src/HOL/ex/Reflected_Presburger.thy
author nipkow
Wed Jul 25 18:10:49 2007 +0200 (2007-07-25)
changeset 23984 aaff3bc5ec28
parent 23854 688a8a7bcd4e
child 23995 c34490f1e0ff
permissions -rw-r--r--
fixed broken proof
chaieb@17378
     1
theory Reflected_Presburger
haftmann@23854
     2
imports GCD Efficient_Nat
nipkow@23477
     3
uses ("coopereif.ML") ("coopertac.ML")
nipkow@23477
     4
begin
chaieb@17378
     5
haftmann@23689
     6
function
haftmann@23689
     7
  iupt :: "int \<Rightarrow> int \<Rightarrow> int list"
haftmann@23689
     8
where
haftmann@23689
     9
  "iupt i j = (if j < i then [] else i # iupt (i+1) j)"
haftmann@23689
    10
by pat_completeness auto
haftmann@23689
    11
termination by (relation "measure (\<lambda> (i, j). nat (j-i+1))") auto
chaieb@23274
    12
haftmann@23689
    13
lemma iupt_set: "set (iupt i j) = {i..j}"
haftmann@23689
    14
  by (induct rule: iupt.induct) (simp add: simp_from_to)
chaieb@17378
    15
chaieb@17378
    16
(* Periodicity of dvd *)
chaieb@23315
    17
chaieb@23274
    18
  (*********************************************************************************)
chaieb@23274
    19
  (****                            SHADOW SYNTAX AND SEMANTICS                  ****)
chaieb@23274
    20
  (*********************************************************************************)
chaieb@23274
    21
chaieb@23274
    22
datatype num = C int | Bound nat | CX int num | Neg num | Add num num| Sub num num 
chaieb@23274
    23
  | Mul int num
chaieb@23274
    24
chaieb@23274
    25
  (* A size for num to make inductive proofs simpler*)
chaieb@23274
    26
consts num_size :: "num \<Rightarrow> nat" 
chaieb@23274
    27
primrec 
chaieb@23274
    28
  "num_size (C c) = 1"
chaieb@23274
    29
  "num_size (Bound n) = 1"
chaieb@23274
    30
  "num_size (Neg a) = 1 + num_size a"
chaieb@23274
    31
  "num_size (Add a b) = 1 + num_size a + num_size b"
chaieb@23274
    32
  "num_size (Sub a b) = 3 + num_size a + num_size b"
chaieb@23274
    33
  "num_size (CX c a) = 4 + num_size a"
chaieb@23274
    34
  "num_size (Mul c a) = 1 + num_size a"
chaieb@17378
    35
chaieb@23274
    36
consts Inum :: "int list \<Rightarrow> num \<Rightarrow> int"
chaieb@23274
    37
primrec
chaieb@23274
    38
  "Inum bs (C c) = c"
chaieb@23274
    39
  "Inum bs (Bound n) = bs!n"
chaieb@23274
    40
  "Inum bs (CX c a) = c * (bs!0) + (Inum bs a)"
chaieb@23274
    41
  "Inum bs (Neg a) = -(Inum bs a)"
chaieb@23274
    42
  "Inum bs (Add a b) = Inum bs a + Inum bs b"
chaieb@23274
    43
  "Inum bs (Sub a b) = Inum bs a - Inum bs b"
chaieb@23274
    44
  "Inum bs (Mul c a) = c* Inum bs a"
chaieb@23274
    45
chaieb@23274
    46
datatype fm  = 
chaieb@23274
    47
  T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| Dvd int num| NDvd int num|
chaieb@23274
    48
  NOT fm| And fm fm|  Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm 
chaieb@23274
    49
  | Closed nat | NClosed nat
chaieb@23274
    50
chaieb@23274
    51
chaieb@23274
    52
  (* A size for fm *)
chaieb@23274
    53
consts fmsize :: "fm \<Rightarrow> nat"
chaieb@23274
    54
recdef fmsize "measure size"
chaieb@23274
    55
  "fmsize (NOT p) = 1 + fmsize p"
chaieb@23274
    56
  "fmsize (And p q) = 1 + fmsize p + fmsize q"
chaieb@23274
    57
  "fmsize (Or p q) = 1 + fmsize p + fmsize q"
chaieb@23274
    58
  "fmsize (Imp p q) = 3 + fmsize p + fmsize q"
chaieb@23274
    59
  "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)"
chaieb@23274
    60
  "fmsize (E p) = 1 + fmsize p"
chaieb@23274
    61
  "fmsize (A p) = 4+ fmsize p"
chaieb@23274
    62
  "fmsize (Dvd i t) = 2"
chaieb@23274
    63
  "fmsize (NDvd i t) = 2"
chaieb@23274
    64
  "fmsize p = 1"
chaieb@23274
    65
  (* several lemmas about fmsize *)
chaieb@23274
    66
lemma fmsize_pos: "fmsize p > 0"	
chaieb@23274
    67
by (induct p rule: fmsize.induct) simp_all
chaieb@17378
    68
chaieb@23274
    69
  (* Semantics of formulae (fm) *)
chaieb@23274
    70
consts Ifm ::"bool list \<Rightarrow> int list \<Rightarrow> fm \<Rightarrow> bool"
chaieb@23274
    71
primrec
chaieb@23274
    72
  "Ifm bbs bs T = True"
chaieb@23274
    73
  "Ifm bbs bs F = False"
chaieb@23274
    74
  "Ifm bbs bs (Lt a) = (Inum bs a < 0)"
chaieb@23274
    75
  "Ifm bbs bs (Gt a) = (Inum bs a > 0)"
chaieb@23274
    76
  "Ifm bbs bs (Le a) = (Inum bs a \<le> 0)"
chaieb@23274
    77
  "Ifm bbs bs (Ge a) = (Inum bs a \<ge> 0)"
chaieb@23274
    78
  "Ifm bbs bs (Eq a) = (Inum bs a = 0)"
chaieb@23274
    79
  "Ifm bbs bs (NEq a) = (Inum bs a \<noteq> 0)"
chaieb@23274
    80
  "Ifm bbs bs (Dvd i b) = (i dvd Inum bs b)"
chaieb@23274
    81
  "Ifm bbs bs (NDvd i b) = (\<not>(i dvd Inum bs b))"
chaieb@23274
    82
  "Ifm bbs bs (NOT p) = (\<not> (Ifm bbs bs p))"
chaieb@23274
    83
  "Ifm bbs bs (And p q) = (Ifm bbs bs p \<and> Ifm bbs bs q)"
chaieb@23274
    84
  "Ifm bbs bs (Or p q) = (Ifm bbs bs p \<or> Ifm bbs bs q)"
chaieb@23274
    85
  "Ifm bbs bs (Imp p q) = ((Ifm bbs bs p) \<longrightarrow> (Ifm bbs bs q))"
chaieb@23274
    86
  "Ifm bbs bs (Iff p q) = (Ifm bbs bs p = Ifm bbs bs q)"
chaieb@23274
    87
  "Ifm bbs bs (E p) = (\<exists> x. Ifm bbs (x#bs) p)"
chaieb@23274
    88
  "Ifm bbs bs (A p) = (\<forall> x. Ifm bbs (x#bs) p)"
chaieb@23274
    89
  "Ifm bbs bs (Closed n) = bbs!n"
chaieb@23274
    90
  "Ifm bbs bs (NClosed n) = (\<not> bbs!n)"
chaieb@23274
    91
chaieb@23274
    92
lemma "Ifm bbs [] (A(Imp (Gt (Sub (Bound 0) (C 8))) (E(E(Eq(Sub(Add (Mul 3 (Bound 0)) (Mul 5 (Bound 1))) (Bound 2))))))) = P"
chaieb@23274
    93
apply simp
chaieb@23274
    94
oops
chaieb@17378
    95
chaieb@23274
    96
consts prep :: "fm \<Rightarrow> fm"
chaieb@23274
    97
recdef prep "measure fmsize"
chaieb@23274
    98
  "prep (E T) = T"
chaieb@23274
    99
  "prep (E F) = F"
chaieb@23274
   100
  "prep (E (Or p q)) = Or (prep (E p)) (prep (E q))"
chaieb@23274
   101
  "prep (E (Imp p q)) = Or (prep (E (NOT p))) (prep (E q))"
chaieb@23274
   102
  "prep (E (Iff p q)) = Or (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))" 
chaieb@23274
   103
  "prep (E (NOT (And p q))) = Or (prep (E (NOT p))) (prep (E(NOT q)))"
chaieb@23274
   104
  "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))"
chaieb@23274
   105
  "prep (E (NOT (Iff p q))) = Or (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))"
chaieb@23274
   106
  "prep (E p) = E (prep p)"
chaieb@23274
   107
  "prep (A (And p q)) = And (prep (A p)) (prep (A q))"
chaieb@23274
   108
  "prep (A p) = prep (NOT (E (NOT p)))"
chaieb@23274
   109
  "prep (NOT (NOT p)) = prep p"
chaieb@23274
   110
  "prep (NOT (And p q)) = Or (prep (NOT p)) (prep (NOT q))"
chaieb@23274
   111
  "prep (NOT (A p)) = prep (E (NOT p))"
chaieb@23274
   112
  "prep (NOT (Or p q)) = And (prep (NOT p)) (prep (NOT q))"
chaieb@23274
   113
  "prep (NOT (Imp p q)) = And (prep p) (prep (NOT q))"
chaieb@23274
   114
  "prep (NOT (Iff p q)) = Or (prep (And p (NOT q))) (prep (And (NOT p) q))"
chaieb@23274
   115
  "prep (NOT p) = NOT (prep p)"
chaieb@23274
   116
  "prep (Or p q) = Or (prep p) (prep q)"
chaieb@23274
   117
  "prep (And p q) = And (prep p) (prep q)"
chaieb@23274
   118
  "prep (Imp p q) = prep (Or (NOT p) q)"
chaieb@23274
   119
  "prep (Iff p q) = Or (prep (And p q)) (prep (And (NOT p) (NOT q)))"
chaieb@23274
   120
  "prep p = p"
chaieb@23274
   121
(hints simp add: fmsize_pos)
chaieb@23274
   122
lemma prep: "Ifm bbs bs (prep p) = Ifm bbs bs p"
chaieb@23274
   123
by (induct p arbitrary: bs rule: prep.induct, auto)
chaieb@23274
   124
chaieb@17378
   125
chaieb@23274
   126
  (* Quantifier freeness *)
chaieb@23274
   127
consts qfree:: "fm \<Rightarrow> bool"
chaieb@23274
   128
recdef qfree "measure size"
chaieb@23274
   129
  "qfree (E p) = False"
chaieb@23274
   130
  "qfree (A p) = False"
chaieb@23274
   131
  "qfree (NOT p) = qfree p" 
chaieb@23274
   132
  "qfree (And p q) = (qfree p \<and> qfree q)" 
chaieb@23274
   133
  "qfree (Or  p q) = (qfree p \<and> qfree q)" 
chaieb@23274
   134
  "qfree (Imp p q) = (qfree p \<and> qfree q)" 
chaieb@23274
   135
  "qfree (Iff p q) = (qfree p \<and> qfree q)"
chaieb@23274
   136
  "qfree p = True"
chaieb@23274
   137
chaieb@23274
   138
  (* Boundedness and substitution *)
chaieb@23274
   139
consts 
chaieb@23274
   140
  numbound0:: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *)
chaieb@23274
   141
  bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *)
chaieb@23274
   142
  numsubst0:: "num \<Rightarrow> num \<Rightarrow> num" (* substitute a num into a num for Bound 0 *)
chaieb@23274
   143
  subst0:: "num \<Rightarrow> fm \<Rightarrow> fm" (* substitue a num into a formula for Bound 0 *)
chaieb@23274
   144
primrec
chaieb@23274
   145
  "numbound0 (C c) = True"
chaieb@23274
   146
  "numbound0 (Bound n) = (n>0)"
chaieb@23274
   147
  "numbound0 (CX i a) = False"
chaieb@23274
   148
  "numbound0 (Neg a) = numbound0 a"
chaieb@23274
   149
  "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)"
chaieb@23274
   150
  "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)" 
chaieb@23274
   151
  "numbound0 (Mul i a) = numbound0 a"
chaieb@23274
   152
chaieb@23274
   153
lemma numbound0_I:
chaieb@23274
   154
  assumes nb: "numbound0 a"
chaieb@23274
   155
  shows "Inum (b#bs) a = Inum (b'#bs) a"
chaieb@23274
   156
using nb
haftmann@23689
   157
by (induct a rule: numbound0.induct) (auto simp add: gr0_conv_Suc)
chaieb@17378
   158
chaieb@23274
   159
primrec
chaieb@23274
   160
  "bound0 T = True"
chaieb@23274
   161
  "bound0 F = True"
chaieb@23274
   162
  "bound0 (Lt a) = numbound0 a"
chaieb@23274
   163
  "bound0 (Le a) = numbound0 a"
chaieb@23274
   164
  "bound0 (Gt a) = numbound0 a"
chaieb@23274
   165
  "bound0 (Ge a) = numbound0 a"
chaieb@23274
   166
  "bound0 (Eq a) = numbound0 a"
chaieb@23274
   167
  "bound0 (NEq a) = numbound0 a"
chaieb@23274
   168
  "bound0 (Dvd i a) = numbound0 a"
chaieb@23274
   169
  "bound0 (NDvd i a) = numbound0 a"
chaieb@23274
   170
  "bound0 (NOT p) = bound0 p"
chaieb@23274
   171
  "bound0 (And p q) = (bound0 p \<and> bound0 q)"
chaieb@23274
   172
  "bound0 (Or p q) = (bound0 p \<and> bound0 q)"
chaieb@23274
   173
  "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))"
chaieb@23274
   174
  "bound0 (Iff p q) = (bound0 p \<and> bound0 q)"
chaieb@23274
   175
  "bound0 (E p) = False"
chaieb@23274
   176
  "bound0 (A p) = False"
chaieb@23274
   177
  "bound0 (Closed P) = True"
chaieb@23274
   178
  "bound0 (NClosed P) = True"
chaieb@23274
   179
lemma bound0_I:
chaieb@23274
   180
  assumes bp: "bound0 p"
chaieb@23274
   181
  shows "Ifm bbs (b#bs) p = Ifm bbs (b'#bs) p"
chaieb@23274
   182
using bp numbound0_I[where b="b" and bs="bs" and b'="b'"]
haftmann@23689
   183
by (induct p rule: bound0.induct) (auto simp add: gr0_conv_Suc)
chaieb@23274
   184
chaieb@23274
   185
primrec
chaieb@23274
   186
  "numsubst0 t (C c) = (C c)"
chaieb@23274
   187
  "numsubst0 t (Bound n) = (if n=0 then t else Bound n)"
chaieb@23274
   188
  "numsubst0 t (CX i a) = Add (Mul i t) (numsubst0 t a)"
chaieb@23274
   189
  "numsubst0 t (Neg a) = Neg (numsubst0 t a)"
chaieb@23274
   190
  "numsubst0 t (Add a b) = Add (numsubst0 t a) (numsubst0 t b)"
chaieb@23274
   191
  "numsubst0 t (Sub a b) = Sub (numsubst0 t a) (numsubst0 t b)" 
chaieb@23274
   192
  "numsubst0 t (Mul i a) = Mul i (numsubst0 t a)"
chaieb@23274
   193
chaieb@23274
   194
lemma numsubst0_I:
chaieb@23274
   195
  shows "Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b#bs) a)#bs) t"
haftmann@23689
   196
  by (induct t) (auto simp add: gr0_conv_Suc)
chaieb@17378
   197
chaieb@23274
   198
lemma numsubst0_I':
chaieb@23274
   199
  assumes nb: "numbound0 a"
chaieb@23274
   200
  shows "Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b'#bs) a)#bs) t"
haftmann@23689
   201
  by (induct t) (auto simp add: gr0_conv_Suc numbound0_I[OF nb, where b="b" and b'="b'"])
chaieb@23274
   202
chaieb@23274
   203
chaieb@23274
   204
primrec
chaieb@23274
   205
  "subst0 t T = T"
chaieb@23274
   206
  "subst0 t F = F"
chaieb@23274
   207
  "subst0 t (Lt a) = Lt (numsubst0 t a)"
chaieb@23274
   208
  "subst0 t (Le a) = Le (numsubst0 t a)"
chaieb@23274
   209
  "subst0 t (Gt a) = Gt (numsubst0 t a)"
chaieb@23274
   210
  "subst0 t (Ge a) = Ge (numsubst0 t a)"
chaieb@23274
   211
  "subst0 t (Eq a) = Eq (numsubst0 t a)"
chaieb@23274
   212
  "subst0 t (NEq a) = NEq (numsubst0 t a)"
chaieb@23274
   213
  "subst0 t (Dvd i a) = Dvd i (numsubst0 t a)"
chaieb@23274
   214
  "subst0 t (NDvd i a) = NDvd i (numsubst0 t a)"
chaieb@23274
   215
  "subst0 t (NOT p) = NOT (subst0 t p)"
chaieb@23274
   216
  "subst0 t (And p q) = And (subst0 t p) (subst0 t q)"
chaieb@23274
   217
  "subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)"
chaieb@23274
   218
  "subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)"
chaieb@23274
   219
  "subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)"
chaieb@23274
   220
  "subst0 t (Closed P) = (Closed P)"
chaieb@23274
   221
  "subst0 t (NClosed P) = (NClosed P)"
chaieb@23274
   222
chaieb@23274
   223
lemma subst0_I: assumes qfp: "qfree p"
chaieb@23274
   224
  shows "Ifm bbs (b#bs) (subst0 a p) = Ifm bbs ((Inum (b#bs) a)#bs) p"
chaieb@23274
   225
  using qfp numsubst0_I[where b="b" and bs="bs" and a="a"]
haftmann@23689
   226
  by (induct p) (simp_all add: gr0_conv_Suc)
chaieb@23274
   227
chaieb@23274
   228
chaieb@23274
   229
consts 
chaieb@23274
   230
  decrnum:: "num \<Rightarrow> num" 
chaieb@23274
   231
  decr :: "fm \<Rightarrow> fm"
chaieb@23274
   232
chaieb@23274
   233
recdef decrnum "measure size"
chaieb@23274
   234
  "decrnum (Bound n) = Bound (n - 1)"
chaieb@23274
   235
  "decrnum (Neg a) = Neg (decrnum a)"
chaieb@23274
   236
  "decrnum (Add a b) = Add (decrnum a) (decrnum b)"
chaieb@23274
   237
  "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)"
chaieb@23274
   238
  "decrnum (Mul c a) = Mul c (decrnum a)"
chaieb@23274
   239
  "decrnum a = a"
chaieb@17378
   240
chaieb@23274
   241
recdef decr "measure size"
chaieb@23274
   242
  "decr (Lt a) = Lt (decrnum a)"
chaieb@23274
   243
  "decr (Le a) = Le (decrnum a)"
chaieb@23274
   244
  "decr (Gt a) = Gt (decrnum a)"
chaieb@23274
   245
  "decr (Ge a) = Ge (decrnum a)"
chaieb@23274
   246
  "decr (Eq a) = Eq (decrnum a)"
chaieb@23274
   247
  "decr (NEq a) = NEq (decrnum a)"
chaieb@23274
   248
  "decr (Dvd i a) = Dvd i (decrnum a)"
chaieb@23274
   249
  "decr (NDvd i a) = NDvd i (decrnum a)"
chaieb@23274
   250
  "decr (NOT p) = NOT (decr p)" 
chaieb@23274
   251
  "decr (And p q) = And (decr p) (decr q)"
chaieb@23274
   252
  "decr (Or p q) = Or (decr p) (decr q)"
chaieb@23274
   253
  "decr (Imp p q) = Imp (decr p) (decr q)"
chaieb@23274
   254
  "decr (Iff p q) = Iff (decr p) (decr q)"
chaieb@23274
   255
  "decr p = p"
chaieb@23274
   256
chaieb@23274
   257
lemma decrnum: assumes nb: "numbound0 t"
chaieb@23274
   258
  shows "Inum (x#bs) t = Inum bs (decrnum t)"
haftmann@23689
   259
  using nb by (induct t rule: decrnum.induct, auto simp add: gr0_conv_Suc)
chaieb@23274
   260
chaieb@23274
   261
lemma decr: assumes nb: "bound0 p"
chaieb@23274
   262
  shows "Ifm bbs (x#bs) p = Ifm bbs bs (decr p)"
chaieb@23274
   263
  using nb 
haftmann@23689
   264
  by (induct p rule: decr.induct, simp_all add: gr0_conv_Suc decrnum)
chaieb@23274
   265
chaieb@23274
   266
lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)"
chaieb@23274
   267
by (induct p, simp_all)
chaieb@23274
   268
chaieb@23274
   269
consts 
chaieb@23274
   270
  isatom :: "fm \<Rightarrow> bool" (* test for atomicity *)
chaieb@23274
   271
recdef isatom "measure size"
chaieb@23274
   272
  "isatom T = True"
chaieb@23274
   273
  "isatom F = True"
chaieb@23274
   274
  "isatom (Lt a) = True"
chaieb@23274
   275
  "isatom (Le a) = True"
chaieb@23274
   276
  "isatom (Gt a) = True"
chaieb@23274
   277
  "isatom (Ge a) = True"
chaieb@23274
   278
  "isatom (Eq a) = True"
chaieb@23274
   279
  "isatom (NEq a) = True"
chaieb@23274
   280
  "isatom (Dvd i b) = True"
chaieb@23274
   281
  "isatom (NDvd i b) = True"
chaieb@23274
   282
  "isatom (Closed P) = True"
chaieb@23274
   283
  "isatom (NClosed P) = True"
chaieb@23274
   284
  "isatom p = False"
chaieb@17378
   285
chaieb@23274
   286
lemma numsubst0_numbound0: assumes nb: "numbound0 t"
chaieb@23274
   287
  shows "numbound0 (numsubst0 t a)"
chaieb@23274
   288
using nb by (induct a rule: numsubst0.induct, auto)
chaieb@23274
   289
chaieb@23274
   290
lemma subst0_bound0: assumes qf: "qfree p" and nb: "numbound0 t"
chaieb@23274
   291
  shows "bound0 (subst0 t p)"
chaieb@23274
   292
using qf numsubst0_numbound0[OF nb] by (induct p  rule: subst0.induct, auto)
chaieb@23274
   293
chaieb@23274
   294
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"
chaieb@23274
   295
by (induct p, simp_all)
chaieb@23274
   296
chaieb@23274
   297
chaieb@23274
   298
constdefs djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
chaieb@23274
   299
  "djf f p q \<equiv> (if q=T then T else if q=F then f p else 
chaieb@23274
   300
  (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"
chaieb@23274
   301
constdefs evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
chaieb@23274
   302
  "evaldjf f ps \<equiv> foldr (djf f) ps F"
chaieb@23274
   303
chaieb@23274
   304
lemma djf_Or: "Ifm bbs bs (djf f p q) = Ifm bbs bs (Or (f p) q)"
chaieb@23274
   305
by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def) 
chaieb@23274
   306
(cases "f p", simp_all add: Let_def djf_def) 
chaieb@23274
   307
chaieb@23274
   308
lemma evaldjf_ex: "Ifm bbs bs (evaldjf f ps) = (\<exists> p \<in> set ps. Ifm bbs bs (f p))"
chaieb@23274
   309
  by(induct ps, simp_all add: evaldjf_def djf_Or)
chaieb@17378
   310
chaieb@23274
   311
lemma evaldjf_bound0: 
chaieb@23274
   312
  assumes nb: "\<forall> x\<in> set xs. bound0 (f x)"
chaieb@23274
   313
  shows "bound0 (evaldjf f xs)"
chaieb@23274
   314
  using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) 
chaieb@23274
   315
chaieb@23274
   316
lemma evaldjf_qf: 
chaieb@23274
   317
  assumes nb: "\<forall> x\<in> set xs. qfree (f x)"
chaieb@23274
   318
  shows "qfree (evaldjf f xs)"
chaieb@23274
   319
  using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) 
chaieb@17378
   320
chaieb@23274
   321
consts disjuncts :: "fm \<Rightarrow> fm list"
chaieb@23274
   322
recdef disjuncts "measure size"
chaieb@23274
   323
  "disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)"
chaieb@23274
   324
  "disjuncts F = []"
chaieb@23274
   325
  "disjuncts p = [p]"
chaieb@23274
   326
chaieb@23274
   327
lemma disjuncts: "(\<exists> q\<in> set (disjuncts p). Ifm bbs bs q) = Ifm bbs bs p"
chaieb@23274
   328
by(induct p rule: disjuncts.induct, auto)
chaieb@23274
   329
chaieb@23274
   330
lemma disjuncts_nb: "bound0 p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). bound0 q"
chaieb@17378
   331
proof-
chaieb@23274
   332
  assume nb: "bound0 p"
chaieb@23274
   333
  hence "list_all bound0 (disjuncts p)" by (induct p rule:disjuncts.induct,auto)
chaieb@23274
   334
  thus ?thesis by (simp only: list_all_iff)
chaieb@17378
   335
qed
chaieb@17378
   336
chaieb@23274
   337
lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). qfree q"
chaieb@23274
   338
proof-
chaieb@23274
   339
  assume qf: "qfree p"
chaieb@23274
   340
  hence "list_all qfree (disjuncts p)"
chaieb@23274
   341
    by (induct p rule: disjuncts.induct, auto)
chaieb@23274
   342
  thus ?thesis by (simp only: list_all_iff)
chaieb@23274
   343
qed
chaieb@17378
   344
chaieb@23274
   345
constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
chaieb@23274
   346
  "DJ f p \<equiv> evaldjf f (disjuncts p)"
chaieb@17378
   347
chaieb@23274
   348
lemma DJ: assumes fdj: "\<forall> p q. f (Or p q) = Or (f p) (f q)"
chaieb@23274
   349
  and fF: "f F = F"
chaieb@23274
   350
  shows "Ifm bbs bs (DJ f p) = Ifm bbs bs (f p)"
chaieb@23274
   351
proof-
chaieb@23274
   352
  have "Ifm bbs bs (DJ f p) = (\<exists> q \<in> set (disjuncts p). Ifm bbs bs (f q))"
chaieb@23274
   353
    by (simp add: DJ_def evaldjf_ex) 
chaieb@23274
   354
  also have "\<dots> = Ifm bbs bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto)
chaieb@23274
   355
  finally show ?thesis .
chaieb@23274
   356
qed
chaieb@17378
   357
chaieb@23274
   358
lemma DJ_qf: assumes 
chaieb@23274
   359
  fqf: "\<forall> p. qfree p \<longrightarrow> qfree (f p)"
chaieb@23274
   360
  shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) "
chaieb@23274
   361
proof(clarify)
chaieb@23274
   362
  fix  p assume qf: "qfree p"
chaieb@23274
   363
  have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def)
chaieb@23274
   364
  from disjuncts_qf[OF qf] have "\<forall> q\<in> set (disjuncts p). qfree q" .
chaieb@23274
   365
  with fqf have th':"\<forall> q\<in> set (disjuncts p). qfree (f q)" by blast
chaieb@23274
   366
  
chaieb@23274
   367
  from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp
chaieb@17378
   368
qed
chaieb@17378
   369
chaieb@23274
   370
lemma DJ_qe: assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bbs bs (qe p) = Ifm bbs bs (E p))"
chaieb@23274
   371
  shows "\<forall> bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bbs bs ((DJ qe p)) = Ifm bbs bs (E p))"
chaieb@23274
   372
proof(clarify)
chaieb@23274
   373
  fix p::fm and bs
chaieb@23274
   374
  assume qf: "qfree p"
chaieb@23274
   375
  from qe have qth: "\<forall> p. qfree p \<longrightarrow> qfree (qe p)" by blast
chaieb@23274
   376
  from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto
chaieb@23274
   377
  have "Ifm bbs bs (DJ qe p) = (\<exists> q\<in> set (disjuncts p). Ifm bbs bs (qe q))"
chaieb@23274
   378
    by (simp add: DJ_def evaldjf_ex)
chaieb@23274
   379
  also have "\<dots> = (\<exists> q \<in> set(disjuncts p). Ifm bbs bs (E q))" using qe disjuncts_qf[OF qf] by auto
chaieb@23274
   380
  also have "\<dots> = Ifm bbs bs (E p)" by (induct p rule: disjuncts.induct, auto)
chaieb@23274
   381
  finally show "qfree (DJ qe p) \<and> Ifm bbs bs (DJ qe p) = Ifm bbs bs (E p)" using qfth by blast
chaieb@23274
   382
qed
chaieb@23274
   383
  (* Simplification *)
chaieb@23274
   384
chaieb@23274
   385
  (* Algebraic simplifications for nums *)
chaieb@23274
   386
consts bnds:: "num \<Rightarrow> nat list"
chaieb@23274
   387
  lex_ns:: "nat list \<times> nat list \<Rightarrow> bool"
chaieb@23274
   388
recdef bnds "measure size"
chaieb@23274
   389
  "bnds (Bound n) = [n]"
chaieb@23274
   390
  "bnds (CX c a) = 0#(bnds a)"
chaieb@23274
   391
  "bnds (Neg a) = bnds a"
chaieb@23274
   392
  "bnds (Add a b) = (bnds a)@(bnds b)"
chaieb@23274
   393
  "bnds (Sub a b) = (bnds a)@(bnds b)"
chaieb@23274
   394
  "bnds (Mul i a) = bnds a"
chaieb@23274
   395
  "bnds a = []"
chaieb@23274
   396
recdef lex_ns "measure (\<lambda> (xs,ys). length xs + length ys)"
chaieb@23274
   397
  "lex_ns ([], ms) = True"
chaieb@23274
   398
  "lex_ns (ns, []) = False"
chaieb@23274
   399
  "lex_ns (n#ns, m#ms) = (n<m \<or> ((n = m) \<and> lex_ns (ns,ms))) "
chaieb@23274
   400
constdefs lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool"
chaieb@23274
   401
  "lex_bnd t s \<equiv> lex_ns (bnds t, bnds s)"
chaieb@23274
   402
haftmann@23689
   403
consts
chaieb@23274
   404
  numadd:: "num \<times> num \<Rightarrow> num"
chaieb@23274
   405
recdef numadd "measure (\<lambda> (t,s). size t + size s)"
chaieb@23274
   406
  "numadd (Add (Mul c1 (Bound n1)) r1,Add (Mul c2 (Bound n2)) r2) =
chaieb@23274
   407
  (if n1=n2 then 
chaieb@23274
   408
  (let c = c1 + c2
chaieb@23274
   409
  in (if c=0 then numadd(r1,r2) else Add (Mul c (Bound n1)) (numadd (r1,r2))))
chaieb@23274
   410
  else if n1 \<le> n2 then (Add (Mul c1 (Bound n1)) (numadd (r1,Add (Mul c2 (Bound n2)) r2))) 
chaieb@23274
   411
  else (Add (Mul c2 (Bound n2)) (numadd (Add (Mul c1 (Bound n1)) r1,r2))))"
chaieb@23274
   412
  "numadd (Add (Mul c1 (Bound n1)) r1,t) = Add (Mul c1 (Bound n1)) (numadd (r1, t))"  
chaieb@23274
   413
  "numadd (t,Add (Mul c2 (Bound n2)) r2) = Add (Mul c2 (Bound n2)) (numadd (t,r2))" 
chaieb@23274
   414
  "numadd (C b1, C b2) = C (b1+b2)"
chaieb@23274
   415
  "numadd (a,b) = Add a b"
chaieb@23274
   416
haftmann@23689
   417
(*function (sequential)
haftmann@23689
   418
  numadd :: "num \<Rightarrow> num \<Rightarrow> num"
haftmann@23689
   419
where
haftmann@23689
   420
  "numadd (Add (Mul c1 (Bound n1)) r1) (Add (Mul c2 (Bound n2)) r2) =
haftmann@23689
   421
      (if n1 = n2 then (let c = c1 + c2
haftmann@23689
   422
      in (if c = 0 then numadd r1 r2 else
haftmann@23689
   423
        Add (Mul c (Bound n1)) (numadd r1 r2)))
haftmann@23689
   424
      else if n1 \<le> n2 then
haftmann@23689
   425
        Add (Mul c1 (Bound n1)) (numadd r1 (Add (Mul c2 (Bound n2)) r2))
haftmann@23689
   426
      else
haftmann@23689
   427
        Add (Mul c2 (Bound n2)) (numadd (Add (Mul c1 (Bound n1)) r1) r2))"
haftmann@23689
   428
  | "numadd (Add (Mul c1 (Bound n1)) r1) t =
haftmann@23689
   429
      Add (Mul c1 (Bound n1)) (numadd r1 t)"  
haftmann@23689
   430
  | "numadd t (Add (Mul c2 (Bound n2)) r2) =
haftmann@23689
   431
      Add (Mul c2 (Bound n2)) (numadd t r2)" 
haftmann@23689
   432
  | "numadd (C b1) (C b2) = C (b1 + b2)"
haftmann@23689
   433
  | "numadd a b = Add a b"
haftmann@23689
   434
apply pat_completeness apply auto*)
haftmann@23689
   435
  
chaieb@23274
   436
lemma numadd: "Inum bs (numadd (t,s)) = Inum bs (Add t s)"
chaieb@23274
   437
apply (induct t s rule: numadd.induct, simp_all add: Let_def)
chaieb@23274
   438
apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all)
nipkow@23477
   439
 apply (case_tac "n1 = n2")
nipkow@23477
   440
  apply(simp_all add: ring_simps)
nipkow@23477
   441
apply(simp add: left_distrib[symmetric])
nipkow@23477
   442
done
chaieb@23274
   443
chaieb@23274
   444
lemma numadd_nb: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numadd (t,s))"
chaieb@23274
   445
by (induct t s rule: numadd.induct, auto simp add: Let_def)
chaieb@23274
   446
haftmann@23689
   447
fun
haftmann@23689
   448
  nummul :: "int \<Rightarrow> num \<Rightarrow> num"
haftmann@23689
   449
where
haftmann@23689
   450
  "nummul i (C j) = C (i * j)"
haftmann@23689
   451
  | "nummul i (Add a b) = numadd (nummul i a, nummul i b)"
haftmann@23689
   452
  | "nummul i (Mul c t) = nummul (i * c) t"
haftmann@23689
   453
  | "nummul i t = Mul i t"
chaieb@23274
   454
haftmann@23689
   455
lemma nummul: "\<And> i. Inum bs (nummul i t) = Inum bs (Mul i t)"
nipkow@23477
   456
by (induct t rule: nummul.induct, auto simp add: ring_simps numadd)
chaieb@23274
   457
haftmann@23689
   458
lemma nummul_nb: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul i t)"
chaieb@23274
   459
by (induct t rule: nummul.induct, auto simp add: numadd_nb)
chaieb@23274
   460
chaieb@23274
   461
constdefs numneg :: "num \<Rightarrow> num"
haftmann@23689
   462
  "numneg t \<equiv> nummul (- 1) t"
chaieb@23274
   463
chaieb@23274
   464
constdefs numsub :: "num \<Rightarrow> num \<Rightarrow> num"
haftmann@23689
   465
  "numsub s t \<equiv> (if s = t then C 0 else numadd (s, numneg t))"
chaieb@23274
   466
chaieb@23274
   467
lemma numneg: "Inum bs (numneg t) = Inum bs (Neg t)"
chaieb@23274
   468
using numneg_def nummul by simp
chaieb@23274
   469
chaieb@23274
   470
lemma numneg_nb: "numbound0 t \<Longrightarrow> numbound0 (numneg t)"
chaieb@23274
   471
using numneg_def nummul_nb by simp
chaieb@23274
   472
chaieb@23274
   473
lemma numsub: "Inum bs (numsub a b) = Inum bs (Sub a b)"
chaieb@23274
   474
using numneg numadd numsub_def by simp
chaieb@23274
   475
chaieb@23274
   476
lemma numsub_nb: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)"
chaieb@23274
   477
using numsub_def numadd_nb numneg_nb by simp
chaieb@23274
   478
haftmann@23689
   479
fun
haftmann@23689
   480
  simpnum :: "num \<Rightarrow> num"
haftmann@23689
   481
where
chaieb@23274
   482
  "simpnum (C j) = C j"
haftmann@23689
   483
  | "simpnum (Bound n) = Add (Mul 1 (Bound n)) (C 0)"
haftmann@23689
   484
  | "simpnum (Neg t) = numneg (simpnum t)"
haftmann@23689
   485
  | "simpnum (Add t s) = numadd (simpnum t, simpnum s)"
haftmann@23689
   486
  | "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)"
haftmann@23689
   487
  | "simpnum (Mul i t) = (if i = 0 then C 0 else nummul i (simpnum t))"
haftmann@23689
   488
  | "simpnum t = t"
chaieb@23274
   489
chaieb@23274
   490
lemma simpnum_ci: "Inum bs (simpnum t) = Inum bs t"
chaieb@23274
   491
by (induct t rule: simpnum.induct, auto simp add: numneg numadd numsub nummul)
chaieb@23274
   492
chaieb@23274
   493
lemma simpnum_numbound0: 
chaieb@23274
   494
  "numbound0 t \<Longrightarrow> numbound0 (simpnum t)"
chaieb@23274
   495
by (induct t rule: simpnum.induct, auto simp add: numadd_nb numsub_nb nummul_nb numneg_nb)
chaieb@23274
   496
haftmann@23689
   497
fun
haftmann@23689
   498
  not :: "fm \<Rightarrow> fm"
haftmann@23689
   499
where
chaieb@23274
   500
  "not (NOT p) = p"
haftmann@23689
   501
  | "not T = F"
haftmann@23689
   502
  | "not F = T"
haftmann@23689
   503
  | "not p = NOT p"
chaieb@23274
   504
lemma not: "Ifm bbs bs (not p) = Ifm bbs bs (NOT p)"
chaieb@23274
   505
by (cases p) auto
chaieb@23274
   506
lemma not_qf: "qfree p \<Longrightarrow> qfree (not p)"
chaieb@23274
   507
by (cases p, auto)
chaieb@23274
   508
lemma not_bn: "bound0 p \<Longrightarrow> bound0 (not p)"
chaieb@23274
   509
by (cases p, auto)
chaieb@23274
   510
chaieb@23274
   511
constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
chaieb@23274
   512
  "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else And p q)"
chaieb@23274
   513
lemma conj: "Ifm bbs bs (conj p q) = Ifm bbs bs (And p q)"
chaieb@23274
   514
by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all)
chaieb@23274
   515
chaieb@23274
   516
lemma conj_qf: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)"
chaieb@23274
   517
using conj_def by auto 
chaieb@23274
   518
lemma conj_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)"
chaieb@23274
   519
using conj_def by auto 
chaieb@23274
   520
chaieb@23274
   521
constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
chaieb@23274
   522
  "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p else Or p q)"
chaieb@23274
   523
chaieb@23274
   524
lemma disj: "Ifm bbs bs (disj p q) = Ifm bbs bs (Or p q)"
chaieb@23274
   525
by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all)
chaieb@23274
   526
lemma disj_qf: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)"
chaieb@23274
   527
using disj_def by auto 
chaieb@23274
   528
lemma disj_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"
chaieb@23274
   529
using disj_def by auto 
chaieb@23274
   530
chaieb@23274
   531
constdefs   imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
chaieb@23274
   532
  "imp p q \<equiv> (if (p = F \<or> q=T) then T else if p=T then q else if q=F then not p else Imp p q)"
chaieb@23274
   533
lemma imp: "Ifm bbs bs (imp p q) = Ifm bbs bs (Imp p q)"
chaieb@23274
   534
by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) (simp_all add: not)
chaieb@23274
   535
lemma imp_qf: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)"
chaieb@23274
   536
using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) (simp_all add: not_qf) 
chaieb@23274
   537
lemma imp_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)"
chaieb@23274
   538
using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) simp_all
chaieb@23274
   539
chaieb@23274
   540
constdefs   iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
chaieb@23274
   541
  "iff p q \<equiv> (if (p = q) then T else if (p = not q \<or> not p = q) then F else 
chaieb@23274
   542
       if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else 
chaieb@23274
   543
  Iff p q)"
chaieb@23274
   544
lemma iff: "Ifm bbs bs (iff p q) = Ifm bbs bs (Iff p q)"
chaieb@23274
   545
  by (unfold iff_def,cases "p=q", simp,cases "p=not q", simp add:not) 
chaieb@23274
   546
(cases "not p= q", auto simp add:not)
chaieb@23274
   547
lemma iff_qf: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)"
chaieb@23274
   548
  by (unfold iff_def,cases "p=q", auto simp add: not_qf)
chaieb@23274
   549
lemma iff_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)"
chaieb@23274
   550
using iff_def by (unfold iff_def,cases "p=q", auto simp add: not_bn)
chaieb@23274
   551
haftmann@23689
   552
function (sequential)
haftmann@23689
   553
  simpfm :: "fm \<Rightarrow> fm"
haftmann@23689
   554
where
chaieb@23274
   555
  "simpfm (And p q) = conj (simpfm p) (simpfm q)"
haftmann@23689
   556
  | "simpfm (Or p q) = disj (simpfm p) (simpfm q)"
haftmann@23689
   557
  | "simpfm (Imp p q) = imp (simpfm p) (simpfm q)"
haftmann@23689
   558
  | "simpfm (Iff p q) = iff (simpfm p) (simpfm q)"
haftmann@23689
   559
  | "simpfm (NOT p) = not (simpfm p)"
haftmann@23689
   560
  | "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F 
haftmann@23689
   561
      | _ \<Rightarrow> Lt a')"
haftmann@23689
   562
  | "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0)  then T else F | _ \<Rightarrow> Le a')"
haftmann@23689
   563
  | "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0)  then T else F | _ \<Rightarrow> Gt a')"
haftmann@23689
   564
  | "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0)  then T else F | _ \<Rightarrow> Ge a')"
haftmann@23689
   565
  | "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0)  then T else F | _ \<Rightarrow> Eq a')"
haftmann@23689
   566
  | "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0)  then T else F | _ \<Rightarrow> NEq a')"
haftmann@23689
   567
  | "simpfm (Dvd i a) = (if i=0 then simpfm (Eq a)
chaieb@23274
   568
             else if (abs i = 1) then T
chaieb@23274
   569
             else let a' = simpnum a in case a' of C v \<Rightarrow> if (i dvd v)  then T else F | _ \<Rightarrow> Dvd i a')"
haftmann@23689
   570
  | "simpfm (NDvd i a) = (if i=0 then simpfm (NEq a) 
chaieb@23274
   571
             else if (abs i = 1) then F
chaieb@23274
   572
             else let a' = simpnum a in case a' of C v \<Rightarrow> if (\<not>(i dvd v)) then T else F | _ \<Rightarrow> NDvd i a')"
haftmann@23689
   573
  | "simpfm p = p"
haftmann@23689
   574
by pat_completeness auto
haftmann@23689
   575
termination by (relation "measure fmsize") auto
haftmann@23689
   576
chaieb@23274
   577
lemma simpfm: "Ifm bbs bs (simpfm p) = Ifm bbs bs p"
chaieb@23274
   578
proof(induct p rule: simpfm.induct)
chaieb@23274
   579
  case (6 a) let ?sa = "simpnum a" from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   580
  {fix v assume "?sa = C v" hence ?case using sa by simp }
chaieb@23274
   581
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
chaieb@23274
   582
      by (cases ?sa, simp_all add: Let_def)}
chaieb@23274
   583
  ultimately show ?case by blast
chaieb@17378
   584
next
chaieb@23274
   585
  case (7 a)  let ?sa = "simpnum a" 
chaieb@23274
   586
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   587
  {fix v assume "?sa = C v" hence ?case using sa by simp }
chaieb@23274
   588
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
chaieb@23274
   589
      by (cases ?sa, simp_all add: Let_def)}
chaieb@23274
   590
  ultimately show ?case by blast
chaieb@23274
   591
next
chaieb@23274
   592
  case (8 a)  let ?sa = "simpnum a" 
chaieb@23274
   593
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   594
  {fix v assume "?sa = C v" hence ?case using sa by simp }
chaieb@23274
   595
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
chaieb@23274
   596
      by (cases ?sa, simp_all add: Let_def)}
chaieb@23274
   597
  ultimately show ?case by blast
chaieb@23274
   598
next
chaieb@23274
   599
  case (9 a)  let ?sa = "simpnum a" 
chaieb@23274
   600
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   601
  {fix v assume "?sa = C v" hence ?case using sa by simp }
chaieb@23274
   602
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
chaieb@23274
   603
      by (cases ?sa, simp_all add: Let_def)}
chaieb@23274
   604
  ultimately show ?case by blast
chaieb@23274
   605
next
chaieb@23274
   606
  case (10 a)  let ?sa = "simpnum a" 
chaieb@23274
   607
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   608
  {fix v assume "?sa = C v" hence ?case using sa by simp }
chaieb@23274
   609
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
chaieb@23274
   610
      by (cases ?sa, simp_all add: Let_def)}
chaieb@23274
   611
  ultimately show ?case by blast
chaieb@23274
   612
next
chaieb@23274
   613
  case (11 a)  let ?sa = "simpnum a" 
chaieb@23274
   614
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   615
  {fix v assume "?sa = C v" hence ?case using sa by simp }
chaieb@23274
   616
  moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
chaieb@23274
   617
      by (cases ?sa, simp_all add: Let_def)}
chaieb@23274
   618
  ultimately show ?case by blast
chaieb@23274
   619
next
chaieb@23274
   620
  case (12 i a)  let ?sa = "simpnum a" from simpnum_ci 
chaieb@23274
   621
  have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   622
  have "i=0 \<or> abs i = 1 \<or> (i\<noteq>0 \<and> (abs i \<noteq> 1))" by auto
chaieb@23274
   623
  {assume "i=0" hence ?case using "12.hyps" by (simp add: dvd_def Let_def)}
chaieb@23274
   624
  moreover 
chaieb@23274
   625
  {assume i1: "abs i = 1"
chaieb@23274
   626
      from zdvd_1_left[where m = "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"]
chaieb@23315
   627
      have ?case using i1 apply (cases "i=0", simp_all add: Let_def) 
chaieb@23315
   628
	by (cases "i > 0", simp_all)}
chaieb@23274
   629
  moreover   
chaieb@23274
   630
  {assume inz: "i\<noteq>0" and cond: "abs i \<noteq> 1"
chaieb@23274
   631
    {fix v assume "?sa = C v" hence ?case using sa[symmetric] inz cond
chaieb@23274
   632
	by (cases "abs i = 1", auto) }
chaieb@23274
   633
    moreover {assume "\<not> (\<exists> v. ?sa = C v)" 
chaieb@23274
   634
      hence "simpfm (Dvd i a) = Dvd i ?sa" using inz cond 
chaieb@23274
   635
	by (cases ?sa, auto simp add: Let_def)
chaieb@23274
   636
      hence ?case using sa by simp}
chaieb@23274
   637
    ultimately have ?case by blast}
chaieb@23274
   638
  ultimately show ?case by blast
chaieb@23274
   639
next
chaieb@23274
   640
  case (13 i a)  let ?sa = "simpnum a" from simpnum_ci 
chaieb@23274
   641
  have sa: "Inum bs ?sa = Inum bs a" by simp
chaieb@23274
   642
  have "i=0 \<or> abs i = 1 \<or> (i\<noteq>0 \<and> (abs i \<noteq> 1))" by auto
chaieb@23274
   643
  {assume "i=0" hence ?case using "13.hyps" by (simp add: dvd_def Let_def)}
chaieb@23274
   644
  moreover 
chaieb@23274
   645
  {assume i1: "abs i = 1"
chaieb@23274
   646
      from zdvd_1_left[where m = "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"]
chaieb@23315
   647
      have ?case using i1 apply (cases "i=0", simp_all add: Let_def)
chaieb@23315
   648
      apply (cases "i > 0", simp_all) done}
chaieb@23274
   649
  moreover   
chaieb@23274
   650
  {assume inz: "i\<noteq>0" and cond: "abs i \<noteq> 1"
chaieb@23274
   651
    {fix v assume "?sa = C v" hence ?case using sa[symmetric] inz cond
chaieb@23274
   652
	by (cases "abs i = 1", auto) }
chaieb@23274
   653
    moreover {assume "\<not> (\<exists> v. ?sa = C v)" 
chaieb@23274
   654
      hence "simpfm (NDvd i a) = NDvd i ?sa" using inz cond 
chaieb@23274
   655
	by (cases ?sa, auto simp add: Let_def)
chaieb@23274
   656
      hence ?case using sa by simp}
chaieb@23274
   657
    ultimately have ?case by blast}
chaieb@23274
   658
  ultimately show ?case by blast
chaieb@23274
   659
qed (induct p rule: simpfm.induct, simp_all add: conj disj imp iff not)
chaieb@17378
   660
chaieb@23274
   661
lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)"
chaieb@23274
   662
proof(induct p rule: simpfm.induct)
chaieb@23274
   663
  case (6 a) hence nb: "numbound0 a" by simp
chaieb@23274
   664
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   665
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   666
next
chaieb@23274
   667
  case (7 a) hence nb: "numbound0 a" by simp
chaieb@23274
   668
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   669
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   670
next
chaieb@23274
   671
  case (8 a) hence nb: "numbound0 a" by simp
chaieb@23274
   672
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   673
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   674
next
chaieb@23274
   675
  case (9 a) hence nb: "numbound0 a" by simp
chaieb@23274
   676
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   677
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   678
next
chaieb@23274
   679
  case (10 a) hence nb: "numbound0 a" by simp
chaieb@23274
   680
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   681
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   682
next
chaieb@23274
   683
  case (11 a) hence nb: "numbound0 a" by simp
chaieb@23274
   684
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   685
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   686
next
chaieb@23274
   687
  case (12 i a) hence nb: "numbound0 a" by simp
chaieb@23274
   688
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   689
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   690
next
chaieb@23274
   691
  case (13 i a) hence nb: "numbound0 a" by simp
chaieb@23274
   692
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
chaieb@23274
   693
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
chaieb@23274
   694
qed(auto simp add: disj_def imp_def iff_def conj_def not_bn)
chaieb@17378
   695
chaieb@23274
   696
lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)"
chaieb@23274
   697
by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def)
chaieb@23274
   698
 (case_tac "simpnum a",auto)+
chaieb@23274
   699
chaieb@23274
   700
  (* Generic quantifier elimination *)
chaieb@23274
   701
consts qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm"
chaieb@23274
   702
recdef qelim "measure fmsize"
chaieb@23274
   703
  "qelim (E p) = (\<lambda> qe. DJ qe (qelim p qe))"
chaieb@23274
   704
  "qelim (A p) = (\<lambda> qe. not (qe ((qelim (NOT p) qe))))"
chaieb@23274
   705
  "qelim (NOT p) = (\<lambda> qe. not (qelim p qe))"
chaieb@23274
   706
  "qelim (And p q) = (\<lambda> qe. conj (qelim p qe) (qelim q qe))" 
chaieb@23274
   707
  "qelim (Or  p q) = (\<lambda> qe. disj (qelim p qe) (qelim q qe))" 
chaieb@23274
   708
  "qelim (Imp p q) = (\<lambda> qe. imp (qelim p qe) (qelim q qe))"
chaieb@23274
   709
  "qelim (Iff p q) = (\<lambda> qe. iff (qelim p qe) (qelim q qe))"
chaieb@23274
   710
  "qelim p = (\<lambda> y. simpfm p)"
chaieb@23274
   711
haftmann@23689
   712
(*function (sequential)
haftmann@23689
   713
  qelim :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
haftmann@23689
   714
where
haftmann@23689
   715
  "qelim qe (E p) = DJ qe (qelim qe p)"
haftmann@23689
   716
  | "qelim qe (A p) = not (qe ((qelim qe (NOT p))))"
haftmann@23689
   717
  | "qelim qe (NOT p) = not (qelim qe p)"
haftmann@23689
   718
  | "qelim qe (And p q) = conj (qelim qe p) (qelim qe q)" 
haftmann@23689
   719
  | "qelim qe (Or  p q) = disj (qelim qe p) (qelim qe q)" 
haftmann@23689
   720
  | "qelim qe (Imp p q) = imp (qelim qe p) (qelim qe q)"
haftmann@23689
   721
  | "qelim qe (Iff p q) = iff (qelim qe p) (qelim qe q)"
haftmann@23689
   722
  | "qelim qe p = simpfm p"
haftmann@23689
   723
by pat_completeness auto
haftmann@23689
   724
termination by (relation "measure (fmsize o snd)") auto*)
haftmann@23689
   725
chaieb@23274
   726
lemma qelim_ci:
chaieb@23274
   727
  assumes qe_inv: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bbs bs (qe p) = Ifm bbs bs (E p))"
chaieb@23274
   728
  shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm bbs bs (qelim p qe) = Ifm bbs bs p)"
chaieb@23274
   729
using qe_inv DJ_qe[OF qe_inv] 
chaieb@23274
   730
by(induct p rule: qelim.induct) 
chaieb@23274
   731
(auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf 
chaieb@23274
   732
  simpfm simpfm_qf simp del: simpfm.simps)
chaieb@23274
   733
  (* Linearity for fm where Bound 0 ranges over \<int> *)
haftmann@23689
   734
haftmann@23689
   735
fun
chaieb@23274
   736
  zsplit0 :: "num \<Rightarrow> int \<times> num" (* splits the bounded from the unbounded part*)
haftmann@23689
   737
where
chaieb@23274
   738
  "zsplit0 (C c) = (0,C c)"
haftmann@23689
   739
  | "zsplit0 (Bound n) = (if n=0 then (1, C 0) else (0,Bound n))"
haftmann@23689
   740
  | "zsplit0 (CX i a) = (let (i',a') =  zsplit0 a in (i+i', a'))"
haftmann@23689
   741
  | "zsplit0 (Neg a) = (let (i',a') =  zsplit0 a in (-i', Neg a'))"
haftmann@23689
   742
  | "zsplit0 (Add a b) = (let (ia,a') =  zsplit0 a ; 
chaieb@23274
   743
                            (ib,b') =  zsplit0 b 
chaieb@23274
   744
                            in (ia+ib, Add a' b'))"
haftmann@23689
   745
  | "zsplit0 (Sub a b) = (let (ia,a') =  zsplit0 a ; 
chaieb@23274
   746
                            (ib,b') =  zsplit0 b 
chaieb@23274
   747
                            in (ia-ib, Sub a' b'))"
haftmann@23689
   748
  | "zsplit0 (Mul i a) = (let (i',a') =  zsplit0 a in (i*i', Mul i a'))"
chaieb@23274
   749
chaieb@23274
   750
lemma zsplit0_I:
chaieb@23274
   751
  shows "\<And> n a. zsplit0 t = (n,a) \<Longrightarrow> (Inum ((x::int) #bs) (CX n a) = Inum (x #bs) t) \<and> numbound0 a"
chaieb@23274
   752
  (is "\<And> n a. ?S t = (n,a) \<Longrightarrow> (?I x (CX n a) = ?I x t) \<and> ?N a")
chaieb@23274
   753
proof(induct t rule: zsplit0.induct)
chaieb@23274
   754
  case (1 c n a) thus ?case by auto 
chaieb@23274
   755
next
chaieb@23274
   756
  case (2 m n a) thus ?case by (cases "m=0") auto
chaieb@23274
   757
next
chaieb@23274
   758
  case (3 i a n a')
chaieb@23274
   759
  let ?j = "fst (zsplit0 a)"
chaieb@23274
   760
  let ?b = "snd (zsplit0 a)"
chaieb@23274
   761
  have abj: "zsplit0 a = (?j,?b)" by simp hence th: "a'=?b \<and> n=i+?j" using prems 
chaieb@23274
   762
    by (simp add: Let_def split_def)
chaieb@23274
   763
  from abj prems  have th2: "(?I x (CX ?j ?b) = ?I x a) \<and> ?N ?b" by blast
chaieb@23274
   764
  from th have "?I x (CX n a') = ?I x (CX (i+?j) ?b)" by simp
chaieb@23274
   765
  also from th2 have "\<dots> = ?I x (CX i (CX ?j ?b))" by (simp add: left_distrib)
chaieb@23274
   766
  finally have "?I x (CX n a') = ?I  x (CX i a)" using th2 by simp
chaieb@23274
   767
  with th2 th show ?case by blast
chaieb@23274
   768
next
chaieb@23274
   769
  case (4 t n a)
chaieb@23274
   770
  let ?nt = "fst (zsplit0 t)"
chaieb@23274
   771
  let ?at = "snd (zsplit0 t)"
chaieb@23274
   772
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Neg ?at \<and> n=-?nt" using prems 
chaieb@23274
   773
    by (simp add: Let_def split_def)
chaieb@23274
   774
  from abj prems  have th2: "(?I x (CX ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
chaieb@23274
   775
  from th2[simplified] th[simplified] show ?case by simp
chaieb@23274
   776
next
chaieb@23274
   777
  case (5 s t n a)
chaieb@23274
   778
  let ?ns = "fst (zsplit0 s)"
chaieb@23274
   779
  let ?as = "snd (zsplit0 s)"
chaieb@23274
   780
  let ?nt = "fst (zsplit0 t)"
chaieb@23274
   781
  let ?at = "snd (zsplit0 t)"
chaieb@23274
   782
  have abjs: "zsplit0 s = (?ns,?as)" by simp 
chaieb@23274
   783
  moreover have abjt:  "zsplit0 t = (?nt,?at)" by simp 
chaieb@23274
   784
  ultimately have th: "a=Add ?as ?at \<and> n=?ns + ?nt" using prems 
chaieb@23274
   785
    by (simp add: Let_def split_def)
chaieb@23274
   786
  from abjs[symmetric] have bluddy: "\<exists> x y. (x,y) = zsplit0 s" by blast
haftmann@23689
   787
  from prems have "(\<exists> x y. (x,y) = zsplit0 s) \<longrightarrow> (\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (x # bs) (CX xa xb) = Inum (x # bs) t \<and> numbound0 xb)" by auto
chaieb@23274
   788
  with bluddy abjt have th3: "(?I x (CX ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
chaieb@23274
   789
  from abjs prems  have th2: "(?I x (CX ?ns ?as) = ?I x s) \<and> ?N ?as" by blast
chaieb@23274
   790
  from th3[simplified] th2[simplified] th[simplified] show ?case 
chaieb@23274
   791
    by (simp add: left_distrib)
chaieb@23274
   792
next
chaieb@23274
   793
  case (6 s t n a)
chaieb@23274
   794
  let ?ns = "fst (zsplit0 s)"
chaieb@23274
   795
  let ?as = "snd (zsplit0 s)"
chaieb@23274
   796
  let ?nt = "fst (zsplit0 t)"
chaieb@23274
   797
  let ?at = "snd (zsplit0 t)"
chaieb@23274
   798
  have abjs: "zsplit0 s = (?ns,?as)" by simp 
chaieb@23274
   799
  moreover have abjt:  "zsplit0 t = (?nt,?at)" by simp 
chaieb@23274
   800
  ultimately have th: "a=Sub ?as ?at \<and> n=?ns - ?nt" using prems 
chaieb@23274
   801
    by (simp add: Let_def split_def)
chaieb@23274
   802
  from abjs[symmetric] have bluddy: "\<exists> x y. (x,y) = zsplit0 s" by blast
haftmann@23689
   803
  from prems have "(\<exists> x y. (x,y) = zsplit0 s) \<longrightarrow> (\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (x # bs) (CX xa xb) = Inum (x # bs) t \<and> numbound0 xb)" by auto
chaieb@23274
   804
  with bluddy abjt have th3: "(?I x (CX ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
chaieb@23274
   805
  from abjs prems  have th2: "(?I x (CX ?ns ?as) = ?I x s) \<and> ?N ?as" by blast
chaieb@23274
   806
  from th3[simplified] th2[simplified] th[simplified] show ?case 
chaieb@23274
   807
    by (simp add: left_diff_distrib)
chaieb@23274
   808
next
chaieb@23274
   809
  case (7 i t n a)
chaieb@23274
   810
  let ?nt = "fst (zsplit0 t)"
chaieb@23274
   811
  let ?at = "snd (zsplit0 t)"
chaieb@23274
   812
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Mul i ?at \<and> n=i*?nt" using prems 
chaieb@23274
   813
    by (simp add: Let_def split_def)
chaieb@23274
   814
  from abj prems  have th2: "(?I x (CX ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
chaieb@23274
   815
  hence " ?I x (Mul i t) = i * ?I x (CX ?nt ?at)" by simp
chaieb@23274
   816
  also have "\<dots> = ?I x (CX (i*?nt) (Mul i ?at))" by (simp add: right_distrib)
chaieb@23274
   817
  finally show ?case using th th2 by simp
chaieb@17378
   818
qed
chaieb@17378
   819
chaieb@23274
   820
consts
chaieb@23274
   821
  iszlfm :: "fm \<Rightarrow> bool"   (* Linearity test for fm *)
chaieb@23274
   822
recdef iszlfm "measure size"
chaieb@23274
   823
  "iszlfm (And p q) = (iszlfm p \<and> iszlfm q)" 
chaieb@23274
   824
  "iszlfm (Or p q) = (iszlfm p \<and> iszlfm q)" 
chaieb@23274
   825
  "iszlfm (Eq  (CX c e)) = (c>0 \<and> numbound0 e)"
chaieb@23274
   826
  "iszlfm (NEq (CX c e)) = (c>0 \<and> numbound0 e)"
chaieb@23274
   827
  "iszlfm (Lt  (CX c e)) = (c>0 \<and> numbound0 e)"
chaieb@23274
   828
  "iszlfm (Le  (CX c e)) = (c>0 \<and> numbound0 e)"
chaieb@23274
   829
  "iszlfm (Gt  (CX c e)) = (c>0 \<and> numbound0 e)"
chaieb@23274
   830
  "iszlfm (Ge  (CX c e)) = ( c>0 \<and> numbound0 e)"
chaieb@23274
   831
  "iszlfm (Dvd i (CX c e)) = 
chaieb@23274
   832
                 (c>0 \<and> i>0 \<and> numbound0 e)"
chaieb@23274
   833
  "iszlfm (NDvd i (CX c e))= 
chaieb@23274
   834
                 (c>0 \<and> i>0 \<and> numbound0 e)"
chaieb@23274
   835
  "iszlfm p = (isatom p \<and> (bound0 p))"
chaieb@17378
   836
chaieb@23274
   837
lemma zlin_qfree: "iszlfm p \<Longrightarrow> qfree p"
chaieb@23274
   838
  by (induct p rule: iszlfm.induct) auto
chaieb@17378
   839
haftmann@23689
   840
consts
haftmann@23689
   841
  zlfm :: "fm \<Rightarrow> fm"       (* Linearity transformation for fm *)
chaieb@23274
   842
recdef zlfm "measure fmsize"
chaieb@23274
   843
  "zlfm (And p q) = And (zlfm p) (zlfm q)"
chaieb@23274
   844
  "zlfm (Or p q) = Or (zlfm p) (zlfm q)"
chaieb@23274
   845
  "zlfm (Imp p q) = Or (zlfm (NOT p)) (zlfm q)"
chaieb@23274
   846
  "zlfm (Iff p q) = Or (And (zlfm p) (zlfm q)) (And (zlfm (NOT p)) (zlfm (NOT q)))"
chaieb@23274
   847
  "zlfm (Lt a) = (let (c,r) = zsplit0 a in 
chaieb@23274
   848
     if c=0 then Lt r else 
chaieb@23274
   849
     if c>0 then (Lt (CX c r)) else (Gt (CX (- c) (Neg r))))"
chaieb@23274
   850
  "zlfm (Le a) = (let (c,r) = zsplit0 a in 
chaieb@23274
   851
     if c=0 then Le r else 
chaieb@23274
   852
     if c>0 then (Le (CX c r)) else (Ge (CX (- c) (Neg r))))"
chaieb@23274
   853
  "zlfm (Gt a) = (let (c,r) = zsplit0 a in 
chaieb@23274
   854
     if c=0 then Gt r else 
chaieb@23274
   855
     if c>0 then (Gt (CX c r)) else (Lt (CX (- c) (Neg r))))"
chaieb@23274
   856
  "zlfm (Ge a) = (let (c,r) = zsplit0 a in 
chaieb@23274
   857
     if c=0 then Ge r else 
chaieb@23274
   858
     if c>0 then (Ge (CX c r)) else (Le (CX (- c) (Neg r))))"
chaieb@23274
   859
  "zlfm (Eq a) = (let (c,r) = zsplit0 a in 
chaieb@23274
   860
     if c=0 then Eq r else 
chaieb@23274
   861
     if c>0 then (Eq (CX c r)) else (Eq (CX (- c) (Neg r))))"
chaieb@23274
   862
  "zlfm (NEq a) = (let (c,r) = zsplit0 a in 
chaieb@23274
   863
     if c=0 then NEq r else 
chaieb@23274
   864
     if c>0 then (NEq (CX c r)) else (NEq (CX (- c) (Neg r))))"
chaieb@23274
   865
  "zlfm (Dvd i a) = (if i=0 then zlfm (Eq a) 
chaieb@23274
   866
        else (let (c,r) = zsplit0 a in 
chaieb@23274
   867
              if c=0 then (Dvd (abs i) r) else 
chaieb@23274
   868
      if c>0 then (Dvd (abs i) (CX c r))
chaieb@23274
   869
      else (Dvd (abs i) (CX (- c) (Neg r)))))"
chaieb@23274
   870
  "zlfm (NDvd i a) = (if i=0 then zlfm (NEq a) 
chaieb@23274
   871
        else (let (c,r) = zsplit0 a in 
chaieb@23274
   872
              if c=0 then (NDvd (abs i) r) else 
chaieb@23274
   873
      if c>0 then (NDvd (abs i) (CX c r))
chaieb@23274
   874
      else (NDvd (abs i) (CX (- c) (Neg r)))))"
chaieb@23274
   875
  "zlfm (NOT (And p q)) = Or (zlfm (NOT p)) (zlfm (NOT q))"
chaieb@23274
   876
  "zlfm (NOT (Or p q)) = And (zlfm (NOT p)) (zlfm (NOT q))"
chaieb@23274
   877
  "zlfm (NOT (Imp p q)) = And (zlfm p) (zlfm (NOT q))"
chaieb@23274
   878
  "zlfm (NOT (Iff p q)) = Or (And(zlfm p) (zlfm(NOT q))) (And (zlfm(NOT p)) (zlfm q))"
chaieb@23274
   879
  "zlfm (NOT (NOT p)) = zlfm p"
chaieb@23274
   880
  "zlfm (NOT T) = F"
chaieb@23274
   881
  "zlfm (NOT F) = T"
chaieb@23274
   882
  "zlfm (NOT (Lt a)) = zlfm (Ge a)"
chaieb@23274
   883
  "zlfm (NOT (Le a)) = zlfm (Gt a)"
chaieb@23274
   884
  "zlfm (NOT (Gt a)) = zlfm (Le a)"
chaieb@23274
   885
  "zlfm (NOT (Ge a)) = zlfm (Lt a)"
chaieb@23274
   886
  "zlfm (NOT (Eq a)) = zlfm (NEq a)"
chaieb@23274
   887
  "zlfm (NOT (NEq a)) = zlfm (Eq a)"
chaieb@23274
   888
  "zlfm (NOT (Dvd i a)) = zlfm (NDvd i a)"
chaieb@23274
   889
  "zlfm (NOT (NDvd i a)) = zlfm (Dvd i a)"
chaieb@23274
   890
  "zlfm (NOT (Closed P)) = NClosed P"
chaieb@23274
   891
  "zlfm (NOT (NClosed P)) = Closed P"
chaieb@23274
   892
  "zlfm p = p" (hints simp add: fmsize_pos)
chaieb@23274
   893
chaieb@23274
   894
lemma zlfm_I:
chaieb@23274
   895
  assumes qfp: "qfree p"
chaieb@23274
   896
  shows "(Ifm bbs (i#bs) (zlfm p) = Ifm bbs (i# bs) p) \<and> iszlfm (zlfm p)"
chaieb@23274
   897
  (is "(?I (?l p) = ?I p) \<and> ?L (?l p)")
chaieb@23274
   898
using qfp
chaieb@23274
   899
proof(induct p rule: zlfm.induct)
chaieb@23274
   900
  case (5 a) 
chaieb@23274
   901
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   902
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   903
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   904
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   905
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   906
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   907
  from prems Ia nb  show ?case 
nipkow@23477
   908
    by (auto simp add: Let_def split_def ring_simps) (cases "?r",auto)
chaieb@23274
   909
next
chaieb@23274
   910
  case (6 a)  
chaieb@23274
   911
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   912
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   913
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   914
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   915
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   916
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   917
  from prems Ia nb  show ?case 
nipkow@23477
   918
    by (auto simp add: Let_def split_def ring_simps) (cases "?r",auto)
chaieb@23274
   919
next
chaieb@23274
   920
  case (7 a)  
chaieb@23274
   921
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   922
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   923
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   924
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   925
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   926
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   927
  from prems Ia nb  show ?case 
nipkow@23477
   928
    by (auto simp add: Let_def split_def ring_simps) (cases "?r",auto)
chaieb@23274
   929
next
chaieb@23274
   930
  case (8 a)  
chaieb@23274
   931
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   932
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   933
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   934
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   935
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   936
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   937
  from prems Ia nb  show ?case 
nipkow@23477
   938
    by (auto simp add: Let_def split_def ring_simps) (cases "?r",auto)
chaieb@23274
   939
next
chaieb@23274
   940
  case (9 a)  
chaieb@23274
   941
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   942
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   943
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   944
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   945
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   946
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   947
  from prems Ia nb  show ?case 
nipkow@23477
   948
    by (auto simp add: Let_def split_def ring_simps) (cases "?r",auto)
chaieb@23274
   949
next
chaieb@23274
   950
  case (10 a)  
chaieb@23274
   951
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   952
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   953
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   954
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   955
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   956
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   957
  from prems Ia nb  show ?case 
nipkow@23477
   958
    by (auto simp add: Let_def split_def ring_simps) (cases "?r",auto)
chaieb@17378
   959
next
chaieb@23274
   960
  case (11 j a)  
chaieb@23274
   961
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   962
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   963
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   964
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   965
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   966
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   967
  have "j=0 \<or> (j\<noteq>0 \<and> ?c = 0) \<or> (j\<noteq>0 \<and> ?c >0) \<or> (j\<noteq> 0 \<and> ?c<0)" by arith
chaieb@23274
   968
  moreover
chaieb@23274
   969
  {assume "j=0" hence z: "zlfm (Dvd j a) = (zlfm (Eq a))" by (simp add: Let_def) 
chaieb@23274
   970
    hence ?case using prems by (simp del: zlfm.simps add: zdvd_0_left)}
chaieb@23274
   971
  moreover
chaieb@23274
   972
  {assume "?c=0" and "j\<noteq>0" hence ?case 
chaieb@23274
   973
      using zsplit0_I[OF spl, where x="i" and bs="bs"] zdvd_abs1[where d="j"]
chaieb@23274
   974
      by (cases "?r", simp_all add: Let_def split_def)}
chaieb@23274
   975
  moreover
chaieb@23274
   976
  {assume cp: "?c > 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))" 
chaieb@23274
   977
      by (simp add: nb Let_def split_def)
chaieb@23274
   978
    hence ?case using Ia cp jnz by (simp add: Let_def split_def 
chaieb@23274
   979
	zdvd_abs1[where d="j" and t="(?c*i) + ?N ?r", symmetric])}
chaieb@23274
   980
  moreover
chaieb@23274
   981
  {assume cn: "?c < 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))" 
chaieb@23274
   982
      by (simp add: nb Let_def split_def)
chaieb@23274
   983
    hence ?case using Ia cn jnz zdvd_zminus_iff[where m="abs j" and n="?c*i + ?N ?r" ]
chaieb@23274
   984
      by (simp add: Let_def split_def 
chaieb@23274
   985
      zdvd_abs1[where d="j" and t="(?c*i) + ?N ?r", symmetric])}
chaieb@23274
   986
  ultimately show ?case by blast
chaieb@17378
   987
next
chaieb@23274
   988
  case (12 j a) 
chaieb@23274
   989
  let ?c = "fst (zsplit0 a)"
chaieb@23274
   990
  let ?r = "snd (zsplit0 a)"
chaieb@23274
   991
  have spl: "zsplit0 a = (?c,?r)" by simp
chaieb@23274
   992
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
chaieb@23274
   993
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CX ?c ?r)" and nb: "numbound0 ?r" by auto 
chaieb@23274
   994
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
   995
  have "j=0 \<or> (j\<noteq>0 \<and> ?c = 0) \<or> (j\<noteq>0 \<and> ?c >0) \<or> (j\<noteq> 0 \<and> ?c<0)" by arith
chaieb@23274
   996
  moreover
chaieb@23274
   997
  {assume "j=0" hence z: "zlfm (NDvd j a) = (zlfm (NEq a))" by (simp add: Let_def) 
chaieb@23274
   998
    hence ?case using prems by (simp del: zlfm.simps add: zdvd_0_left)}
chaieb@23274
   999
  moreover
chaieb@23274
  1000
  {assume "?c=0" and "j\<noteq>0" hence ?case 
chaieb@23274
  1001
      using zsplit0_I[OF spl, where x="i" and bs="bs"] zdvd_abs1[where d="j"]
chaieb@23274
  1002
      by (cases "?r", simp_all add: Let_def split_def)}
chaieb@23274
  1003
  moreover
chaieb@23274
  1004
  {assume cp: "?c > 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))" 
chaieb@23274
  1005
      by (simp add: nb Let_def split_def)
chaieb@23274
  1006
    hence ?case using Ia cp jnz by (simp add: Let_def split_def 
chaieb@23274
  1007
	zdvd_abs1[where d="j" and t="(?c*i) + ?N ?r", symmetric])}
chaieb@23274
  1008
  moreover
chaieb@23274
  1009
  {assume cn: "?c < 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))" 
chaieb@23274
  1010
      by (simp add: nb Let_def split_def)
chaieb@23274
  1011
    hence ?case using Ia cn jnz zdvd_zminus_iff[where m="abs j" and n="?c*i + ?N ?r" ]
chaieb@23274
  1012
      by (simp add: Let_def split_def 
chaieb@23274
  1013
      zdvd_abs1[where d="j" and t="(?c*i) + ?N ?r", symmetric])}
chaieb@23274
  1014
  ultimately show ?case by blast
chaieb@23274
  1015
qed auto
chaieb@23274
  1016
chaieb@23274
  1017
consts 
chaieb@23274
  1018
  plusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of +\<infinity>*)
chaieb@23274
  1019
  minusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of -\<infinity>*)
chaieb@23274
  1020
  \<delta> :: "fm \<Rightarrow> int" (* Compute lcm {d| N\<^isup>?\<^isup> Dvd c*x+t \<in> p}*)
chaieb@23274
  1021
  d\<delta> :: "fm \<Rightarrow> int \<Rightarrow> bool" (* checks if a given l divides all the ds above*)
chaieb@23274
  1022
chaieb@23274
  1023
recdef minusinf "measure size"
chaieb@23274
  1024
  "minusinf (And p q) = And (minusinf p) (minusinf q)" 
chaieb@23274
  1025
  "minusinf (Or p q) = Or (minusinf p) (minusinf q)" 
chaieb@23274
  1026
  "minusinf (Eq  (CX c e)) = F"
chaieb@23274
  1027
  "minusinf (NEq (CX c e)) = T"
chaieb@23274
  1028
  "minusinf (Lt  (CX c e)) = T"
chaieb@23274
  1029
  "minusinf (Le  (CX c e)) = T"
chaieb@23274
  1030
  "minusinf (Gt  (CX c e)) = F"
chaieb@23274
  1031
  "minusinf (Ge  (CX c e)) = F"
chaieb@23274
  1032
  "minusinf p = p"
chaieb@23274
  1033
chaieb@23274
  1034
lemma minusinf_qfree: "qfree p \<Longrightarrow> qfree (minusinf p)"
chaieb@23274
  1035
  by (induct p rule: minusinf.induct, auto)
chaieb@23274
  1036
chaieb@23274
  1037
recdef plusinf "measure size"
chaieb@23274
  1038
  "plusinf (And p q) = And (plusinf p) (plusinf q)" 
chaieb@23274
  1039
  "plusinf (Or p q) = Or (plusinf p) (plusinf q)" 
chaieb@23274
  1040
  "plusinf (Eq  (CX c e)) = F"
chaieb@23274
  1041
  "plusinf (NEq (CX c e)) = T"
chaieb@23274
  1042
  "plusinf (Lt  (CX c e)) = F"
chaieb@23274
  1043
  "plusinf (Le  (CX c e)) = F"
chaieb@23274
  1044
  "plusinf (Gt  (CX c e)) = T"
chaieb@23274
  1045
  "plusinf (Ge  (CX c e)) = T"
chaieb@23274
  1046
  "plusinf p = p"
chaieb@23274
  1047
chaieb@23274
  1048
recdef \<delta> "measure size"
chaieb@23274
  1049
  "\<delta> (And p q) = ilcm (\<delta> p) (\<delta> q)" 
chaieb@23274
  1050
  "\<delta> (Or p q) = ilcm (\<delta> p) (\<delta> q)" 
chaieb@23274
  1051
  "\<delta> (Dvd i (CX c e)) = i"
chaieb@23274
  1052
  "\<delta> (NDvd i (CX c e)) = i"
chaieb@23274
  1053
  "\<delta> p = 1"
chaieb@23274
  1054
chaieb@23274
  1055
recdef d\<delta> "measure size"
chaieb@23274
  1056
  "d\<delta> (And p q) = (\<lambda> d. d\<delta> p d \<and> d\<delta> q d)" 
chaieb@23274
  1057
  "d\<delta> (Or p q) = (\<lambda> d. d\<delta> p d \<and> d\<delta> q d)" 
chaieb@23274
  1058
  "d\<delta> (Dvd i (CX c e)) = (\<lambda> d. i dvd d)"
chaieb@23274
  1059
  "d\<delta> (NDvd i (CX c e)) = (\<lambda> d. i dvd d)"
chaieb@23274
  1060
  "d\<delta> p = (\<lambda> d. True)"
chaieb@23274
  1061
chaieb@23274
  1062
lemma delta_mono: 
chaieb@23274
  1063
  assumes lin: "iszlfm p"
chaieb@23274
  1064
  and d: "d dvd d'"
chaieb@23274
  1065
  and ad: "d\<delta> p d"
chaieb@23274
  1066
  shows "d\<delta> p d'"
chaieb@23274
  1067
  using lin ad d
chaieb@23274
  1068
proof(induct p rule: iszlfm.induct)
chaieb@23274
  1069
  case (9 i c e)  thus ?case using d
chaieb@23274
  1070
    by (simp add: zdvd_trans[where m="i" and n="d" and k="d'"])
chaieb@17378
  1071
next
chaieb@23274
  1072
  case (10 i c e) thus ?case using d
chaieb@23274
  1073
    by (simp add: zdvd_trans[where m="i" and n="d" and k="d'"])
chaieb@23274
  1074
qed simp_all
chaieb@17378
  1075
chaieb@23274
  1076
lemma \<delta> : assumes lin:"iszlfm p"
chaieb@23274
  1077
  shows "d\<delta> p (\<delta> p) \<and> \<delta> p >0"
chaieb@23274
  1078
using lin
chaieb@23274
  1079
proof (induct p rule: iszlfm.induct)
chaieb@23274
  1080
  case (1 p q) 
chaieb@23274
  1081
  let ?d = "\<delta> (And p q)"
chaieb@23274
  1082
  from prems ilcm_pos have dp: "?d >0" by simp
nipkow@23984
  1083
  have d1: "\<delta> p dvd \<delta> (And p q)" using prems ilcm_dvd1 by simp
nipkow@23984
  1084
  hence th: "d\<delta> p ?d" using delta_mono prems(3-4) by(simp del:dvd_ilcm_self1)
nipkow@23984
  1085
  have "\<delta> q dvd \<delta> (And p q)" using prems ilcm_dvd2 by simp
nipkow@23984
  1086
  hence th': "d\<delta> q ?d" using delta_mono prems by(simp del:dvd_ilcm_self2)
nipkow@23984
  1087
  from th th' dp show ?case by simp
chaieb@23274
  1088
next
chaieb@23274
  1089
  case (2 p q)  
chaieb@23274
  1090
  let ?d = "\<delta> (And p q)"
chaieb@23274
  1091
  from prems ilcm_pos have dp: "?d >0" by simp
nipkow@23984
  1092
  have "\<delta> p dvd \<delta> (And p q)" using prems ilcm_dvd1 by simp
nipkow@23984
  1093
  hence th: "d\<delta> p ?d" using delta_mono prems by(simp del:dvd_ilcm_self1)
nipkow@23984
  1094
  have "\<delta> q dvd \<delta> (And p q)" using prems ilcm_dvd2 by simp
nipkow@23984
  1095
  hence th': "d\<delta> q ?d" using delta_mono prems by(simp del:dvd_ilcm_self2)
nipkow@23984
  1096
  from th th' dp show ?case by simp
chaieb@17378
  1097
qed simp_all
chaieb@17378
  1098
chaieb@17378
  1099
chaieb@23274
  1100
consts 
chaieb@23274
  1101
  a\<beta> :: "fm \<Rightarrow> int \<Rightarrow> fm" (* adjusts the coeffitients of a formula *)
chaieb@23274
  1102
  d\<beta> :: "fm \<Rightarrow> int \<Rightarrow> bool" (* tests if all coeffs c of c divide a given l*)
chaieb@23274
  1103
  \<zeta>  :: "fm \<Rightarrow> int" (* computes the lcm of all coefficients of x*)
chaieb@23274
  1104
  \<beta> :: "fm \<Rightarrow> num list"
chaieb@23274
  1105
  \<alpha> :: "fm \<Rightarrow> num list"
chaieb@17378
  1106
chaieb@23274
  1107
recdef a\<beta> "measure size"
chaieb@23274
  1108
  "a\<beta> (And p q) = (\<lambda> k. And (a\<beta> p k) (a\<beta> q k))" 
chaieb@23274
  1109
  "a\<beta> (Or p q) = (\<lambda> k. Or (a\<beta> p k) (a\<beta> q k))" 
chaieb@23274
  1110
  "a\<beta> (Eq  (CX c e)) = (\<lambda> k. Eq (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1111
  "a\<beta> (NEq (CX c e)) = (\<lambda> k. NEq (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1112
  "a\<beta> (Lt  (CX c e)) = (\<lambda> k. Lt (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1113
  "a\<beta> (Le  (CX c e)) = (\<lambda> k. Le (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1114
  "a\<beta> (Gt  (CX c e)) = (\<lambda> k. Gt (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1115
  "a\<beta> (Ge  (CX c e)) = (\<lambda> k. Ge (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1116
  "a\<beta> (Dvd i (CX c e)) =(\<lambda> k. Dvd ((k div c)*i) (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1117
  "a\<beta> (NDvd i (CX c e))=(\<lambda> k. NDvd ((k div c)*i) (CX 1 (Mul (k div c) e)))"
chaieb@23274
  1118
  "a\<beta> p = (\<lambda> k. p)"
chaieb@17378
  1119
chaieb@23274
  1120
recdef d\<beta> "measure size"
chaieb@23274
  1121
  "d\<beta> (And p q) = (\<lambda> k. (d\<beta> p k) \<and> (d\<beta> q k))" 
chaieb@23274
  1122
  "d\<beta> (Or p q) = (\<lambda> k. (d\<beta> p k) \<and> (d\<beta> q k))" 
chaieb@23274
  1123
  "d\<beta> (Eq  (CX c e)) = (\<lambda> k. c dvd k)"
chaieb@23274
  1124
  "d\<beta> (NEq (CX c e)) = (\<lambda> k. c dvd k)"
chaieb@23274
  1125
  "d\<beta> (Lt  (CX c e)) = (\<lambda> k. c dvd k)"
chaieb@23274
  1126
  "d\<beta> (Le  (CX c e)) = (\<lambda> k. c dvd k)"
chaieb@23274
  1127
  "d\<beta> (Gt  (CX c e)) = (\<lambda> k. c dvd k)"
chaieb@23274
  1128
  "d\<beta> (Ge  (CX c e)) = (\<lambda> k. c dvd k)"
chaieb@23274
  1129
  "d\<beta> (Dvd i (CX c e)) =(\<lambda> k. c dvd k)"
chaieb@23274
  1130
  "d\<beta> (NDvd i (CX c e))=(\<lambda> k. c dvd k)"
chaieb@23274
  1131
  "d\<beta> p = (\<lambda> k. True)"
chaieb@17378
  1132
chaieb@23274
  1133
recdef \<zeta> "measure size"
chaieb@23274
  1134
  "\<zeta> (And p q) = ilcm (\<zeta> p) (\<zeta> q)" 
chaieb@23274
  1135
  "\<zeta> (Or p q) = ilcm (\<zeta> p) (\<zeta> q)" 
chaieb@23274
  1136
  "\<zeta> (Eq  (CX c e)) = c"
chaieb@23274
  1137
  "\<zeta> (NEq (CX c e)) = c"
chaieb@23274
  1138
  "\<zeta> (Lt  (CX c e)) = c"
chaieb@23274
  1139
  "\<zeta> (Le  (CX c e)) = c"
chaieb@23274
  1140
  "\<zeta> (Gt  (CX c e)) = c"
chaieb@23274
  1141
  "\<zeta> (Ge  (CX c e)) = c"
chaieb@23274
  1142
  "\<zeta> (Dvd i (CX c e)) = c"
chaieb@23274
  1143
  "\<zeta> (NDvd i (CX c e))= c"
chaieb@23274
  1144
  "\<zeta> p = 1"
chaieb@17378
  1145
chaieb@23274
  1146
recdef \<beta> "measure size"
chaieb@23274
  1147
  "\<beta> (And p q) = (\<beta> p @ \<beta> q)" 
chaieb@23274
  1148
  "\<beta> (Or p q) = (\<beta> p @ \<beta> q)" 
chaieb@23274
  1149
  "\<beta> (Eq  (CX c e)) = [Sub (C -1) e]"
chaieb@23274
  1150
  "\<beta> (NEq (CX c e)) = [Neg e]"
chaieb@23274
  1151
  "\<beta> (Lt  (CX c e)) = []"
chaieb@23274
  1152
  "\<beta> (Le  (CX c e)) = []"
chaieb@23274
  1153
  "\<beta> (Gt  (CX c e)) = [Neg e]"
chaieb@23274
  1154
  "\<beta> (Ge  (CX c e)) = [Sub (C -1) e]"
chaieb@23274
  1155
  "\<beta> p = []"
wenzelm@19736
  1156
chaieb@23274
  1157
recdef \<alpha> "measure size"
chaieb@23274
  1158
  "\<alpha> (And p q) = (\<alpha> p @ \<alpha> q)" 
chaieb@23274
  1159
  "\<alpha> (Or p q) = (\<alpha> p @ \<alpha> q)" 
chaieb@23274
  1160
  "\<alpha> (Eq  (CX c e)) = [Add (C -1) e]"
chaieb@23274
  1161
  "\<alpha> (NEq (CX c e)) = [e]"
chaieb@23274
  1162
  "\<alpha> (Lt  (CX c e)) = [e]"
chaieb@23274
  1163
  "\<alpha> (Le  (CX c e)) = [Add (C -1) e]"
chaieb@23274
  1164
  "\<alpha> (Gt  (CX c e)) = []"
chaieb@23274
  1165
  "\<alpha> (Ge  (CX c e)) = []"
chaieb@23274
  1166
  "\<alpha> p = []"
chaieb@23274
  1167
consts mirror :: "fm \<Rightarrow> fm"
chaieb@23274
  1168
recdef mirror "measure size"
chaieb@23274
  1169
  "mirror (And p q) = And (mirror p) (mirror q)" 
chaieb@23274
  1170
  "mirror (Or p q) = Or (mirror p) (mirror q)" 
chaieb@23274
  1171
  "mirror (Eq  (CX c e)) = Eq (CX c (Neg e))"
chaieb@23274
  1172
  "mirror (NEq (CX c e)) = NEq (CX c (Neg e))"
chaieb@23274
  1173
  "mirror (Lt  (CX c e)) = Gt (CX c (Neg e))"
chaieb@23274
  1174
  "mirror (Le  (CX c e)) = Ge (CX c (Neg e))"
chaieb@23274
  1175
  "mirror (Gt  (CX c e)) = Lt (CX c (Neg e))"
chaieb@23274
  1176
  "mirror (Ge  (CX c e)) = Le (CX c (Neg e))"
chaieb@23274
  1177
  "mirror (Dvd i (CX c e)) = Dvd i (CX c (Neg e))"
chaieb@23274
  1178
  "mirror (NDvd i (CX c e)) = NDvd i (CX c (Neg e))"
chaieb@23274
  1179
  "mirror p = p"
chaieb@23274
  1180
    (* Lemmas for the correctness of \<sigma>\<rho> *)
chaieb@23274
  1181
lemma dvd1_eq1: "x >0 \<Longrightarrow> (x::int) dvd 1 = (x = 1)"
chaieb@23274
  1182
by auto
chaieb@17378
  1183
chaieb@23274
  1184
lemma minusinf_inf:
chaieb@23274
  1185
  assumes linp: "iszlfm p"
chaieb@23274
  1186
  and u: "d\<beta> p 1"
chaieb@23274
  1187
  shows "\<exists> (z::int). \<forall> x < z. Ifm bbs (x#bs) (minusinf p) = Ifm bbs (x#bs) p"
chaieb@23274
  1188
  (is "?P p" is "\<exists> (z::int). \<forall> x < z. ?I x (?M p) = ?I x p")
chaieb@23274
  1189
using linp u
chaieb@23274
  1190
proof (induct p rule: minusinf.induct)
chaieb@23274
  1191
  case (1 p q) thus ?case 
chaieb@23274
  1192
    by (auto simp add: dvd1_eq1) (rule_tac x="min z za" in exI,simp)
chaieb@23274
  1193
next
chaieb@23274
  1194
  case (2 p q) thus ?case 
chaieb@23274
  1195
    by (auto simp add: dvd1_eq1) (rule_tac x="min z za" in exI,simp)
chaieb@17378
  1196
next
chaieb@23274
  1197
  case (3 c e) hence c1: "c=1" and nb: "numbound0 e" using dvd1_eq1 by simp+
chaieb@23274
  1198
  hence "\<forall> x<(- Inum (a#bs) e). c*x + Inum (x#bs) e \<noteq> 0"
chaieb@23274
  1199
  proof(clarsimp)
chaieb@23274
  1200
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e = 0"
chaieb@23274
  1201
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
chaieb@23274
  1202
    show "False" by simp
chaieb@23274
  1203
  qed
chaieb@23274
  1204
  thus ?case by auto
chaieb@17378
  1205
next
chaieb@23274
  1206
  case (4 c e) hence c1: "c=1" and nb: "numbound0 e" using dvd1_eq1 by simp+
chaieb@23274
  1207
  hence "\<forall> x<(- Inum (a#bs) e). c*x + Inum (x#bs) e \<noteq> 0"
chaieb@23274
  1208
  proof(clarsimp)
chaieb@23274
  1209
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e = 0"
chaieb@23274
  1210
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
chaieb@23274
  1211
    show "False" by simp
chaieb@23274
  1212
  qed
chaieb@23274
  1213
  thus ?case by auto
chaieb@17378
  1214
next
chaieb@23274
  1215
  case (5 c e) hence c1: "c=1" and nb: "numbound0 e" using dvd1_eq1 by simp+
chaieb@23274
  1216
  hence "\<forall> x<(- Inum (a#bs) e). c*x + Inum (x#bs) e < 0"
chaieb@23274
  1217
  proof(clarsimp)
chaieb@23274
  1218
    fix x assume "x < (- Inum (a#bs) e)" 
chaieb@23274
  1219
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
chaieb@23274
  1220
    show "x + Inum (x#bs) e < 0" by simp
chaieb@23274
  1221
  qed
chaieb@23274
  1222
  thus ?case by auto
chaieb@23274
  1223
next
chaieb@23274
  1224
  case (6 c e) hence c1: "c=1" and nb: "numbound0 e" using dvd1_eq1 by simp+
chaieb@23274
  1225
  hence "\<forall> x<(- Inum (a#bs) e). c*x + Inum (x#bs) e \<le> 0"
chaieb@23274
  1226
  proof(clarsimp)
chaieb@23274
  1227
    fix x assume "x < (- Inum (a#bs) e)" 
chaieb@23274
  1228
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
chaieb@23274
  1229
    show "x + Inum (x#bs) e \<le> 0" by simp
chaieb@23274
  1230
  qed
chaieb@23274
  1231
  thus ?case by auto
chaieb@23274
  1232
next
chaieb@23274
  1233
  case (7 c e) hence c1: "c=1" and nb: "numbound0 e" using dvd1_eq1 by simp+
chaieb@23274
  1234
  hence "\<forall> x<(- Inum (a#bs) e). \<not> (c*x + Inum (x#bs) e > 0)"
chaieb@23274
  1235
  proof(clarsimp)
chaieb@23274
  1236
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e > 0"
chaieb@23274
  1237
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
chaieb@23274
  1238
    show "False" by simp
chaieb@23274
  1239
  qed
chaieb@23274
  1240
  thus ?case by auto
chaieb@23274
  1241
next
chaieb@23274
  1242
  case (8 c e) hence c1: "c=1" and nb: "numbound0 e" using dvd1_eq1 by simp+
chaieb@23274
  1243
  hence "\<forall> x<(- Inum (a#bs) e). \<not> (c*x + Inum (x#bs) e \<ge> 0)"
chaieb@23274
  1244
  proof(clarsimp)
chaieb@23274
  1245
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e \<ge> 0"
chaieb@23274
  1246
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
chaieb@23274
  1247
    show "False" by simp
chaieb@23274
  1248
  qed
chaieb@23274
  1249
  thus ?case by auto
chaieb@23274
  1250
qed auto
chaieb@17378
  1251
chaieb@23274
  1252
lemma minusinf_repeats:
chaieb@23274
  1253
  assumes d: "d\<delta> p d" and linp: "iszlfm p"
chaieb@23274
  1254
  shows "Ifm bbs ((x - k*d)#bs) (minusinf p) = Ifm bbs (x #bs) (minusinf p)"
chaieb@23274
  1255
using linp d
chaieb@23274
  1256
proof(induct p rule: iszlfm.induct) 
chaieb@23274
  1257
  case (9 i c e) hence nbe: "numbound0 e"  and id: "i dvd d" by simp+
chaieb@23274
  1258
    hence "\<exists> k. d=i*k" by (simp add: dvd_def)
chaieb@23274
  1259
    then obtain "di" where di_def: "d=i*di" by blast
chaieb@23274
  1260
    show ?case 
chaieb@23274
  1261
    proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, rule iffI)
chaieb@23274
  1262
      assume 
chaieb@23274
  1263
	"i dvd c * x - c*(k*d) + Inum (x # bs) e"
chaieb@23274
  1264
      (is "?ri dvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri dvd ?rt")
chaieb@23274
  1265
      hence "\<exists> (l::int). ?rt = i * l" by (simp add: dvd_def)
chaieb@23274
  1266
      hence "\<exists> (l::int). c*x+ ?I x e = i*l+c*(k * i*di)" 
nipkow@23477
  1267
	by (simp add: ring_simps di_def)
chaieb@23274
  1268
      hence "\<exists> (l::int). c*x+ ?I x e = i*(l + c*k*di)"
nipkow@23477
  1269
	by (simp add: ring_simps)
chaieb@23274
  1270
      hence "\<exists> (l::int). c*x+ ?I x e = i*l" by blast
chaieb@23274
  1271
      thus "i dvd c*x + Inum (x # bs) e" by (simp add: dvd_def) 
chaieb@23274
  1272
    next
chaieb@23274
  1273
      assume 
chaieb@23274
  1274
	"i dvd c*x + Inum (x # bs) e" (is "?ri dvd ?rc*?rx+?e")
chaieb@23274
  1275
      hence "\<exists> (l::int). c*x+?e = i*l" by (simp add: dvd_def)
chaieb@23274
  1276
      hence "\<exists> (l::int). c*x - c*(k*d) +?e = i*l - c*(k*d)" by simp
chaieb@23274
  1277
      hence "\<exists> (l::int). c*x - c*(k*d) +?e = i*l - c*(k*i*di)" by (simp add: di_def)
nipkow@23477
  1278
      hence "\<exists> (l::int). c*x - c*(k*d) +?e = i*((l - c*k*di))" by (simp add: ring_simps)
chaieb@23274
  1279
      hence "\<exists> (l::int). c*x - c * (k*d) +?e = i*l"
chaieb@23274
  1280
	by blast
chaieb@23274
  1281
      thus "i dvd c*x - c*(k*d) + Inum (x # bs) e" by (simp add: dvd_def)
chaieb@23274
  1282
    qed
chaieb@23274
  1283
next
chaieb@23274
  1284
  case (10 i c e)  hence nbe: "numbound0 e"  and id: "i dvd d" by simp+
chaieb@23274
  1285
    hence "\<exists> k. d=i*k" by (simp add: dvd_def)
chaieb@23274
  1286
    then obtain "di" where di_def: "d=i*di" by blast
chaieb@23274
  1287
    show ?case 
chaieb@23274
  1288
    proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, rule iffI)
chaieb@23274
  1289
      assume 
chaieb@23274
  1290
	"i dvd c * x - c*(k*d) + Inum (x # bs) e"
chaieb@23274
  1291
      (is "?ri dvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri dvd ?rt")
chaieb@23274
  1292
      hence "\<exists> (l::int). ?rt = i * l" by (simp add: dvd_def)
chaieb@23274
  1293
      hence "\<exists> (l::int). c*x+ ?I x e = i*l+c*(k * i*di)" 
nipkow@23477
  1294
	by (simp add: ring_simps di_def)
chaieb@23274
  1295
      hence "\<exists> (l::int). c*x+ ?I x e = i*(l + c*k*di)"
nipkow@23477
  1296
	by (simp add: ring_simps)
chaieb@23274
  1297
      hence "\<exists> (l::int). c*x+ ?I x e = i*l" by blast
chaieb@23274
  1298
      thus "i dvd c*x + Inum (x # bs) e" by (simp add: dvd_def) 
chaieb@23274
  1299
    next
chaieb@23274
  1300
      assume 
chaieb@23274
  1301
	"i dvd c*x + Inum (x # bs) e" (is "?ri dvd ?rc*?rx+?e")
chaieb@23274
  1302
      hence "\<exists> (l::int). c*x+?e = i*l" by (simp add: dvd_def)
chaieb@23274
  1303
      hence "\<exists> (l::int). c*x - c*(k*d) +?e = i*l - c*(k*d)" by simp
chaieb@23274
  1304
      hence "\<exists> (l::int). c*x - c*(k*d) +?e = i*l - c*(k*i*di)" by (simp add: di_def)
nipkow@23477
  1305
      hence "\<exists> (l::int). c*x - c*(k*d) +?e = i*((l - c*k*di))" by (simp add: ring_simps)
chaieb@23274
  1306
      hence "\<exists> (l::int). c*x - c * (k*d) +?e = i*l"
chaieb@23274
  1307
	by blast
chaieb@23274
  1308
      thus "i dvd c*x - c*(k*d) + Inum (x # bs) e" by (simp add: dvd_def)
chaieb@23274
  1309
    qed
haftmann@23689
  1310
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="x - k*d" and b'="x"])
chaieb@17378
  1311
chaieb@23274
  1312
    (* Is'nt this beautiful?*)
chaieb@23274
  1313
lemma minusinf_ex:
chaieb@23274
  1314
  assumes lin: "iszlfm p" and u: "d\<beta> p 1"
chaieb@23274
  1315
  and exmi: "\<exists> (x::int). Ifm bbs (x#bs) (minusinf p)" (is "\<exists> x. ?P1 x")
chaieb@23274
  1316
  shows "\<exists> (x::int). Ifm bbs (x#bs) p" (is "\<exists> x. ?P x")
chaieb@17378
  1317
proof-
chaieb@23274
  1318
  let ?d = "\<delta> p"
chaieb@23274
  1319
  from \<delta> [OF lin] have dpos: "?d >0" by simp
chaieb@23274
  1320
  from \<delta> [OF lin] have alld: "d\<delta> p ?d" by simp
chaieb@23274
  1321
  from minusinf_repeats[OF alld lin] have th1:"\<forall> x k. ?P1 x = ?P1 (x - (k * ?d))" by simp
chaieb@23274
  1322
  from minusinf_inf[OF lin u] have th2:"\<exists> z. \<forall> x. x<z \<longrightarrow> (?P x = ?P1 x)" by blast
chaieb@23274
  1323
  from minusinfinity [OF dpos th1 th2] exmi show ?thesis by blast
chaieb@17378
  1324
qed
chaieb@17378
  1325
chaieb@23274
  1326
    (*	And This ???*)
chaieb@23274
  1327
lemma minusinf_bex:
chaieb@23274
  1328
  assumes lin: "iszlfm p"
chaieb@23274
  1329
  shows "(\<exists> (x::int). Ifm bbs (x#bs) (minusinf p)) = 
chaieb@23274
  1330
         (\<exists> (x::int)\<in> {1..\<delta> p}. Ifm bbs (x#bs) (minusinf p))"
chaieb@23274
  1331
  (is "(\<exists> x. ?P x) = _")
chaieb@17378
  1332
proof-
chaieb@23274
  1333
  let ?d = "\<delta> p"
chaieb@23274
  1334
  from \<delta> [OF lin] have dpos: "?d >0" by simp
chaieb@23274
  1335
  from \<delta> [OF lin] have alld: "d\<delta> p ?d" by simp
chaieb@23274
  1336
  from minusinf_repeats[OF alld lin] have th1:"\<forall> x k. ?P x = ?P (x - (k * ?d))" by simp
chaieb@23315
  1337
  from periodic_finite_ex[OF dpos th1] show ?thesis by blast
chaieb@17378
  1338
qed
chaieb@17378
  1339
chaieb@17378
  1340
chaieb@23274
  1341
lemma mirror\<alpha>\<beta>:
chaieb@23274
  1342
  assumes lp: "iszlfm p"
chaieb@23274
  1343
  shows "(Inum (i#bs)) ` set (\<alpha> p) = (Inum (i#bs)) ` set (\<beta> (mirror p))"
chaieb@23274
  1344
using lp
chaieb@23274
  1345
by (induct p rule: mirror.induct, auto)
chaieb@17378
  1346
chaieb@23274
  1347
lemma mirror: 
chaieb@23274
  1348
  assumes lp: "iszlfm p"
chaieb@23274
  1349
  shows "Ifm bbs (x#bs) (mirror p) = Ifm bbs ((- x)#bs) p" 
chaieb@23274
  1350
using lp
chaieb@23274
  1351
proof(induct p rule: iszlfm.induct)
chaieb@23274
  1352
  case (9 j c e) hence nb: "numbound0 e" by simp
chaieb@23274
  1353
  have "Ifm bbs (x#bs) (mirror (Dvd j (CX c e))) = (j dvd c*x - Inum (x#bs) e)" (is "_ = (j dvd c*x - ?e)") by simp
chaieb@23274
  1354
    also have "\<dots> = (j dvd (- (c*x - ?e)))"
chaieb@23274
  1355
    by (simp only: zdvd_zminus_iff)
chaieb@23274
  1356
  also have "\<dots> = (j dvd (c* (- x)) + ?e)"
chaieb@23274
  1357
    apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_def zadd_ac zminus_zadd_distrib)
nipkow@23477
  1358
    by (simp add: ring_simps)
chaieb@23274
  1359
  also have "\<dots> = Ifm bbs ((- x)#bs) (Dvd j (CX c e))"
chaieb@23274
  1360
    using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"]
chaieb@23274
  1361
    by simp
chaieb@23274
  1362
  finally show ?case .
chaieb@23274
  1363
next
chaieb@23274
  1364
    case (10 j c e) hence nb: "numbound0 e" by simp
chaieb@23274
  1365
  have "Ifm bbs (x#bs) (mirror (Dvd j (CX c e))) = (j dvd c*x - Inum (x#bs) e)" (is "_ = (j dvd c*x - ?e)") by simp
chaieb@23274
  1366
    also have "\<dots> = (j dvd (- (c*x - ?e)))"
chaieb@23274
  1367
    by (simp only: zdvd_zminus_iff)
chaieb@23274
  1368
  also have "\<dots> = (j dvd (c* (- x)) + ?e)"
chaieb@23274
  1369
    apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_def zadd_ac zminus_zadd_distrib)
nipkow@23477
  1370
    by (simp add: ring_simps)
chaieb@23274
  1371
  also have "\<dots> = Ifm bbs ((- x)#bs) (Dvd j (CX c e))"
chaieb@23274
  1372
    using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"]
chaieb@23274
  1373
    by simp
chaieb@23274
  1374
  finally show ?case by simp
haftmann@23689
  1375
qed (auto simp add: numbound0_I[where bs="bs" and b="x" and b'="- x"] gr0_conv_Suc)
chaieb@17378
  1376
chaieb@23274
  1377
lemma mirror_l: "iszlfm p \<and> d\<beta> p 1 
chaieb@23274
  1378
  \<Longrightarrow> iszlfm (mirror p) \<and> d\<beta> (mirror p) 1"
chaieb@23274
  1379
by (induct p rule: mirror.induct, auto)
chaieb@17378
  1380
chaieb@23274
  1381
lemma mirror_\<delta>: "iszlfm p \<Longrightarrow> \<delta> (mirror p) = \<delta> p"
chaieb@23274
  1382
by (induct p rule: mirror.induct,auto)
chaieb@23274
  1383
chaieb@23274
  1384
lemma \<beta>_numbound0: assumes lp: "iszlfm p"
chaieb@23274
  1385
  shows "\<forall> b\<in> set (\<beta> p). numbound0 b"
chaieb@23274
  1386
  using lp by (induct p rule: \<beta>.induct,auto)
chaieb@17378
  1387
chaieb@23274
  1388
lemma d\<beta>_mono: 
chaieb@23274
  1389
  assumes linp: "iszlfm p"
chaieb@23274
  1390
  and dr: "d\<beta> p l"
chaieb@23274
  1391
  and d: "l dvd l'"
chaieb@23274
  1392
  shows "d\<beta> p l'"
chaieb@23274
  1393
using dr linp zdvd_trans[where n="l" and k="l'", simplified d]
chaieb@23274
  1394
by (induct p rule: iszlfm.induct) simp_all
chaieb@23274
  1395
chaieb@23274
  1396
lemma \<alpha>_l: assumes lp: "iszlfm p"
chaieb@23274
  1397
  shows "\<forall> b\<in> set (\<alpha> p). numbound0 b"
chaieb@23274
  1398
using lp
chaieb@23274
  1399
by(induct p rule: \<alpha>.induct, auto)
chaieb@17378
  1400
chaieb@23274
  1401
lemma \<zeta>: 
chaieb@23274
  1402
  assumes linp: "iszlfm p"
chaieb@23274
  1403
  shows "\<zeta> p > 0 \<and> d\<beta> p (\<zeta> p)"
chaieb@23274
  1404
using linp
chaieb@23274
  1405
proof(induct p rule: iszlfm.induct)
chaieb@23274
  1406
  case (1 p q)
chaieb@23274
  1407
  from prems have dl1: "\<zeta> p dvd ilcm (\<zeta> p) (\<zeta> q)" 
chaieb@23274
  1408
    by (simp add: ilcm_dvd1[where a="\<zeta> p" and b="\<zeta> q"])
chaieb@23274
  1409
  from prems have dl2: "\<zeta> q dvd ilcm (\<zeta> p) (\<zeta> q)" 
chaieb@23274
  1410
    by (simp add: ilcm_dvd2[where a="\<zeta> p" and b="\<zeta> q"])
chaieb@23274
  1411
  from prems d\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="ilcm (\<zeta> p) (\<zeta> q)"] 
chaieb@23274
  1412
    d\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="ilcm (\<zeta> p) (\<zeta> q)"] 
chaieb@23274
  1413
    dl1 dl2 show ?case by (auto simp add: ilcm_pos)
chaieb@17378
  1414
next
chaieb@23274
  1415
  case (2 p q)
chaieb@23274
  1416
  from prems have dl1: "\<zeta> p dvd ilcm (\<zeta> p) (\<zeta> q)" 
chaieb@23274
  1417
    by (simp add: ilcm_dvd1[where a="\<zeta> p" and b="\<zeta> q"])
chaieb@23274
  1418
  from prems have dl2: "\<zeta> q dvd ilcm (\<zeta> p) (\<zeta> q)" 
chaieb@23274
  1419
    by (simp add: ilcm_dvd2[where a="\<zeta> p" and b="\<zeta> q"])
chaieb@23274
  1420
  from prems d\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="ilcm (\<zeta> p) (\<zeta> q)"] 
chaieb@23274
  1421
    d\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="ilcm (\<zeta> p) (\<zeta> q)"] 
chaieb@23274
  1422
    dl1 dl2 show ?case by (auto simp add: ilcm_pos)
chaieb@23274
  1423
qed (auto simp add: ilcm_pos)
chaieb@17378
  1424
chaieb@23274
  1425
lemma a\<beta>: assumes linp: "iszlfm p" and d: "d\<beta> p l" and lp: "l > 0"
chaieb@23274
  1426
  shows "iszlfm (a\<beta> p l) \<and> d\<beta> (a\<beta> p l) 1 \<and> (Ifm bbs (l*x #bs) (a\<beta> p l) = Ifm bbs (x#bs) p)"
chaieb@23274
  1427
using linp d
chaieb@23274
  1428
proof (induct p rule: iszlfm.induct)
chaieb@23274
  1429
  case (5 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
chaieb@23274
  1430
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1431
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1432
    have "c div c\<le> l div c"
chaieb@23274
  1433
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1434
    then have ldcp:"0 < l div c" 
chaieb@23274
  1435
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1436
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1437
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@23274
  1438
      by simp
chaieb@23274
  1439
    hence "(l*x + (l div c) * Inum (x # bs) e < 0) =
chaieb@23274
  1440
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e < 0)"
chaieb@23274
  1441
      by simp
nipkow@23477
  1442
    also have "\<dots> = ((l div c) * (c*x + Inum (x # bs) e) < (l div c) * 0)" by (simp add: ring_simps)
chaieb@23274
  1443
    also have "\<dots> = (c*x + Inum (x # bs) e < 0)"
chaieb@23274
  1444
    using mult_less_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp
chaieb@23274
  1445
  finally show ?case using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] be  by simp
chaieb@17378
  1446
next
chaieb@23274
  1447
  case (6 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
chaieb@23274
  1448
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1449
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1450
    have "c div c\<le> l div c"
chaieb@23274
  1451
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1452
    then have ldcp:"0 < l div c" 
chaieb@23274
  1453
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1454
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1455
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@17378
  1456
      by simp
chaieb@23274
  1457
    hence "(l*x + (l div c) * Inum (x# bs) e \<le> 0) =
chaieb@23274
  1458
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e \<le> 0)"
chaieb@23274
  1459
      by simp
nipkow@23477
  1460
    also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) \<le> ((l div c)) * 0)" by (simp add: ring_simps)
chaieb@23274
  1461
    also have "\<dots> = (c*x + Inum (x # bs) e \<le> 0)"
chaieb@23274
  1462
    using mult_le_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp
chaieb@23274
  1463
  finally show ?case using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"]  be by simp
chaieb@17378
  1464
next
chaieb@23274
  1465
  case (7 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
chaieb@23274
  1466
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1467
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1468
    have "c div c\<le> l div c"
chaieb@23274
  1469
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1470
    then have ldcp:"0 < l div c" 
chaieb@23274
  1471
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1472
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1473
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@17378
  1474
      by simp
chaieb@23274
  1475
    hence "(l*x + (l div c)* Inum (x # bs) e > 0) =
chaieb@23274
  1476
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e > 0)"
chaieb@17378
  1477
      by simp
nipkow@23477
  1478
    also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) > ((l div c)) * 0)" by (simp add: ring_simps)
chaieb@23274
  1479
    also have "\<dots> = (c * x + Inum (x # bs) e > 0)"
chaieb@23274
  1480
    using zero_less_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
chaieb@23274
  1481
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"]  be  by simp
chaieb@17378
  1482
next
chaieb@23274
  1483
  case (8 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
chaieb@23274
  1484
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1485
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1486
    have "c div c\<le> l div c"
chaieb@23274
  1487
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1488
    then have ldcp:"0 < l div c" 
chaieb@23274
  1489
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1490
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1491
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@17378
  1492
      by simp
chaieb@23274
  1493
    hence "(l*x + (l div c)* Inum (x # bs) e \<ge> 0) =
chaieb@23274
  1494
          ((c*(l div c))*x + (l div c)* Inum (x # bs) e \<ge> 0)"
chaieb@23274
  1495
      by simp
chaieb@23274
  1496
    also have "\<dots> = ((l div c)*(c*x + Inum (x # bs) e) \<ge> ((l div c)) * 0)" 
nipkow@23477
  1497
      by (simp add: ring_simps)
chaieb@23274
  1498
    also have "\<dots> = (c*x + Inum (x # bs) e \<ge> 0)" using ldcp 
chaieb@23274
  1499
      zero_le_mult_iff [where a="l div c" and b="c*x + Inum (x # bs) e"] by simp
chaieb@23274
  1500
  finally show ?case using be numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"]  
chaieb@23274
  1501
    by simp
chaieb@17378
  1502
next
chaieb@23274
  1503
  case (3 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
chaieb@23274
  1504
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1505
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1506
    have "c div c\<le> l div c"
chaieb@23274
  1507
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1508
    then have ldcp:"0 < l div c" 
chaieb@23274
  1509
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1510
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1511
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@17378
  1512
      by simp
chaieb@23274
  1513
    hence "(l * x + (l div c) * Inum (x # bs) e = 0) =
chaieb@23274
  1514
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e = 0)"
chaieb@23274
  1515
      by simp
nipkow@23477
  1516
    also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) = ((l div c)) * 0)" by (simp add: ring_simps)
chaieb@23274
  1517
    also have "\<dots> = (c * x + Inum (x # bs) e = 0)"
chaieb@23274
  1518
    using mult_eq_0_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
chaieb@23274
  1519
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"]  be  by simp
chaieb@17378
  1520
next
chaieb@23274
  1521
  case (4 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
chaieb@23274
  1522
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1523
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1524
    have "c div c\<le> l div c"
chaieb@23274
  1525
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1526
    then have ldcp:"0 < l div c" 
chaieb@23274
  1527
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1528
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1529
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@23274
  1530
      by simp
chaieb@23274
  1531
    hence "(l * x + (l div c) * Inum (x # bs) e \<noteq> 0) =
chaieb@23274
  1532
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e \<noteq> 0)"
chaieb@23274
  1533
      by simp
nipkow@23477
  1534
    also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) \<noteq> ((l div c)) * 0)" by (simp add: ring_simps)
chaieb@23274
  1535
    also have "\<dots> = (c * x + Inum (x # bs) e \<noteq> 0)"
chaieb@23274
  1536
    using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
chaieb@23274
  1537
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"]  be  by simp
chaieb@17378
  1538
next
chaieb@23274
  1539
  case (9 j c e) hence cp: "c>0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" by simp+
chaieb@23274
  1540
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1541
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1542
    have "c div c\<le> l div c"
chaieb@23274
  1543
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1544
    then have ldcp:"0 < l div c" 
chaieb@23274
  1545
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1546
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1547
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@23274
  1548
      by simp
chaieb@23274
  1549
    hence "(\<exists> (k::int). l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) = (\<exists> (k::int). (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)"  by simp
nipkow@23477
  1550
    also have "\<dots> = (\<exists> (k::int). (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c)*0)" by (simp add: ring_simps)
chaieb@23274
  1551
    also have "\<dots> = (\<exists> (k::int). c * x + Inum (x # bs) e - j * k = 0)"
chaieb@23274
  1552
    using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k"] ldcp by simp
chaieb@23274
  1553
  also have "\<dots> = (\<exists> (k::int). c * x + Inum (x # bs) e = j * k)" by simp
chaieb@23274
  1554
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be  mult_strict_mono[OF ldcp jp ldcp ] by (simp add: dvd_def)
chaieb@17378
  1555
next
chaieb@23274
  1556
  case (10 j c e) hence cp: "c>0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" by simp+
chaieb@23274
  1557
    from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
chaieb@23274
  1558
    from cp have cnz: "c \<noteq> 0" by simp
chaieb@23274
  1559
    have "c div c\<le> l div c"
chaieb@23274
  1560
      by (simp add: zdiv_mono1[OF clel cp])
chaieb@23274
  1561
    then have ldcp:"0 < l div c" 
chaieb@23274
  1562
      by (simp add: zdiv_self[OF cnz])
chaieb@23274
  1563
    have "c * (l div c) = c* (l div c) + l mod c" using d' zdvd_iff_zmod_eq_0[where m="c" and n="l"] by simp
chaieb@23274
  1564
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
chaieb@23274
  1565
      by simp
chaieb@23274
  1566
    hence "(\<exists> (k::int). l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) = (\<exists> (k::int). (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)"  by simp
nipkow@23477
  1567
    also have "\<dots> = (\<exists> (k::int). (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c)*0)" by (simp add: ring_simps)
chaieb@23274
  1568
    also have "\<dots> = (\<exists> (k::int). c * x + Inum (x # bs) e - j * k = 0)"
chaieb@23274
  1569
    using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k"] ldcp by simp
chaieb@23274
  1570
  also have "\<dots> = (\<exists> (k::int). c * x + Inum (x # bs) e = j * k)" by simp
chaieb@23274
  1571
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be  mult_strict_mono[OF ldcp jp ldcp ] by (simp add: dvd_def)
haftmann@23689
  1572
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="(l * x)" and b'="x"])
chaieb@17378
  1573
chaieb@23274
  1574
lemma a\<beta>_ex: assumes linp: "iszlfm p" and d: "d\<beta> p l" and lp: "l>0"
chaieb@23274
  1575
  shows "(\<exists> x. l dvd x \<and> Ifm bbs (x #bs) (a\<beta> p l)) = (\<exists> (x::int). Ifm bbs (x#bs) p)"
chaieb@23274
  1576
  (is "(\<exists> x. l dvd x \<and> ?P x) = (\<exists> x. ?P' x)")
chaieb@23274
  1577
proof-
chaieb@23274
  1578
  have "(\<exists> x. l dvd x \<and> ?P x) = (\<exists> (x::int). ?P (l*x))"
chaieb@23274
  1579
    using unity_coeff_ex[where l="l" and P="?P", simplified] by simp
chaieb@23274
  1580
  also have "\<dots> = (\<exists> (x::int). ?P' x)" using a\<beta>[OF linp d lp] by simp
chaieb@23274
  1581
  finally show ?thesis  . 
chaieb@17378
  1582
qed
chaieb@17378
  1583
chaieb@23274
  1584
lemma \<beta>:
chaieb@23274
  1585
  assumes lp: "iszlfm p"
chaieb@23274
  1586
  and u: "d\<beta> p 1"
chaieb@23274
  1587
  and d: "d\<delta> p d"
chaieb@23274
  1588
  and dp: "d > 0"
chaieb@23274
  1589
  and nob: "\<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists> b\<in> (Inum (a#bs)) ` set(\<beta> p). x = b + j)"
chaieb@23274
  1590
  and p: "Ifm bbs (x#bs) p" (is "?P x")
chaieb@23274
  1591
  shows "?P (x - d)"
chaieb@23274
  1592
using lp u d dp nob p
chaieb@23274
  1593
proof(induct p rule: iszlfm.induct)
chaieb@23274
  1594
  case (5 c e) hence c1: "c=1" and  bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1595
    with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] prems
chaieb@23274
  1596
    show ?case by simp
chaieb@23274
  1597
next
chaieb@23274
  1598
  case (6 c e)  hence c1: "c=1" and  bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1599
    with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] prems
chaieb@23274
  1600
    show ?case by simp
chaieb@23274
  1601
next
chaieb@23274
  1602
  case (7 c e) hence p: "Ifm bbs (x #bs) (Gt (CX c e))" and c1: "c=1" and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1603
    let ?e = "Inum (x # bs) e"
chaieb@23274
  1604
    {assume "(x-d) +?e > 0" hence ?case using c1 
chaieb@23274
  1605
      numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] by simp}
chaieb@23274
  1606
    moreover
chaieb@23274
  1607
    {assume H: "\<not> (x-d) + ?e > 0" 
chaieb@23274
  1608
      let ?v="Neg e"
chaieb@23274
  1609
      have vb: "?v \<in> set (\<beta> (Gt (CX c e)))" by simp
chaieb@23274
  1610
      from prems(11)[simplified simp_thms Inum.simps \<beta>.simps set.simps bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]] 
chaieb@23274
  1611
      have nob: "\<not> (\<exists> j\<in> {1 ..d}. x =  - ?e + j)" by auto 
chaieb@23274
  1612
      from H p have "x + ?e > 0 \<and> x + ?e \<le> d" by (simp add: c1)
chaieb@23274
  1613
      hence "x + ?e \<ge> 1 \<and> x + ?e \<le> d"  by simp
chaieb@23274
  1614
      hence "\<exists> (j::int) \<in> {1 .. d}. j = x + ?e" by simp
chaieb@23274
  1615
      hence "\<exists> (j::int) \<in> {1 .. d}. x = (- ?e + j)" 
nipkow@23477
  1616
	by (simp add: ring_simps)
chaieb@23274
  1617
      with nob have ?case by auto}
chaieb@23274
  1618
    ultimately show ?case by blast
chaieb@23274
  1619
next
chaieb@23274
  1620
  case (8 c e) hence p: "Ifm bbs (x #bs) (Ge (CX c e))" and c1: "c=1" and bn:"numbound0 e" 
chaieb@23274
  1621
    using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1622
    let ?e = "Inum (x # bs) e"
chaieb@23274
  1623
    {assume "(x-d) +?e \<ge> 0" hence ?case using  c1 
chaieb@23274
  1624
      numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"]
chaieb@23274
  1625
	by simp}
chaieb@23274
  1626
    moreover
chaieb@23274
  1627
    {assume H: "\<not> (x-d) + ?e \<ge> 0" 
chaieb@23274
  1628
      let ?v="Sub (C -1) e"
chaieb@23274
  1629
      have vb: "?v \<in> set (\<beta> (Ge (CX c e)))" by simp
chaieb@23274
  1630
      from prems(11)[simplified simp_thms Inum.simps \<beta>.simps set.simps bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]] 
chaieb@23274
  1631
      have nob: "\<not> (\<exists> j\<in> {1 ..d}. x =  - ?e - 1 + j)" by auto 
chaieb@23274
  1632
      from H p have "x + ?e \<ge> 0 \<and> x + ?e < d" by (simp add: c1)
chaieb@23274
  1633
      hence "x + ?e +1 \<ge> 1 \<and> x + ?e + 1 \<le> d"  by simp
chaieb@23274
  1634
      hence "\<exists> (j::int) \<in> {1 .. d}. j = x + ?e + 1" by simp
nipkow@23477
  1635
      hence "\<exists> (j::int) \<in> {1 .. d}. x= - ?e - 1 + j" by (simp add: ring_simps)
chaieb@23274
  1636
      with nob have ?case by simp }
chaieb@23274
  1637
    ultimately show ?case by blast
chaieb@23274
  1638
next
chaieb@23274
  1639
  case (3 c e) hence p: "Ifm bbs (x #bs) (Eq (CX c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1640
    let ?e = "Inum (x # bs) e"
chaieb@23274
  1641
    let ?v="(Sub (C -1) e)"
chaieb@23274
  1642
    have vb: "?v \<in> set (\<beta> (Eq (CX c e)))" by simp
chaieb@23274
  1643
    from p have "x= - ?e" by (simp add: c1) with prems(11) show ?case using dp
chaieb@23274
  1644
      by simp (erule ballE[where x="1"],
nipkow@23477
  1645
	simp_all add:ring_simps numbound0_I[OF bn,where b="x"and b'="a"and bs="bs"])
chaieb@23274
  1646
next
chaieb@23274
  1647
  case (4 c e)hence p: "Ifm bbs (x #bs) (NEq (CX c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1648
    let ?e = "Inum (x # bs) e"
chaieb@23274
  1649
    let ?v="Neg e"
chaieb@23274
  1650
    have vb: "?v \<in> set (\<beta> (NEq (CX c e)))" by simp
chaieb@23274
  1651
    {assume "x - d + Inum (((x -d)) # bs) e \<noteq> 0" 
chaieb@23274
  1652
      hence ?case by (simp add: c1)}
chaieb@23274
  1653
    moreover
chaieb@23274
  1654
    {assume H: "x - d + Inum (((x -d)) # bs) e = 0"
chaieb@23274
  1655
      hence "x = - Inum (((x -d)) # bs) e + d" by simp
chaieb@23274
  1656
      hence "x = - Inum (a # bs) e + d"
chaieb@23274
  1657
	by (simp add: numbound0_I[OF bn,where b="x - d"and b'="a"and bs="bs"])
chaieb@23274
  1658
       with prems(11) have ?case using dp by simp}
chaieb@23274
  1659
  ultimately show ?case by blast
chaieb@23274
  1660
next 
chaieb@23274
  1661
  case (9 j c e) hence p: "Ifm bbs (x #bs) (Dvd j (CX c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1662
    let ?e = "Inum (x # bs) e"
chaieb@23274
  1663
    from prems have id: "j dvd d" by simp
chaieb@23274
  1664
    from c1 have "?p x = (j dvd (x+ ?e))" by simp
chaieb@23274
  1665
    also have "\<dots> = (j dvd x - d + ?e)" 
haftmann@23689
  1666
      using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] by simp
chaieb@23274
  1667
    finally show ?case 
chaieb@23274
  1668
      using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p by simp
chaieb@23274
  1669
next
chaieb@23274
  1670
  case (10 j c e) hence p: "Ifm bbs (x #bs) (NDvd j (CX c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" using dvd1_eq1[where x="c"] by simp+
chaieb@23274
  1671
    let ?e = "Inum (x # bs) e"
chaieb@23274
  1672
    from prems have id: "j dvd d" by simp
chaieb@23274
  1673
    from c1 have "?p x = (\<not> j dvd (x+ ?e))" by simp
chaieb@23274
  1674
    also have "\<dots> = (\<not> j dvd x - d + ?e)" 
haftmann@23689
  1675
      using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] by simp
chaieb@23274
  1676
    finally show ?case using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p by simp
haftmann@23689
  1677
qed (auto simp add: numbound0_I[where bs="bs" and b="(x - d)" and b'="x"] gr0_conv_Suc)
chaieb@17378
  1678
chaieb@23274
  1679
lemma \<beta>':   
chaieb@23274
  1680
  assumes lp: "iszlfm p"
chaieb@23274
  1681
  and u: "d\<beta> p 1"
chaieb@23274
  1682
  and d: "d\<delta> p d"
chaieb@23274
  1683
  and dp: "d > 0"
chaieb@23274
  1684
  shows "\<forall> x. \<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists> b\<in> set(\<beta> p). Ifm bbs ((Inum (a#bs) b + j) #bs) p) \<longrightarrow> Ifm bbs (x#bs) p \<longrightarrow> Ifm bbs ((x - d)#bs) p" (is "\<forall> x. ?b \<longrightarrow> ?P x \<longrightarrow> ?P (x - d)")
chaieb@23274
  1685
proof(clarify)
chaieb@23274
  1686
  fix x 
chaieb@23274
  1687
  assume nb:"?b" and px: "?P x" 
chaieb@23274
  1688
  hence nb2: "\<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists> b\<in> (Inum (a#bs)) ` set(\<beta> p). x = b + j)"
chaieb@23274
  1689
    by auto
chaieb@23274
  1690
  from  \<beta>[OF lp u d dp nb2 px] show "?P (x -d )" .
chaieb@17378
  1691
qed
chaieb@23315
  1692
lemma cpmi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. x < z --> (P x = P1 x))
chaieb@23315
  1693
==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D) 
chaieb@23315
  1694
==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D))))
chaieb@23315
  1695
==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))"
chaieb@23315
  1696
apply(rule iffI)
chaieb@23315
  1697
prefer 2
chaieb@23315
  1698
apply(drule minusinfinity)
chaieb@23315
  1699
apply assumption+
chaieb@23315
  1700
apply(fastsimp)
chaieb@23315
  1701
apply clarsimp
chaieb@23315
  1702
apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x - k*D)")
chaieb@23315
  1703
apply(frule_tac x = x and z=z in decr_lemma)
chaieb@23315
  1704
apply(subgoal_tac "P1(x - (\<bar>x - z\<bar> + 1) * D)")
chaieb@23315
  1705
prefer 2
chaieb@23315
  1706
apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
chaieb@23315
  1707
prefer 2 apply arith
chaieb@23315
  1708
 apply fastsimp
chaieb@23315
  1709
apply(drule (1)  periodic_finite_ex)
chaieb@23315
  1710
apply blast
chaieb@23315
  1711
apply(blast dest:decr_mult_lemma)
chaieb@23315
  1712
done
chaieb@17378
  1713
chaieb@23274
  1714
theorem cp_thm:
chaieb@23274
  1715
  assumes lp: "iszlfm p"
chaieb@23274
  1716
  and u: "d\<beta> p 1"
chaieb@23274
  1717
  and d: "d\<delta> p d"
chaieb@23274
  1718
  and dp: "d > 0"
chaieb@23274
  1719
  shows "(\<exists> (x::int). Ifm bbs (x #bs) p) = (\<exists> j\<in> {1.. d}. Ifm bbs (j #bs) (minusinf p) \<or> (\<exists> b \<in> set (\<beta> p). Ifm bbs ((Inum (i#bs) b + j) #bs) p))"
chaieb@23274
  1720
  (is "(\<exists> (x::int). ?P (x)) = (\<exists> j\<in> ?D. ?M j \<or> (\<exists> b\<in> ?B. ?P (?I b + j)))")
chaieb@17378
  1721
proof-
chaieb@23274
  1722
  from minusinf_inf[OF lp u] 
chaieb@23274
  1723
  have th: "\<exists>(z::int). \<forall>x<z. ?P (x) = ?M x" by blast
chaieb@23274
  1724
  let ?B' = "{?I b | b. b\<in> ?B}"
chaieb@23274
  1725
  have BB': "(\<exists>j\<in>?D. \<exists>b\<in> ?B. ?P (?I b +j)) = (\<exists> j \<in> ?D. \<exists> b \<in> ?B'. ?P (b + j))" by auto
chaieb@23274
  1726
  hence th2: "\<forall> x. \<not> (\<exists> j \<in> ?D. \<exists> b \<in> ?B'. ?P ((b + j))) \<longrightarrow> ?P (x) \<longrightarrow> ?P ((x - d))" 
chaieb@23274
  1727
    using \<beta>'[OF lp u d dp, where a="i" and bbs = "bbs"] by blast
chaieb@23274
  1728
  from minusinf_repeats[OF d lp]
chaieb@23274
  1729
  have th3: "\<forall> x k. ?M x = ?M (x-k*d)" by simp
chaieb@23274
  1730
  from cpmi_eq[OF dp th th2 th3] BB' show ?thesis by blast
chaieb@17378
  1731
qed
chaieb@17378
  1732
chaieb@23274
  1733
    (* Implement the right hand sides of Cooper's theorem and Ferrante and Rackoff. *)
chaieb@23274
  1734
lemma mirror_ex: 
chaieb@23274
  1735
  assumes lp: "iszlfm p"
chaieb@23274
  1736
  shows "(\<exists> x. Ifm bbs (x#bs) (mirror p)) = (\<exists> x. Ifm bbs (x#bs) p)"
chaieb@23274
  1737
  (is "(\<exists> x. ?I x ?mp) = (\<exists> x. ?I x p)")
chaieb@23274
  1738
proof(auto)
chaieb@23274
  1739
  fix x assume "?I x ?mp" hence "?I (- x) p" using mirror[OF lp] by blast
chaieb@23274
  1740
  thus "\<exists> x. ?I x p" by blast
chaieb@23274
  1741
next
chaieb@23274
  1742
  fix x assume "?I x p" hence "?I (- x) ?mp" 
chaieb@23274
  1743
    using mirror[OF lp, where x="- x", symmetric] by auto
chaieb@23274
  1744
  thus "\<exists> x. ?I x ?mp" by blast
chaieb@23274
  1745
qed
chaieb@23274
  1746
  
chaieb@23274
  1747
  
chaieb@23274
  1748
lemma cp_thm': 
chaieb@23274
  1749
  assumes lp: "iszlfm p"
chaieb@23274
  1750
  and up: "d\<beta> p 1" and dd: "d\<delta> p d" and dp: "d > 0"
chaieb@23274
  1751
  shows "(\<exists> x. Ifm bbs (x#bs) p) = ((\<exists> j\<in> {1 .. d}. Ifm bbs (j#bs) (minusinf p)) \<or> (\<exists> j\<in> {1.. d}. \<exists> b\<in> (Inum (i#bs)) ` set (\<beta> p). Ifm bbs ((b+j)#bs) p))"
chaieb@23274
  1752
  using cp_thm[OF lp up dd dp,where i="i"] by auto
chaieb@17378
  1753
chaieb@23274
  1754
constdefs unit:: "fm \<Rightarrow> fm \<times> num list \<times> int"
chaieb@23274
  1755
  "unit p \<equiv> (let p' = zlfm p ; l = \<zeta> p' ; q = And (Dvd l (CX 1 (C 0))) (a\<beta> p' l); d = \<delta> q;
chaieb@23274
  1756
             B = remdups (map simpnum (\<beta> q)) ; a = remdups (map simpnum (\<alpha> q))
chaieb@23274
  1757
             in if length B \<le> length a then (q,B,d) else (mirror q, a,d))"
chaieb@17378
  1758
chaieb@23274
  1759
lemma unit: assumes qf: "qfree p"
chaieb@23274
  1760
  shows "\<And> q B d. unit p = (q,B,d) \<Longrightarrow> ((\<exists> x. Ifm bbs (x#bs) p) = (\<exists> x. Ifm bbs (x#bs) q)) \<and> (Inum (i#bs)) ` set B = (Inum (i#bs)) ` set (\<beta> q) \<and> d\<beta> q 1 \<and> d\<delta> q d \<and> d >0 \<and> iszlfm q \<and> (\<forall> b\<in> set B. numbound0 b)"
chaieb@23274
  1761
proof-
chaieb@23274
  1762
  fix q B d 
chaieb@23274
  1763
  assume qBd: "unit p = (q,B,d)"
chaieb@23274
  1764
  let ?thes = "((\<exists> x. Ifm bbs (x#bs) p) = (\<exists> x. Ifm bbs (x#bs) q)) \<and>
chaieb@23274
  1765
    Inum (i#bs) ` set B = Inum (i#bs) ` set (\<beta> q) \<and>
chaieb@23274
  1766
    d\<beta> q 1 \<and> d\<delta> q d \<and> 0 < d \<and> iszlfm q \<and> (\<forall> b\<in> set B. numbound0 b)"
chaieb@23274
  1767
  let ?I = "\<lambda> x p. Ifm bbs (x#bs) p"
chaieb@23274
  1768
  let ?p' = "zlfm p"
chaieb@23274
  1769
  let ?l = "\<zeta> ?p'"
chaieb@23274
  1770
  let ?q = "And (Dvd ?l (CX 1 (C 0))) (a\<beta> ?p' ?l)"
chaieb@23274
  1771
  let ?d = "\<delta> ?q"
chaieb@23274
  1772
  let ?B = "set (\<beta> ?q)"
chaieb@23274
  1773
  let ?B'= "remdups (map simpnum (\<beta> ?q))"
chaieb@23274
  1774
  let ?A = "set (\<alpha> ?q)"
chaieb@23274
  1775
  let ?A'= "remdups (map simpnum (\<alpha> ?q))"
chaieb@23274
  1776
  from conjunct1[OF zlfm_I[OF qf, where bs="bs"]] 
chaieb@23274
  1777
  have pp': "\<forall> i. ?I i ?p' = ?I i p" by auto
chaieb@23274
  1778
  from conjunct2[OF zlfm_I[OF qf, where bs="bs" and i="i"]]
chaieb@23274
  1779
  have lp': "iszlfm ?p'" . 
chaieb@23274
  1780
  from lp' \<zeta>[where p="?p'"] have lp: "?l >0" and dl: "d\<beta> ?p' ?l" by auto
chaieb@23274
  1781
  from a\<beta>_ex[where p="?p'" and l="?l" and bs="bs", OF lp' dl lp] pp'
chaieb@23274
  1782
  have pq_ex:"(\<exists> (x::int). ?I x p) = (\<exists> x. ?I x ?q)" by simp 
chaieb@23274
  1783
  from lp' lp a\<beta>[OF lp' dl lp] have lq:"iszlfm ?q" and uq: "d\<beta> ?q 1"  by auto
chaieb@23274
  1784
  from \<delta>[OF lq] have dp:"?d >0" and dd: "d\<delta> ?q ?d" by blast+
chaieb@23274
  1785
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
  1786
  have "?N ` set ?B' = ((?N o simpnum) ` ?B)" by auto 
chaieb@23274
  1787
  also have "\<dots> = ?N ` ?B" using simpnum_ci[where bs="i#bs"] by auto
chaieb@23274
  1788
  finally have BB': "?N ` set ?B' = ?N ` ?B" .
chaieb@23274
  1789
  have "?N ` set ?A' = ((?N o simpnum) ` ?A)" by auto 
chaieb@23274
  1790
  also have "\<dots> = ?N ` ?A" using simpnum_ci[where bs="i#bs"] by auto
chaieb@23274
  1791
  finally have AA': "?N ` set ?A' = ?N ` ?A" .
chaieb@23274
  1792
  from \<beta>_numbound0[OF lq] have B_nb:"\<forall> b\<in> set ?B'. numbound0 b"
chaieb@23274
  1793
    by (simp add: simpnum_numbound0)
chaieb@23274
  1794
  from \<alpha>_l[OF lq] have A_nb: "\<forall> b\<in> set ?A'. numbound0 b"
chaieb@23274
  1795
    by (simp add: simpnum_numbound0)
chaieb@23274
  1796
    {assume "length ?B' \<le> length ?A'"
chaieb@23274
  1797
    hence q:"q=?q" and "B = ?B'" and d:"d = ?d"
chaieb@23274
  1798
      using qBd by (auto simp add: Let_def unit_def)
chaieb@23274
  1799
    with BB' B_nb have b: "?N ` (set B) = ?N ` set (\<beta> q)" 
chaieb@23274
  1800
      and bn: "\<forall>b\<in> set B. numbound0 b" by simp+ 
chaieb@23274
  1801
  with pq_ex dp uq dd lq q d have ?thes by simp}
chaieb@23274
  1802
  moreover 
chaieb@23274
  1803
  {assume "\<not> (length ?B' \<le> length ?A')"
chaieb@23274
  1804
    hence q:"q=mirror ?q" and "B = ?A'" and d:"d = ?d"
chaieb@23274
  1805
      using qBd by (auto simp add: Let_def unit_def)
chaieb@23274
  1806
    with AA' mirror\<alpha>\<beta>[OF lq] A_nb have b:"?N ` (set B) = ?N ` set (\<beta> q)" 
chaieb@23274
  1807
      and bn: "\<forall>b\<in> set B. numbound0 b" by simp+
chaieb@23274
  1808
    from mirror_ex[OF lq] pq_ex q 
chaieb@23274
  1809
    have pqm_eq:"(\<exists> (x::int). ?I x p) = (\<exists> (x::int). ?I x q)" by simp
chaieb@23274
  1810
    from lq uq q mirror_l[where p="?q"]
chaieb@23274
  1811
    have lq': "iszlfm q" and uq: "d\<beta> q 1" by auto
chaieb@23274
  1812
    from \<delta>[OF lq'] mirror_\<delta>[OF lq] q d have dq:"d\<delta> q d " by auto
chaieb@23274
  1813
    from pqm_eq b bn uq lq' dp dq q dp d have ?thes by simp
chaieb@23274
  1814
  }
chaieb@23274
  1815
  ultimately show ?thes by blast
chaieb@23274
  1816
qed
chaieb@23274
  1817
    (* Cooper's Algorithm *)
chaieb@17378
  1818
chaieb@23274
  1819
constdefs cooper :: "fm \<Rightarrow> fm"
chaieb@23274
  1820
  "cooper p \<equiv> 
haftmann@23689
  1821
  (let (q,B,d) = unit p; js = iupt 1 d;
chaieb@23274
  1822
       mq = simpfm (minusinf q);
chaieb@23274
  1823
       md = evaldjf (\<lambda> j. simpfm (subst0 (C j) mq)) js
chaieb@23274
  1824
   in if md = T then T else
chaieb@23274
  1825
    (let qd = evaldjf (\<lambda> (b,j). simpfm (subst0 (Add b (C j)) q)) 
chaieb@23274
  1826
                               (allpairs Pair B js)
chaieb@23274
  1827
     in decr (disj md qd)))"
chaieb@23274
  1828
lemma cooper: assumes qf: "qfree p"
chaieb@23274
  1829
  shows "((\<exists> x. Ifm bbs (x#bs) p) = (Ifm bbs bs (cooper p))) \<and> qfree (cooper p)" 
chaieb@23274
  1830
  (is "(?lhs = ?rhs) \<and> _")
chaieb@23274
  1831
proof-
chaieb@17378
  1832
chaieb@23274
  1833
  let ?I = "\<lambda> x p. Ifm bbs (x#bs) p"
chaieb@23274
  1834
  let ?q = "fst (unit p)"
chaieb@23274
  1835
  let ?B = "fst (snd(unit p))"
chaieb@23274
  1836
  let ?d = "snd (snd (unit p))"
haftmann@23689
  1837
  let ?js = "iupt 1 ?d"
chaieb@23274
  1838
  let ?mq = "minusinf ?q"
chaieb@23274
  1839
  let ?smq = "simpfm ?mq"
chaieb@23274
  1840
  let ?md = "evaldjf (\<lambda> j. simpfm (subst0 (C j) ?smq)) ?js"
chaieb@23274
  1841
  let ?N = "\<lambda> t. Inum (i#bs) t"
chaieb@23274
  1842
  let ?qd = "evaldjf (\<lambda> (b,j). simpfm (subst0 (Add b (C j)) ?q)) (allpairs Pair ?B ?js)"
chaieb@23274
  1843
  have qbf:"unit p = (?q,?B,?d)" by simp
chaieb@23274
  1844
  from unit[OF qf qbf] have pq_ex: "(\<exists>(x::int). ?I x p) = (\<exists> (x::int). ?I x ?q)" and 
chaieb@23274
  1845
    B:"?N ` set ?B = ?N ` set (\<beta> ?q)" and 
chaieb@23274
  1846
    uq:"d\<beta> ?q 1" and dd: "d\<delta> ?q ?d" and dp: "?d > 0" and 
chaieb@23274
  1847
    lq: "iszlfm ?q" and 
chaieb@23274
  1848
    Bn: "\<forall> b\<in> set ?B. numbound0 b" by auto
chaieb@23274
  1849
  from zlin_qfree[OF lq] have qfq: "qfree ?q" .
chaieb@23274
  1850
  from simpfm_qf[OF minusinf_qfree[OF qfq]] have qfmq: "qfree ?smq".
chaieb@23274
  1851
  have jsnb: "\<forall> j \<in> set ?js. numbound0 (C j)" by simp
chaieb@23274
  1852
  hence "\<forall> j\<in> set ?js. bound0 (subst0 (C j) ?smq)" 
chaieb@23274
  1853
    by (auto simp only: subst0_bound0[OF qfmq])
chaieb@23274
  1854
  hence th: "\<forall> j\<in> set ?js. bound0 (simpfm (subst0 (C j) ?smq))"
chaieb@23274
  1855
    by (auto simp add: simpfm_bound0)
chaieb@23274
  1856
  from evaldjf_bound0[OF th] have mdb: "bound0 ?md" by simp 
chaieb@23274
  1857
  from Bn jsnb have "\<forall> (b,j) \<in> set (allpairs Pair ?B ?js). numbound0 (Add b (C j))"
haftmann@23689
  1858
    by simp
chaieb@23274
  1859
  hence "\<forall> (b,j) \<in> set (allpairs Pair ?B ?js). bound0 (subst0 (Add b (C j)) ?q)"
chaieb@23274
  1860
    using subst0_bound0[OF qfq] by blast
chaieb@23274
  1861
  hence "\<forall> (b,j) \<in> set (allpairs Pair ?B ?js). bound0 (simpfm (subst0 (Add b (C j)) ?q))"
chaieb@23274
  1862
    using simpfm_bound0  by blast
chaieb@23274
  1863
  hence th': "\<forall> x \<in> set (allpairs Pair ?B ?js). bound0 ((\<lambda> (b,j). simpfm (subst0 (Add b (C j)) ?q)) x)"
chaieb@23274
  1864
    by auto 
chaieb@23274
  1865
  from evaldjf_bound0 [OF th'] have qdb: "bound0 ?qd" by simp
chaieb@23274
  1866
  from mdb qdb 
chaieb@23274
  1867
  have mdqdb: "bound0 (disj ?md ?qd)" by (simp only: disj_def, cases "?md=T \<or> ?qd=T", simp_all)
chaieb@23274
  1868
  from trans [OF pq_ex cp_thm'[OF lq uq dd dp,where i="i"]] B
chaieb@23274
  1869
  have "?lhs = (\<exists> j\<in> {1.. ?d}. ?I j ?mq \<or> (\<exists> b\<in> ?N ` set ?B. Ifm bbs ((b+ j)#bs) ?q))" by auto
chaieb@23274
  1870
  also have "\<dots> = (\<exists> j\<in> {1.. ?d}. ?I j ?mq \<or> (\<exists> b\<in> set ?B. Ifm bbs ((?N b+ j)#bs) ?q))" by simp
chaieb@23274
  1871
  also have "\<dots> = ((\<exists> j\<in> {1.. ?d}. ?I j ?mq ) \<or> (\<exists> j\<in> {1.. ?d}. \<exists> b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))" by (simp only: Inum.simps) blast
chaieb@23274
  1872
  also have "\<dots> = ((\<exists> j\<in> {1.. ?d}. ?I j ?smq ) \<or> (\<exists> j\<in> {1.. ?d}. \<exists> b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))" by (simp add: simpfm) 
chaieb@23274
  1873
  also have "\<dots> = ((\<exists> j\<in> set ?js. (\<lambda> j. ?I i (simpfm (subst0 (C j) ?smq))) j) \<or> (\<exists> j\<in> set ?js. \<exists> b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))"
chaieb@23274
  1874
    by (simp only: simpfm subst0_I[OF qfmq] iupt_set) auto
chaieb@23274
  1875
  also have "\<dots> = (?I i (evaldjf (\<lambda> j. simpfm (subst0 (C j) ?smq)) ?js) \<or> (\<exists> j\<in> set ?js. \<exists> b\<in> set ?B. ?I i (subst0 (Add b (C j)) ?q)))" 
chaieb@23274
  1876
   by (simp only: evaldjf_ex subst0_I[OF qfq])
chaieb@23274
  1877
 also have "\<dots>= (?I i ?md \<or> (\<exists> (b,j) \<in> set (allpairs Pair ?B ?js). (\<lambda> (b,j). ?I i (simpfm (subst0 (Add b (C j)) ?q))) (b,j)))"
haftmann@23689
  1878
   by (simp only: simpfm set_allpairs) blast
chaieb@23274
  1879
 also have "\<dots> = (?I i ?md \<or> (?I i (evaldjf (\<lambda> (b,j). simpfm (subst0 (Add b (C j)) ?q)) (allpairs Pair ?B ?js))))"
haftmann@23689
  1880
   by (simp only: evaldjf_ex[where bs="i#bs" and f="\<lambda> (b,j). simpfm (subst0 (Add b (C j)) ?q)" and ps="allpairs Pair ?B ?js"]) (auto simp add: split_def)
chaieb@23274
  1881
 finally have mdqd: "?lhs = (?I i ?md \<or> ?I i ?qd)" by simp  
chaieb@23274
  1882
  also have "\<dots> = (?I i (disj ?md ?qd))" by (simp add: disj)
chaieb@23274
  1883
  also have "\<dots> = (Ifm bbs bs (decr (disj ?md ?qd)))" by (simp only: decr [OF mdqdb]) 
chaieb@23274
  1884
  finally have mdqd2: "?lhs = (Ifm bbs bs (decr (disj ?md ?qd)))" . 
chaieb@23274
  1885
  {assume mdT: "?md = T"
chaieb@23274
  1886
    hence cT:"cooper p = T" 
chaieb@23274
  1887
      by (simp only: cooper_def unit_def split_def Let_def if_True) simp
chaieb@23274
  1888
    from mdT have lhs:"?lhs" using mdqd by simp 
chaieb@23274
  1889
    from mdT have "?rhs" by (simp add: cooper_def unit_def split_def)
chaieb@23274
  1890
    with lhs cT have ?thesis by simp }
chaieb@17378
  1891
  moreover
chaieb@23274
  1892
  {assume mdT: "?md \<noteq> T" hence "cooper p = decr (disj ?md ?qd)" 
chaieb@23274
  1893
      by (simp only: cooper_def unit_def split_def Let_def if_False) 
chaieb@23274
  1894
    with mdqd2 decr_qf[OF mdqdb] have ?thesis by simp }
chaieb@17378
  1895
  ultimately show ?thesis by blast
chaieb@17378
  1896
qed
chaieb@17378
  1897
chaieb@23274
  1898
constdefs pa:: "fm \<Rightarrow> fm"
chaieb@23274
  1899
  "pa \<equiv> (\<lambda> p. qelim (prep p) cooper)"
chaieb@17378
  1900
chaieb@23274
  1901
theorem mirqe: "(Ifm bbs bs (pa p) = Ifm bbs bs p) \<and> qfree (pa p)"
chaieb@23274
  1902
  using qelim_ci cooper prep by (auto simp add: pa_def)
chaieb@17378
  1903
haftmann@23515
  1904
definition
haftmann@23515
  1905
  cooper_test :: "unit \<Rightarrow> fm"
haftmann@23515
  1906
where
haftmann@23515
  1907
  "cooper_test u = pa (E (A (Imp (Ge (Sub (Bound 0) (Bound 1)))
haftmann@23515
  1908
    (E (E (Eq (Sub (Add (Mul 3 (Bound 1)) (Mul 5 (Bound 0)))
haftmann@23515
  1909
      (Bound 2))))))))"
chaieb@17378
  1910
haftmann@23808
  1911
code_reserved SML oo
haftmann@23689
  1912
code_gen pa cooper_test in SML to GeneratedCooper
haftmann@23808
  1913
(*code_gen pa in SML to GeneratedCooper file "~~/src/HOL/Tools/Qelim/raw_generated_cooper.ML"*)
haftmann@23515
  1914
haftmann@23689
  1915
ML {* GeneratedCooper.cooper_test () *}
chaieb@23274
  1916
use "coopereif.ML"
chaieb@23274
  1917
oracle linzqe_oracle ("term") = Coopereif.cooper_oracle
haftmann@23515
  1918
use "coopertac.ML"
chaieb@23274
  1919
setup "LinZTac.setup"
chaieb@17378
  1920
chaieb@23274
  1921
  (* Tests *)
chaieb@23274
  1922
lemma "\<exists> (j::int). \<forall> x\<ge>j. (\<exists> a b. x = 3*a+5*b)"
chaieb@23274
  1923
by cooper
chaieb@17378
  1924
chaieb@23274
  1925
lemma "ALL (x::int) >=8. EX i j. 5*i + 3*j = x" by cooper
chaieb@23274
  1926
theorem "(\<forall>(y::int). 3 dvd y) ==> \<forall>(x::int). b < x --> a \<le> x"
chaieb@23274
  1927
  by cooper
chaieb@17378
  1928
chaieb@23274
  1929
theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==>
chaieb@23274
  1930
  (\<exists>(x::int).  2*x =  y) & (\<exists>(k::int). 3*k = z)"
chaieb@23274
  1931
  by cooper
chaieb@23274
  1932
chaieb@23274
  1933
theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==>  3 dvd z ==>
chaieb@23274
  1934
  2 dvd (y::int) ==> (\<exists>(x::int).  2*x =  y) & (\<exists>(k::int). 3*k = z)"
chaieb@23274
  1935
  by cooper
chaieb@23274
  1936
chaieb@23274
  1937
theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 --> y = 5 + x "
chaieb@23274
  1938
  by cooper
chaieb@17378
  1939
chaieb@23274
  1940
lemma "ALL (x::int) >=8. EX i j. 5*i + 3*j = x" by cooper 
chaieb@23274
  1941
lemma "ALL (y::int) (z::int) (n::int). 3 dvd z --> 2 dvd (y::int) --> (EX (x::int).  2*x =  y) & (EX (k::int). 3*k = z)" by cooper
chaieb@23274
  1942
lemma "ALL(x::int) y. x < y --> 2 * x + 1 < 2 * y" by cooper
chaieb@23274
  1943
lemma "ALL(x::int) y. 2 * x + 1 ~= 2 * y" by cooper
chaieb@23274
  1944
lemma "EX(x::int) y. 0 < x  & 0 <= y  & 3 * x - 5 * y = 1" by cooper
chaieb@23274
  1945
lemma "~ (EX(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)" by cooper
chaieb@23274
  1946
lemma "ALL(x::int). (2 dvd x) --> (EX(y::int). x = 2*y)" by cooper
chaieb@23274
  1947
lemma "ALL(x::int). (2 dvd x) --> (EX(y::int). x = 2*y)" by cooper
chaieb@23274
  1948
lemma "ALL(x::int). (2 dvd x) = (EX(y::int). x = 2*y)" by cooper
chaieb@23274
  1949
lemma "ALL(x::int). ((2 dvd x) = (ALL(y::int). x ~= 2*y + 1))" by cooper
chaieb@23274
  1950
lemma "~ (ALL(x::int). ((2 dvd x) = (ALL(y::int). x ~= 2*y+1) | (EX(q::int) (u::int) i. 3*i + 2*q - u < 17) --> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))" by cooper
chaieb@23274
  1951
lemma "~ (ALL(i::int). 4 <= i --> (EX x y. 0 <= x & 0 <= y & 3 * x + 5 * y = i))" 
chaieb@23274
  1952
  by cooper
chaieb@23274
  1953
lemma "EX j. ALL (x::int) >= j. EX i j. 5*i + 3*j = x" by cooper
chaieb@17378
  1954
chaieb@23274
  1955
theorem "(\<forall>(y::int). 3 dvd y) ==> \<forall>(x::int). b < x --> a \<le> x"
chaieb@23274
  1956
  by cooper
chaieb@17378
  1957
chaieb@23274
  1958
theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==>
chaieb@23274
  1959
  (\<exists>(x::int).  2*x =  y) & (\<exists>(k::int). 3*k = z)"
chaieb@23274
  1960
  by cooper
chaieb@17378
  1961
chaieb@23274
  1962
theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==>  3 dvd z ==>
chaieb@23274
  1963
  2 dvd (y::int) ==> (\<exists>(x::int).  2*x =  y) & (\<exists>(k::int). 3*k = z)"
chaieb@23274
  1964
  by cooper
chaieb@17378
  1965
chaieb@23274
  1966
theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 --> y = 5 + x "
chaieb@23274
  1967
  by cooper
chaieb@17378
  1968
chaieb@23274
  1969
theorem "\<forall>(x::nat). \<exists>(y::nat). y = 5 + x | x div 6 + 1= 2"
chaieb@23274
  1970
  by cooper
chaieb@17378
  1971
chaieb@23274
  1972
theorem "\<exists>(x::int). 0 < x"
chaieb@23274
  1973
  by cooper
chaieb@17378
  1974
chaieb@23274
  1975
theorem "\<forall>(x::int) y. x < y --> 2 * x + 1 < 2 * y"
chaieb@23274
  1976
  by cooper
chaieb@23274
  1977
 
chaieb@23274
  1978
theorem "\<forall>(x::int) y. 2 * x + 1 \<noteq> 2 * y"
chaieb@23274
  1979
  by cooper
chaieb@23274
  1980
 
chaieb@23274
  1981
theorem "\<exists>(x::int) y. 0 < x  & 0 \<le> y  & 3 * x - 5 * y = 1"
chaieb@23274
  1982
  by cooper
chaieb@17378
  1983
chaieb@23274
  1984
theorem "~ (\<exists>(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)"
chaieb@23274
  1985
  by cooper
chaieb@17378
  1986
chaieb@23274
  1987
theorem "~ (\<exists>(x::int). False)"
chaieb@23274
  1988
  by cooper
chaieb@17378
  1989
chaieb@23274
  1990
theorem "\<forall>(x::int). (2 dvd x) --> (\<exists>(y::int). x = 2*y)"
chaieb@23274
  1991
  by cooper 
chaieb@23274
  1992
chaieb@23274
  1993
theorem "\<forall>(x::int). (2 dvd x) --> (\<exists>(y::int). x = 2*y)"
chaieb@23274
  1994
  by cooper 
chaieb@17378
  1995
chaieb@23274
  1996
theorem "\<forall>(x::int). (2 dvd x) = (\<exists>(y::int). x = 2*y)"
chaieb@23274
  1997
  by cooper 
chaieb@17378
  1998
chaieb@23274
  1999
theorem "\<forall>(x::int). ((2 dvd x) = (\<forall>(y::int). x \<noteq> 2*y + 1))"
chaieb@23274
  2000
  by cooper 
chaieb@17378
  2001
chaieb@23274
  2002
theorem "~ (\<forall>(x::int). 
chaieb@23274
  2003
            ((2 dvd x) = (\<forall>(y::int). x \<noteq> 2*y+1) | 
chaieb@23274
  2004
             (\<exists>(q::int) (u::int) i. 3*i + 2*q - u < 17)
chaieb@23274
  2005
             --> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))"
chaieb@23274
  2006
  by cooper
chaieb@23274
  2007
 
chaieb@23274
  2008
theorem "~ (\<forall>(i::int). 4 \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i))"
chaieb@23274
  2009
  by cooper
chaieb@17378
  2010
chaieb@23274
  2011
theorem "\<forall>(i::int). 8 \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i)"
chaieb@23274
  2012
  by cooper
chaieb@17378
  2013
chaieb@23274
  2014
theorem "\<exists>(j::int). \<forall>i. j \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i)"
chaieb@23274
  2015
  by cooper
chaieb@17378
  2016
chaieb@23274
  2017
theorem "~ (\<forall>j (i::int). j \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i))"
chaieb@23274
  2018
  by cooper
chaieb@17378
  2019
chaieb@23274
  2020
theorem "(\<exists>m::nat. n = 2 * m) --> (n + 1) div 2 = n div 2"
chaieb@23274
  2021
  by cooper
wenzelm@17388
  2022
chaieb@17378
  2023
end