann@32077
   357
translations
haftmann@32077
   358
  "UN x y. B"   == "UN x. UN y. B"
haftmann@32077
   359
  "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
haftmann@32077
   360
  "UN x. B"     == "UN x:CONST UNIV. B"
haftmann@32077
   361
  "UN x:A. B"   == "CONST UNION A (%x. B)"
haftmann@32077
   362
haftmann@32077
   363
text {*
haftmann@32077
   364
  Note the difference between ordinary xsymbol syntax of indexed
haftmann@32077
   365
  unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
haftmann@32077
   366
  and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
haftmann@32077
   367
  former does not make the index expression a subscript of the
haftmann@32077
   368
  union/intersection symbol because this leads to problems with nested
haftmann@32077
   369
  subscripts in Proof General.
haftmann@32077
   370
*}
haftmann@32077
   371
wenzelm@35115
   372
print_translation {*
wenzelm@35115
   373
  [Syntax.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
wenzelm@35115
   374
*} -- {* to avoid eta-contraction of body *}
haftmann@32077
   375
haftmann@32135
   376
lemma UNION_eq_Union_image:
haftmann@32135
   377
  "(\<Union>x\<in>A. B x) = \<Union>(B`A)"
haftmann@32606
   378
  by (fact SUPR_def)
haftmann@32115
   379
haftmann@32115
   380
lemma Union_def:
haftmann@32117
   381
  "\<Union>S = (\<Union>x\<in>S. x)"
haftmann@32115
   382
  by (simp add: UNION_eq_Union_image image_def)
haftmann@32115
   383
blanchet@35828
   384
lemma UNION_def [no_atp]:
haftmann@32135
   385
  "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
haftmann@32117
   386
  by (auto simp add: UNION_eq_Union_image Union_eq)
haftmann@32115
   387
  
haftmann@32115
   388
lemma Union_image_eq [simp]:
haftmann@32115
   389
  "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
haftmann@32115
   390
  by (rule sym) (fact UNION_eq_Union_image)
haftmann@32115
   391
  
wenzelm@11979
   392
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
wenzelm@11979
   393
  by (unfold UNION_def) blast
wenzelm@11979
   394
wenzelm@11979
   395
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
wenzelm@11979
   396
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
   397
    @{term b} may be flexible. *}
wenzelm@11979
   398
  by auto
wenzelm@11979
   399
wenzelm@11979
   400
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
wenzelm@11979
   401
  by (unfold UNION_def) blast
clasohm@923
   402
wenzelm@11979
   403
lemma UN_cong [cong]:
wenzelm@11979
   404
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
wenzelm@11979
   405
  by (simp add: UNION_def)
wenzelm@11979
   406
berghofe@29691
   407
lemma strong_UN_cong:
berghofe@29691
   408
    "A = B ==> (!!x. x:B =simp=> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
berghofe@29691
   409
  by (simp add: UNION_def simp_implies_def)
berghofe@29691
   410
haftmann@32077
   411
lemma image_eq_UN: "f`A = (UN x:A. {f x})"
haftmann@32077
   412
  by blast
haftmann@32077
   413
haftmann@32135
   414
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)"
haftmann@32606
   415
  by (fact le_SUPI)
haftmann@32135
   416
haftmann@32135
   417
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C"
haftmann@32135
   418
  by (iprover intro: subsetI elim: UN_E dest: subsetD)
haftmann@32135
   419
blanchet@35828
   420
lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
haftmann@32135
   421
  by blast
haftmann@32135
   422
haftmann@32135
   423
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
haftmann@32135
   424
  by blast
haftmann@32135
   425
blanchet@35828
   426
lemma UN_empty [simp,no_atp]: "(\<Union>x\<in>{}. B x) = {}"
haftmann@32135
   427
  by blast
haftmann@32135
   428
haftmann@32135
   429
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
haftmann@32135
   430
  by blast
haftmann@32135
   431
haftmann@32135
   432
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
haftmann@32135
   433
  by blast
haftmann@32135
   434
haftmann@32135
   435
lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
haftmann@32135
   436
  by auto
haftmann@32135
   437
haftmann@32135
   438
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
haftmann@32135
   439
  by blast
haftmann@32135
   440
haftmann@32135
   441
lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
haftmann@32135
   442
  by blast
haftmann@32135
   443
haftmann@32135
   444
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
haftmann@32135
   445
  by blast
haftmann@32135
   446
haftmann@32135
   447
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
huffman@35629
   448
  by (fact SUP_le_iff)
haftmann@32135
   449
haftmann@32135
   450
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
haftmann@32135
   451
  by blast
haftmann@32135
   452
haftmann@32135
   453
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
haftmann@32135
   454
  by auto
haftmann@32135
   455
haftmann@32135
   456
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
haftmann@32135
   457
  by blast
haftmann@32135
   458
haftmann@32135
   459
lemma UNION_empty_conv[simp]:
haftmann@32135
   460
  "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
haftmann@32135
   461
  "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
haftmann@32135
   462
by blast+
haftmann@32135
   463
blanchet@35828
   464
lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
haftmann@32135
   465
  by blast
haftmann@32135
   466
haftmann@32135
   467
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
haftmann@32135
   468
  by blast
haftmann@32135
   469
haftmann@32135
   470
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
haftmann@32135
   471
  by blast
haftmann@32135
   472
haftmann@32135
   473
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
haftmann@32135
   474
  by (auto simp add: split_if_mem2)
haftmann@32135
   475
haftmann@32135
   476
lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)"
haftmann@32135
   477
  by (auto intro: bool_contrapos)
haftmann@32135
   478
haftmann@32135
   479
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
haftmann@32135
   480
  by blast
haftmann@32135
   481
haftmann@32135
   482
lemma UN_mono:
haftmann@32135
   483
  "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
haftmann@32135
   484
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
haftmann@32135
   485
  by (blast dest: subsetD)
haftmann@32135
   486
haftmann@32135
   487
lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
haftmann@32135
   488
  by blast
haftmann@32135
   489
haftmann@32135
   490
lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
haftmann@32135
   491
  by blast
haftmann@32135
   492
haftmann@32135
   493
lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
haftmann@32135
   494
  -- {* NOT suitable for rewriting *}
haftmann@32135
   495
  by blast
haftmann@32135
   496
haftmann@32135
   497
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
haftmann@32135
   498
by blast
haftmann@32135
   499
wenzelm@11979
   500
haftmann@32139
   501
subsection {* Inter *}
haftmann@32115
   502
haftmann@32587
   503
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   504
  "Inter S \<equiv> \<Sqinter>S"
haftmann@32135
   505
  
haftmann@32115
   506
notation (xsymbols)
haftmann@32115
   507
  Inter  ("\<Inter>_" [90] 90)
haftmann@32115
   508
haftmann@37767
   509
lemma Inter_eq:
haftmann@32135
   510
  "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
haftmann@32115
   511
proof (rule set_ext)
haftmann@32115
   512
  fix x
haftmann@32135
   513
  have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
haftmann@32115
   514
    by auto
haftmann@32135
   515
  then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
haftmann@32587
   516
    by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
haftmann@32115
   517
qed
haftmann@32115
   518
blanchet@35828
   519
lemma Inter_iff [simp,no_atp]: "(A : Inter C) = (ALL X:C. A:X)"
haftmann@32115
   520
  by (unfold Inter_eq) blast
haftmann@32115
   521
haftmann@32115
   522
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
haftmann@32115
   523
  by (simp add: Inter_eq)
haftmann@32115
   524
haftmann@32115
   525
text {*
haftmann@32115
   526
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
haftmann@32115
   527
  contains @{term A} as an element, but @{prop "A:X"} can hold when
haftmann@32115
   528
  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
haftmann@32115
   529
*}
haftmann@32115
   530
haftmann@32115
   531
lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
haftmann@32115
   532
  by auto
haftmann@32115
   533
haftmann@32115
   534
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
haftmann@32115
   535
  -- {* ``Classical'' elimination rule -- does not require proving
haftmann@32115
   536
    @{prop "X:C"}. *}
haftmann@32115
   537
  by (unfold Inter_eq) blast
haftmann@32115
   538
haftmann@32135
   539
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B"
haftmann@32135
   540
  by blast
haftmann@32135
   541
haftmann@32135
   542
lemma Inter_subset:
haftmann@32135
   543
  "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
haftmann@32135
   544
  by blast
haftmann@32135
   545
haftmann@32135
   546
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A"
haftmann@32135
   547
  by (iprover intro: InterI subsetI dest: subsetD)
haftmann@32135
   548
haftmann@32135
   549
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
haftmann@32135
   550
  by blast
haftmann@32135
   551
haftmann@32135
   552
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
haftmann@32135
   553
  by blast
haftmann@32135
   554
haftmann@32135
   555
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
haftmann@32135
   556
  by blast
haftmann@32135
   557
haftmann@32135
   558
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
haftmann@32135
   559
  by blast
haftmann@32135
   560
haftmann@32135
   561
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
haftmann@32135
   562
  by blast
haftmann@32135
   563
haftmann@32135
   564
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
haftmann@32135
   565
  by blast
haftmann@32135
   566
blanchet@35828
   567
lemma Inter_UNIV_conv [simp,no_atp]:
haftmann@32135
   568
  "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)"
haftmann@32135
   569
  "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)"
haftmann@32135
   570
  by blast+
haftmann@32135
   571
haftmann@32135
   572
lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B"
haftmann@32135
   573
  by blast
haftmann@32135
   574
haftmann@32115
   575
haftmann@32139
   576
subsection {* Intersections of families *}
wenzelm@11979
   577
haftmann@32606
   578
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
   579
  "INTER \<equiv> INFI"
haftmann@32081
   580
haftmann@32081
   581
syntax
wenzelm@35115
   582
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
huffman@36364
   583
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
haftmann@32081
   584
haftmann@32081
   585
syntax (xsymbols)
wenzelm@35115
   586
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
huffman@36364
   587
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32081
   588
haftmann@32081
   589
syntax (latex output)
wenzelm@35115
   590
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
   591
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32081
   592
haftmann@32081
   593
translations
haftmann@32081
   594
  "INT x y. B"  == "INT x. INT y. B"
haftmann@32081
   595
  "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
haftmann@32081
   596
  "INT x. B"    == "INT x:CONST UNIV. B"
haftmann@32081
   597
  "INT x:A. B"  == "CONST INTER A (%x. B)"
haftmann@32081
   598
wenzelm@35115
   599
print_translation {*
wenzelm@35115
   600
  [Syntax.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
wenzelm@35115
   601
*} -- {* to avoid eta-contraction of body *}
haftmann@32081
   602
haftmann@32135
   603
lemma INTER_eq_Inter_image:
haftmann@32135
   604
  "(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
haftmann@32606
   605
  by (fact INFI_def)
haftmann@32135
   606
  
haftmann@32115
   607
lemma Inter_def:
haftmann@32135
   608
  "\<Inter>S = (\<Inter>x\<in>S. x)"
haftmann@32115
   609
  by (simp add: INTER_eq_Inter_image image_def)
haftmann@32115
   610
haftmann@32115
   611
lemma INTER_def:
haftmann@32135
   612
  "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
haftmann@32117
   613
  by (auto simp add: INTER_eq_Inter_image Inter_eq)
haftmann@32115
   614
haftmann@32115
   615
lemma Inter_image_eq [simp]:
haftmann@32115
   616
  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
haftmann@32115
   617
  by (rule sym) (fact INTER_eq_Inter_image)
haftmann@32115
   618
wenzelm@11979
   619
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
wenzelm@11979
   620
  by (unfold INTER_def) blast
clasohm@923
   621
wenzelm@11979
   622
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
wenzelm@11979
   623
  by (unfold INTER_def) blast
wenzelm@11979
   624
wenzelm@11979
   625
lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
wenzelm@11979
   626
  by auto
wenzelm@11979
   627
wenzelm@11979
   628
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
wenzelm@11979
   629
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
wenzelm@11979
   630
  by (unfold INTER_def) blast
wenzelm@11979
   631
wenzelm@11979
   632
lemma INT_cong [cong]:
wenzelm@11979
   633
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
wenzelm@11979
   634
  by (simp add: INTER_def)
wenzelm@7238
   635
haftmann@32135
   636
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
haftmann@30531
   637
  by blast
haftmann@30531
   638
haftmann@32135
   639
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
wenzelm@12897
   640
  by blast
wenzelm@12897
   641
wenzelm@12897
   642
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a"
haftmann@32606
   643
  by (fact INF_leI)
wenzelm@12897
   644
wenzelm@12897
   645
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)"
haftmann@32606
   646
  by (fact le_INFI)
wenzelm@12897
   647
wenzelm@12897
   648
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
wenzelm@12897
   649
  by blast
wenzelm@12897
   650
wenzelm@12897
   651
lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
wenzelm@12897
   652
  by blast
wenzelm@12897
   653
wenzelm@12897
   654
lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)"
huffman@35629
   655
  by (fact le_INF_iff)
wenzelm@12897
   656
wenzelm@12897
   657
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
wenzelm@12897
   658
  by blast
wenzelm@12897
   659
wenzelm@12897
   660
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
wenzelm@12897
   661
  by blast
wenzelm@12897
   662
wenzelm@12897
   663
lemma INT_insert_distrib:
wenzelm@12897
   664
    "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
wenzelm@12897
   665
  by blast
wenzelm@12897
   666
wenzelm@12897
   667
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
wenzelm@12897
   668
  by auto
wenzelm@12897
   669
wenzelm@12897
   670
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
wenzelm@12897
   671
  -- {* Look: it has an \emph{existential} quantifier *}
wenzelm@12897
   672
  by blast
wenzelm@12897
   673
paulson@18447
   674
lemma INTER_UNIV_conv[simp]:
nipkow@13653
   675
 "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
   676
 "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
   677
by blast+
wenzelm@12897
   678
haftmann@32135
   679
lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)"
haftmann@32135
   680
  by (auto intro: bool_induct)
haftmann@32135
   681
haftmann@32135
   682
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
haftmann@32135
   683
  by blast
haftmann@32135
   684
haftmann@32135
   685
lemma INT_anti_mono:
haftmann@32135
   686
  "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
haftmann@32135
   687
    (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
haftmann@32135
   688
  -- {* The last inclusion is POSITIVE! *}
haftmann@32135
   689
  by (blast dest: subsetD)
haftmann@32135
   690
haftmann@32135
   691
lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
haftmann@32135
   692
  by blast
haftmann@32135
   693
haftmann@32135
   694
haftmann@32139
   695
subsection {* Distributive laws *}
wenzelm@12897
   696
wenzelm@12897
   697
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
wenzelm@12897
   698
  by blast
wenzelm@12897
   699
wenzelm@12897
   700
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
wenzelm@12897
   701
  by blast
wenzelm@12897
   702
wenzelm@12897
   703
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)"
wenzelm@12897
   704
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
   705
  -- {* Union of a family of unions *}
wenzelm@12897
   706
  by blast
wenzelm@12897
   707
wenzelm@12897
   708
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
wenzelm@12897
   709
  -- {* Equivalent version *}
wenzelm@12897
   710
  by blast
wenzelm@12897
   711
wenzelm@12897
   712
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
wenzelm@12897
   713
  by blast
wenzelm@12897
   714
wenzelm@12897
   715
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)"
wenzelm@12897
   716
  by blast
wenzelm@12897
   717
wenzelm@12897
   718
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
wenzelm@12897
   719
  -- {* Equivalent version *}
wenzelm@12897
   720
  by blast
wenzelm@12897
   721
wenzelm@12897
   722
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
   723
  -- {* Halmos, Naive Set Theory, page 35. *}
wenzelm@12897
   724
  by blast
wenzelm@12897
   725
wenzelm@12897
   726
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
wenzelm@12897
   727
  by blast
wenzelm@12897
   728
wenzelm@12897
   729
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
wenzelm@12897
   730
  by blast
wenzelm@12897
   731
wenzelm@12897
   732
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
wenzelm@12897
   733
  by blast
wenzelm@12897
   734
wenzelm@12897
   735
haftmann@32139
   736
subsection {* Complement *}
haftmann@32135
   737
haftmann@32135
   738
lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
wenzelm@12897
   739
  by blast
wenzelm@12897
   740
haftmann@32135
   741
lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
wenzelm@12897
   742
  by blast
wenzelm@12897
   743
wenzelm@12897
   744
haftmann@32139
   745
subsection {* Miniscoping and maxiscoping *}
wenzelm@12897
   746
paulson@13860
   747
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
   748
           and Intersections. *}
wenzelm@12897
   749
wenzelm@12897
   750
lemma UN_simps [simp]:
wenzelm@12897
   751
  "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
wenzelm@12897
   752
  "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
wenzelm@12897
   753
  "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
wenzelm@12897
   754
  "!!A B C. (UN x:C. A x Int B)  = ((UN x:C. A x) Int B)"
wenzelm@12897
   755
  "!!A B C. (UN x:C. A Int B x)  = (A Int (UN x:C. B x))"
wenzelm@12897
   756
  "!!A B C. (UN x:C. A x - B)    = ((UN x:C. A x) - B)"
wenzelm@12897
   757
  "!!A B C. (UN x:C. A - B x)    = (A - (INT x:C. B x))"
wenzelm@12897
   758
  "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
wenzelm@12897
   759
  "!!A B C. (UN z: UNION A B. C z) = (UN  x:A. UN z: B(x). C z)"
wenzelm@12897
   760
  "!!A B f. (UN x:f`A. B x)     = (UN a:A. B (f a))"
wenzelm@12897
   761
  by auto
wenzelm@12897
   762
wenzelm@12897
   763
lemma INT_simps [simp]:
wenzelm@12897
   764
  "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
wenzelm@12897
   765
  "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
wenzelm@12897
   766
  "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
wenzelm@12897
   767
  "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
wenzelm@12897
   768
  "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
wenzelm@12897
   769
  "!!A B C. (INT x:C. A x Un B)  = ((INT x:C. A x) Un B)"
wenzelm@12897
   770
  "!!A B C. (INT x:C. A Un B x)  = (A Un (INT x:C. B x))"
wenzelm@12897
   771
  "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
wenzelm@12897
   772
  "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
wenzelm@12897
   773
  "!!A B f. (INT x:f`A. B x)    = (INT a:A. B (f a))"
wenzelm@12897
   774
  by auto
wenzelm@12897
   775
blanchet@35828
   776
lemma ball_simps [simp,no_atp]:
wenzelm@12897
   777
  "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
wenzelm@12897
   778
  "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
wenzelm@12897
   779
  "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
wenzelm@12897
   780
  "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
wenzelm@12897
   781
  "!!P. (ALL x:{}. P x) = True"
wenzelm@12897
   782
  "!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
wenzelm@12897
   783
  "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
wenzelm@12897
   784
  "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
wenzelm@12897
   785
  "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
wenzelm@12897
   786
  "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
wenzelm@12897
   787
  "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
wenzelm@12897
   788
  "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
wenzelm@12897
   789
  by auto
wenzelm@12897
   790
blanchet@35828
   791
lemma bex_simps [simp,no_atp]:
wenzelm@12897
   792
  "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
wenzelm@12897
   793
  "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
wenzelm@12897
   794
  "!!P. (EX x:{}. P x) = False"
wenzelm@12897
   795
  "!!P. (EX x:UNIV. P x) = (EX x. P x)"
wenzelm@12897
   796
  "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
wenzelm@12897
   797
  "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
wenzelm@12897
   798
  "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
wenzelm@12897
   799
  "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
wenzelm@12897
   800
  "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
wenzelm@12897
   801
  "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
wenzelm@12897
   802
  by auto
wenzelm@12897
   803
wenzelm@12897
   804
lemma ball_conj_distrib:
wenzelm@12897
   805
  "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
wenzelm@12897
   806
  by blast
wenzelm@12897
   807
wenzelm@12897
   808
lemma bex_disj_distrib:
wenzelm@12897
   809
  "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
wenzelm@12897
   810
  by blast
wenzelm@12897
   811
wenzelm@12897
   812
paulson@13860
   813
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
   814
paulson@13860
   815
lemma UN_extend_simps:
paulson@13860
   816
  "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
paulson@13860
   817
  "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
paulson@13860
   818
  "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
paulson@13860
   819
  "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
paulson@13860
   820
  "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
paulson@13860
   821
  "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
paulson@13860
   822
  "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
paulson@13860
   823
  "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
paulson@13860
   824
  "!!A B C. (UN  x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
paulson@13860
   825
  "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
paulson@13860
   826
  by auto
paulson@13860
   827
paulson@13860
   828
lemma INT_extend_simps:
paulson@13860
   829
  "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
paulson@13860
   830
  "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
paulson@13860
   831
  "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
paulson@13860
   832
  "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
paulson@13860
   833
  "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
paulson@13860
   834
  "!!A B C. ((INT x:C. A x) Un B)  = (INT x:C. A x Un B)"
paulson@13860
   835
  "!!A B C. A Un (INT x:C. B x)  = (INT x:C. A Un B x)"
paulson@13860
   836
  "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
paulson@13860
   837
  "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
paulson@13860
   838
  "!!A B f. (INT a:A. B (f a))    = (INT x:f`A. B x)"
paulson@13860
   839
  by auto
paulson@13860
   840
paulson@13860
   841
haftmann@32135
   842
no_notation
haftmann@32135
   843
  less_eq  (infix "\<sqsubseteq>" 50) and
haftmann@32135
   844
  less (infix "\<sqsubset>" 50) and
haftmann@32135
   845
  inf  (infixl "\<sqinter>" 70) and
haftmann@32135
   846
  sup  (infixl "\<squnion>" 65) and
haftmann@32135
   847
  Inf  ("\<Sqinter>_" [900] 900) and
haftmann@32678
   848
  Sup  ("\<Squnion>_" [900] 900) and
haftmann@32678
   849
  top ("\<top>") and
haftmann@32678
   850
  bot ("\<bottom>")
haftmann@32135
   851
haftmann@30596
   852
lemmas mem_simps =
haftmann@30596
   853
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
haftmann@30596
   854
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
haftmann@30596
   855
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@21669
   856
wenzelm@11979
   857
end