src/HOL/Orderings.thy
author haftmann
Fri Feb 23 08:39:21 2007 +0100 (2007-02-23)
changeset 22348 ab505d281015
parent 22344 eddeabf16b5d
child 22377 61610b1beedf
permissions -rw-r--r--
adjusted code lemmas
nipkow@15524
     1
(*  Title:      HOL/Orderings.thy
nipkow@15524
     2
    ID:         $Id$
nipkow@15524
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
nipkow@15524
     4
*)
nipkow@15524
     5
haftmann@21329
     6
header {* Syntactic and abstract orders *}
nipkow@15524
     7
nipkow@15524
     8
theory Orderings
haftmann@21329
     9
imports HOL
nipkow@15524
    10
begin
nipkow@15524
    11
haftmann@21329
    12
subsection {* Order syntax *}
nipkow@15524
    13
haftmann@21194
    14
class ord =
wenzelm@21656
    15
  fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  (infix "\<sqsubseteq>" 50)
wenzelm@21656
    16
    and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  (infix "\<sqsubset>" 50)
wenzelm@21204
    17
begin
wenzelm@21204
    18
wenzelm@21204
    19
notation
wenzelm@21656
    20
  less_eq  ("op \<^loc><=") and
haftmann@21620
    21
  less_eq  ("(_/ \<^loc><= _)" [51, 51] 50) and
wenzelm@21656
    22
  less  ("op \<^loc><") and
wenzelm@21656
    23
  less  ("(_/ \<^loc>< _)"  [51, 51] 50)
haftmann@21620
    24
  
wenzelm@21204
    25
notation (xsymbols)
wenzelm@21404
    26
  less_eq  ("op \<^loc>\<le>") and
wenzelm@21259
    27
  less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
nipkow@15524
    28
wenzelm@21204
    29
notation (HTML output)
wenzelm@21404
    30
  less_eq  ("op \<^loc>\<le>") and
wenzelm@21259
    31
  less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
wenzelm@21204
    32
wenzelm@21204
    33
abbreviation (input)
wenzelm@21656
    34
  greater  (infix "\<^loc>>" 50) where
haftmann@21620
    35
  "x \<^loc>> y \<equiv> y \<^loc>< x"
haftmann@21620
    36
wenzelm@21656
    37
abbreviation (input)
wenzelm@21656
    38
  greater_eq  (infix "\<^loc>>=" 50) where
wenzelm@21656
    39
  "x \<^loc>>= y \<equiv> y \<^loc><= x"
wenzelm@21204
    40
wenzelm@21656
    41
notation (input)
wenzelm@21656
    42
  greater_eq  (infix "\<^loc>\<ge>" 50)
wenzelm@21204
    43
wenzelm@21204
    44
end
wenzelm@21204
    45
wenzelm@21204
    46
notation
wenzelm@21656
    47
  less_eq  ("op <=") and
haftmann@21620
    48
  less_eq  ("(_/ <= _)" [51, 51] 50) and
wenzelm@21656
    49
  less  ("op <") and
wenzelm@21656
    50
  less  ("(_/ < _)"  [51, 51] 50)
wenzelm@21204
    51
  
wenzelm@21204
    52
notation (xsymbols)
wenzelm@21404
    53
  less_eq  ("op \<le>") and
wenzelm@21259
    54
  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
nipkow@15524
    55
wenzelm@21204
    56
notation (HTML output)
wenzelm@21404
    57
  less_eq  ("op \<le>") and
wenzelm@21259
    58
  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
haftmann@20714
    59
wenzelm@19536
    60
abbreviation (input)
wenzelm@21656
    61
  greater  (infix ">" 50) where
haftmann@21620
    62
  "x > y \<equiv> y < x"
haftmann@21620
    63
wenzelm@21656
    64
abbreviation (input)
wenzelm@21656
    65
  greater_eq  (infix ">=" 50) where
wenzelm@21656
    66
  "x >= y \<equiv> y <= x"
haftmann@21620
    67
wenzelm@21656
    68
notation (input)
wenzelm@21656
    69
  greater_eq  (infix "\<ge>" 50)
nipkow@15524
    70
nipkow@15524
    71
haftmann@21329
    72
subsection {* Quasiorders (preorders) *}
nipkow@15524
    73
haftmann@22316
    74
class preorder = ord +
haftmann@22316
    75
  assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y"
haftmann@22316
    76
  and refl [iff]: "x \<sqsubseteq> x"
haftmann@21216
    77
  and trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
haftmann@21248
    78
begin
haftmann@21248
    79
nipkow@15524
    80
text {* Reflexivity. *}
nipkow@15524
    81
haftmann@21248
    82
lemma eq_refl: "x = y \<Longrightarrow> x \<sqsubseteq> y"
nipkow@15524
    83
    -- {* This form is useful with the classical reasoner. *}
haftmann@21248
    84
  by (erule ssubst) (rule refl)
nipkow@15524
    85
haftmann@21248
    86
lemma less_irrefl [iff]: "\<not> x \<sqsubset> x"
haftmann@21248
    87
  by (simp add: less_le)
nipkow@15524
    88
haftmann@21248
    89
lemma le_less: "x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubset> y \<or> x = y"
nipkow@15524
    90
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
haftmann@21248
    91
  by (simp add: less_le) blast
nipkow@15524
    92
haftmann@21248
    93
lemma le_imp_less_or_eq: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubset> y \<or> x = y"
haftmann@21248
    94
  unfolding less_le by blast
nipkow@15524
    95
haftmann@21248
    96
lemma less_imp_le: "x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y"
haftmann@21248
    97
  unfolding less_le by blast
haftmann@21248
    98
haftmann@21329
    99
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y"
haftmann@21329
   100
  by (erule contrapos_pn, erule subst, rule less_irrefl)
haftmann@21329
   101
haftmann@21329
   102
haftmann@21329
   103
text {* Useful for simplification, but too risky to include by default. *}
haftmann@21329
   104
haftmann@21329
   105
lemma less_imp_not_eq: "x \<sqsubset> y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
haftmann@21329
   106
  by auto
haftmann@21329
   107
haftmann@21329
   108
lemma less_imp_not_eq2: "x \<sqsubset> y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
haftmann@21329
   109
  by auto
haftmann@21329
   110
haftmann@21329
   111
haftmann@21329
   112
text {* Transitivity rules for calculational reasoning *}
haftmann@21329
   113
haftmann@21329
   114
lemma neq_le_trans: "\<lbrakk> a \<noteq> b; a \<sqsubseteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b"
haftmann@21329
   115
  by (simp add: less_le)
haftmann@21329
   116
haftmann@21329
   117
lemma le_neq_trans: "\<lbrakk> a \<sqsubseteq> b; a \<noteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b"
haftmann@21329
   118
  by (simp add: less_le)
haftmann@21329
   119
haftmann@21329
   120
end
haftmann@21329
   121
haftmann@21329
   122
haftmann@21329
   123
subsection {* Partial orderings *}
haftmann@21329
   124
haftmann@22316
   125
class order = preorder + 
haftmann@21329
   126
  assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
haftmann@21329
   127
begin
nipkow@15524
   128
nipkow@15524
   129
text {* Asymmetry. *}
nipkow@15524
   130
haftmann@21248
   131
lemma less_not_sym: "x \<sqsubset> y \<Longrightarrow> \<not> (y \<sqsubset> x)"
haftmann@21248
   132
  by (simp add: less_le antisym)
nipkow@15524
   133
haftmann@21248
   134
lemma less_asym: "x \<sqsubset> y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<sqsubset> x) \<Longrightarrow> P"
haftmann@21248
   135
  by (drule less_not_sym, erule contrapos_np) simp
nipkow@15524
   136
haftmann@21248
   137
lemma eq_iff: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
haftmann@21248
   138
  by (blast intro: antisym)
nipkow@15524
   139
haftmann@21248
   140
lemma antisym_conv: "y \<sqsubseteq> x \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y"
haftmann@21248
   141
  by (blast intro: antisym)
nipkow@15524
   142
haftmann@21248
   143
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y"
haftmann@21248
   144
  by (erule contrapos_pn, erule subst, rule less_irrefl)
haftmann@21248
   145
haftmann@21083
   146
nipkow@15524
   147
text {* Transitivity. *}
nipkow@15524
   148
haftmann@21248
   149
lemma less_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@21248
   150
  by (simp add: less_le) (blast intro: trans antisym)
nipkow@15524
   151
haftmann@21248
   152
lemma le_less_trans: "\<lbrakk> x \<sqsubseteq> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@21248
   153
  by (simp add: less_le) (blast intro: trans antisym)
nipkow@15524
   154
haftmann@21248
   155
lemma less_le_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@21248
   156
  by (simp add: less_le) (blast intro: trans antisym)
nipkow@15524
   157
nipkow@15524
   158
nipkow@15524
   159
text {* Useful for simplification, but too risky to include by default. *}
nipkow@15524
   160
haftmann@21248
   161
lemma less_imp_not_less: "x \<sqsubset> y \<Longrightarrow> (\<not> y \<sqsubset> x) \<longleftrightarrow> True"
haftmann@21248
   162
  by (blast elim: less_asym)
nipkow@15524
   163
haftmann@21248
   164
lemma less_imp_triv: "x \<sqsubset> y \<Longrightarrow> (y \<sqsubset> x \<longrightarrow> P) \<longleftrightarrow> True"
haftmann@21248
   165
  by (blast elim: less_asym)
nipkow@15524
   166
haftmann@21248
   167
haftmann@21083
   168
text {* Transitivity rules for calculational reasoning *}
nipkow@15524
   169
haftmann@21248
   170
lemma less_asym': "\<lbrakk> a \<sqsubset> b; b \<sqsubset> a \<rbrakk> \<Longrightarrow> P"
haftmann@21248
   171
  by (rule less_asym)
haftmann@21248
   172
haftmann@21248
   173
end
nipkow@15524
   174
haftmann@21329
   175
haftmann@21329
   176
subsection {* Linear (total) orders *}
haftmann@21329
   177
haftmann@22316
   178
class linorder = order +
haftmann@21216
   179
  assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
haftmann@21248
   180
begin
haftmann@21248
   181
haftmann@21412
   182
lemma less_linear: "x \<sqsubset> y \<or> x = y \<or> y \<sqsubset> x"
haftmann@21248
   183
  unfolding less_le using less_le linear by blast 
haftmann@21248
   184
haftmann@21248
   185
lemma le_less_linear: "x \<sqsubseteq> y \<or> y \<sqsubset> x"
haftmann@21412
   186
  by (simp add: le_less less_linear)
haftmann@21248
   187
haftmann@21248
   188
lemma le_cases [case_names le ge]:
haftmann@21248
   189
  "\<lbrakk> x \<sqsubseteq> y \<Longrightarrow> P; y \<sqsubseteq> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
haftmann@21248
   190
  using linear by blast
haftmann@21248
   191
haftmann@21248
   192
lemma cases [case_names less equal greater]:
haftmann@21248
   193
    "\<lbrakk> x \<sqsubset> y \<Longrightarrow> P; x = y \<Longrightarrow> P; y \<sqsubset> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
haftmann@21412
   194
  using less_linear by blast
haftmann@21248
   195
haftmann@21248
   196
lemma not_less: "\<not> x \<sqsubset> y \<longleftrightarrow> y \<sqsubseteq> x"
haftmann@21248
   197
  apply (simp add: less_le)
haftmann@21248
   198
  using linear apply (blast intro: antisym)
nipkow@15524
   199
  done
nipkow@15524
   200
haftmann@21248
   201
lemma not_le: "\<not> x \<sqsubseteq> y \<longleftrightarrow> y \<sqsubset> x"
haftmann@21248
   202
  apply (simp add: less_le)
haftmann@21248
   203
  using linear apply (blast intro: antisym)
nipkow@15524
   204
  done
nipkow@15524
   205
haftmann@21248
   206
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<sqsubset> y \<or> y \<sqsubset> x"
haftmann@21412
   207
  by (cut_tac x = x and y = y in less_linear, auto)
nipkow@15524
   208
haftmann@21248
   209
lemma neqE: "\<lbrakk> x \<noteq> y; x \<sqsubset> y \<Longrightarrow> R; y \<sqsubset> x \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
haftmann@21248
   210
  by (simp add: neq_iff) blast
nipkow@15524
   211
haftmann@21248
   212
lemma antisym_conv1: "\<not> x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y"
haftmann@21248
   213
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   214
haftmann@21248
   215
lemma antisym_conv2: "x \<sqsubseteq> y \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y"
haftmann@21248
   216
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   217
haftmann@21248
   218
lemma antisym_conv3: "\<not> y \<sqsubset> x \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y"
haftmann@21248
   219
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   220
paulson@16796
   221
text{*Replacing the old Nat.leI*}
haftmann@21248
   222
lemma leI: "\<not> x \<sqsubset> y \<Longrightarrow> y \<sqsubseteq> x"
haftmann@21248
   223
  unfolding not_less .
paulson@16796
   224
haftmann@21248
   225
lemma leD: "y \<sqsubseteq> x \<Longrightarrow> \<not> x \<sqsubset> y"
haftmann@21248
   226
  unfolding not_less .
paulson@16796
   227
paulson@16796
   228
(*FIXME inappropriate name (or delete altogether)*)
haftmann@21248
   229
lemma not_leE: "\<not> y \<sqsubseteq> x \<Longrightarrow> x \<sqsubset> y"
haftmann@21248
   230
  unfolding not_le .
haftmann@21248
   231
haftmann@21383
   232
(* min/max *)
haftmann@21383
   233
haftmann@21383
   234
definition
wenzelm@21404
   235
  min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@21383
   236
  "min a b = (if a \<sqsubseteq> b then a else b)"
wenzelm@21404
   237
wenzelm@21404
   238
definition
wenzelm@21404
   239
  max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@21383
   240
  "max a b = (if a \<sqsubseteq> b then b else a)"
haftmann@21383
   241
haftmann@21383
   242
lemma min_le_iff_disj:
haftmann@21383
   243
  "min x y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<or> y \<sqsubseteq> z"
haftmann@21383
   244
  unfolding min_def using linear by (auto intro: trans)
haftmann@21383
   245
haftmann@21383
   246
lemma le_max_iff_disj:
haftmann@21383
   247
  "z \<sqsubseteq> max x y \<longleftrightarrow> z \<sqsubseteq> x \<or> z \<sqsubseteq> y"
haftmann@21383
   248
  unfolding max_def using linear by (auto intro: trans)
haftmann@21383
   249
haftmann@21383
   250
lemma min_less_iff_disj:
haftmann@21383
   251
  "min x y \<sqsubset> z \<longleftrightarrow> x \<sqsubset> z \<or> y \<sqsubset> z"
haftmann@21412
   252
  unfolding min_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   253
haftmann@21383
   254
lemma less_max_iff_disj:
haftmann@21383
   255
  "z \<sqsubset> max x y \<longleftrightarrow> z \<sqsubset> x \<or> z \<sqsubset> y"
haftmann@21412
   256
  unfolding max_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   257
haftmann@21383
   258
lemma min_less_iff_conj [simp]:
haftmann@21383
   259
  "z \<sqsubset> min x y \<longleftrightarrow> z \<sqsubset> x \<and> z \<sqsubset> y"
haftmann@21412
   260
  unfolding min_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   261
haftmann@21383
   262
lemma max_less_iff_conj [simp]:
haftmann@21383
   263
  "max x y \<sqsubset> z \<longleftrightarrow> x \<sqsubset> z \<and> y \<sqsubset> z"
haftmann@21412
   264
  unfolding max_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   265
haftmann@21383
   266
lemma split_min:
haftmann@21383
   267
  "P (min i j) \<longleftrightarrow> (i \<sqsubseteq> j \<longrightarrow> P i) \<and> (\<not> i \<sqsubseteq> j \<longrightarrow> P j)"
haftmann@21383
   268
  by (simp add: min_def)
haftmann@21383
   269
haftmann@21383
   270
lemma split_max:
haftmann@21383
   271
  "P (max i j) \<longleftrightarrow> (i \<sqsubseteq> j \<longrightarrow> P j) \<and> (\<not> i \<sqsubseteq> j \<longrightarrow> P i)"
haftmann@21383
   272
  by (simp add: max_def)
haftmann@21383
   273
haftmann@21248
   274
end
haftmann@21248
   275
haftmann@21248
   276
haftmann@21248
   277
subsection {* Name duplicates *}
haftmann@21248
   278
haftmann@22316
   279
lemmas order_refl [iff] = preorder_class.refl
haftmann@22316
   280
lemmas order_trans = preorder_class.trans
haftmann@22316
   281
lemmas order_less_le = preorder_class.less_le
haftmann@22316
   282
lemmas order_eq_refl = preorder_class.eq_refl
haftmann@22316
   283
lemmas order_less_irrefl = preorder_class.less_irrefl
haftmann@22316
   284
lemmas order_le_less = preorder_class.le_less
haftmann@22316
   285
lemmas order_le_imp_less_or_eq = preorder_class.le_imp_less_or_eq
haftmann@22316
   286
lemmas order_less_imp_le = preorder_class.less_imp_le
haftmann@22316
   287
lemmas order_less_imp_not_eq = preorder_class.less_imp_not_eq
haftmann@22316
   288
lemmas order_less_imp_not_eq2 = preorder_class.less_imp_not_eq2
haftmann@22316
   289
lemmas order_neq_le_trans = preorder_class.neq_le_trans
haftmann@22316
   290
lemmas order_le_neq_trans = preorder_class.le_neq_trans
haftmann@22316
   291
haftmann@22316
   292
lemmas order_antisym = order_class.antisym
haftmann@22316
   293
lemmas order_less_not_sym = order_class.less_not_sym
haftmann@22316
   294
lemmas order_less_asym = order_class.less_asym
haftmann@22316
   295
lemmas order_eq_iff = order_class.eq_iff
haftmann@22316
   296
lemmas order_antisym_conv = order_class.antisym_conv
haftmann@22316
   297
lemmas less_imp_neq = order_class.less_imp_neq
haftmann@22316
   298
lemmas order_less_trans = order_class.less_trans
haftmann@22316
   299
lemmas order_le_less_trans = order_class.le_less_trans
haftmann@22316
   300
lemmas order_less_le_trans = order_class.less_le_trans
haftmann@22316
   301
lemmas order_less_imp_not_less = order_class.less_imp_not_less
haftmann@22316
   302
lemmas order_less_imp_triv = order_class.less_imp_triv
haftmann@22316
   303
lemmas order_less_asym' = order_class.less_asym'
haftmann@22316
   304
haftmann@22316
   305
lemmas linorder_linear = linorder_class.linear
haftmann@22316
   306
lemmas linorder_less_linear = linorder_class.less_linear
haftmann@22316
   307
lemmas linorder_le_less_linear = linorder_class.le_less_linear
haftmann@22316
   308
lemmas linorder_le_cases = linorder_class.le_cases
haftmann@22316
   309
lemmas linorder_cases = linorder_class.cases
haftmann@22316
   310
lemmas linorder_not_less = linorder_class.not_less
haftmann@22316
   311
lemmas linorder_not_le = linorder_class.not_le
haftmann@22316
   312
lemmas linorder_neq_iff = linorder_class.neq_iff
haftmann@22316
   313
lemmas linorder_neqE = linorder_class.neqE
haftmann@22316
   314
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1
haftmann@22316
   315
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2
haftmann@22316
   316
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3
haftmann@22316
   317
lemmas leI = linorder_class.leI
haftmann@22316
   318
lemmas leD = linorder_class.leD
haftmann@22316
   319
lemmas not_leE = linorder_class.not_leE
paulson@16796
   320
haftmann@21083
   321
haftmann@21083
   322
subsection {* Reasoning tools setup *}
haftmann@21083
   323
haftmann@21091
   324
ML {*
haftmann@21091
   325
local
haftmann@21091
   326
haftmann@21091
   327
fun decomp_gen sort thy (Trueprop $ t) =
haftmann@21248
   328
  let
haftmann@21248
   329
    fun of_sort t =
haftmann@21248
   330
      let
haftmann@21248
   331
        val T = type_of t
haftmann@21248
   332
      in
haftmann@21091
   333
        (* exclude numeric types: linear arithmetic subsumes transitivity *)
haftmann@21248
   334
        T <> HOLogic.natT andalso T <> HOLogic.intT
haftmann@21248
   335
          andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort)
haftmann@21248
   336
      end;
haftmann@21248
   337
    fun dec (Const ("Not", _) $ t) = (case dec t
haftmann@21248
   338
          of NONE => NONE
haftmann@21248
   339
           | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
haftmann@21248
   340
      | dec (Const ("op =",  _) $ t1 $ t2) =
haftmann@21248
   341
          if of_sort t1
haftmann@21248
   342
          then SOME (t1, "=", t2)
haftmann@21248
   343
          else NONE
haftmann@21248
   344
      | dec (Const ("Orderings.less_eq",  _) $ t1 $ t2) =
haftmann@21248
   345
          if of_sort t1
haftmann@21248
   346
          then SOME (t1, "<=", t2)
haftmann@21248
   347
          else NONE
haftmann@21248
   348
      | dec (Const ("Orderings.less",  _) $ t1 $ t2) =
haftmann@21248
   349
          if of_sort t1
haftmann@21248
   350
          then SOME (t1, "<", t2)
haftmann@21248
   351
          else NONE
haftmann@21248
   352
      | dec _ = NONE;
haftmann@21091
   353
  in dec t end;
haftmann@21091
   354
haftmann@21091
   355
in
haftmann@21091
   356
haftmann@21091
   357
(* The setting up of Quasi_Tac serves as a demo.  Since there is no
haftmann@21091
   358
   class for quasi orders, the tactics Quasi_Tac.trans_tac and
haftmann@21091
   359
   Quasi_Tac.quasi_tac are not of much use. *)
haftmann@21091
   360
haftmann@21248
   361
structure Quasi_Tac = Quasi_Tac_Fun (
haftmann@21248
   362
struct
haftmann@21248
   363
  val le_trans = thm "order_trans";
haftmann@21248
   364
  val le_refl = thm "order_refl";
haftmann@21248
   365
  val eqD1 = thm "order_eq_refl";
haftmann@21248
   366
  val eqD2 = thm "sym" RS thm "order_eq_refl";
haftmann@21248
   367
  val less_reflE = thm "order_less_irrefl" RS thm "notE";
haftmann@21248
   368
  val less_imp_le = thm "order_less_imp_le";
haftmann@21248
   369
  val le_neq_trans = thm "order_le_neq_trans";
haftmann@21248
   370
  val neq_le_trans = thm "order_neq_le_trans";
haftmann@21248
   371
  val less_imp_neq = thm "less_imp_neq";
haftmann@21248
   372
  val decomp_trans = decomp_gen ["Orderings.order"];
haftmann@21248
   373
  val decomp_quasi = decomp_gen ["Orderings.order"];
haftmann@21248
   374
end);
haftmann@21091
   375
haftmann@21091
   376
structure Order_Tac = Order_Tac_Fun (
haftmann@21248
   377
struct
haftmann@21248
   378
  val less_reflE = thm "order_less_irrefl" RS thm "notE";
haftmann@21248
   379
  val le_refl = thm "order_refl";
haftmann@21248
   380
  val less_imp_le = thm "order_less_imp_le";
haftmann@21248
   381
  val not_lessI = thm "linorder_not_less" RS thm "iffD2";
haftmann@21248
   382
  val not_leI = thm "linorder_not_le" RS thm "iffD2";
haftmann@21248
   383
  val not_lessD = thm "linorder_not_less" RS thm "iffD1";
haftmann@21248
   384
  val not_leD = thm "linorder_not_le" RS thm "iffD1";
haftmann@21248
   385
  val eqI = thm "order_antisym";
haftmann@21248
   386
  val eqD1 = thm "order_eq_refl";
haftmann@21248
   387
  val eqD2 = thm "sym" RS thm "order_eq_refl";
haftmann@21248
   388
  val less_trans = thm "order_less_trans";
haftmann@21248
   389
  val less_le_trans = thm "order_less_le_trans";
haftmann@21248
   390
  val le_less_trans = thm "order_le_less_trans";
haftmann@21248
   391
  val le_trans = thm "order_trans";
haftmann@21248
   392
  val le_neq_trans = thm "order_le_neq_trans";
haftmann@21248
   393
  val neq_le_trans = thm "order_neq_le_trans";
haftmann@21248
   394
  val less_imp_neq = thm "less_imp_neq";
haftmann@21248
   395
  val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
haftmann@21248
   396
  val not_sym = thm "not_sym";
haftmann@21248
   397
  val decomp_part = decomp_gen ["Orderings.order"];
haftmann@21248
   398
  val decomp_lin = decomp_gen ["Orderings.linorder"];
haftmann@21248
   399
end);
haftmann@21091
   400
haftmann@21091
   401
end;
haftmann@21091
   402
*}
haftmann@21091
   403
haftmann@21083
   404
setup {*
haftmann@21083
   405
let
haftmann@21083
   406
haftmann@21083
   407
val order_antisym_conv = thm "order_antisym_conv"
haftmann@21083
   408
val linorder_antisym_conv1 = thm "linorder_antisym_conv1"
haftmann@21083
   409
val linorder_antisym_conv2 = thm "linorder_antisym_conv2"
haftmann@21083
   410
val linorder_antisym_conv3 = thm "linorder_antisym_conv3"
haftmann@21083
   411
haftmann@21083
   412
fun prp t thm = (#prop (rep_thm thm) = t);
nipkow@15524
   413
haftmann@21083
   414
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =
haftmann@21083
   415
  let val prems = prems_of_ss ss;
haftmann@21083
   416
      val less = Const("Orderings.less",T);
haftmann@21083
   417
      val t = HOLogic.mk_Trueprop(le $ s $ r);
haftmann@21083
   418
  in case find_first (prp t) prems of
haftmann@21083
   419
       NONE =>
haftmann@21083
   420
         let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))
haftmann@21083
   421
         in case find_first (prp t) prems of
haftmann@21083
   422
              NONE => NONE
haftmann@21083
   423
            | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv1))
haftmann@21083
   424
         end
haftmann@21083
   425
     | SOME thm => SOME(mk_meta_eq(thm RS order_antisym_conv))
haftmann@21083
   426
  end
haftmann@21083
   427
  handle THM _ => NONE;
nipkow@15524
   428
haftmann@21083
   429
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =
haftmann@21083
   430
  let val prems = prems_of_ss ss;
haftmann@21083
   431
      val le = Const("Orderings.less_eq",T);
haftmann@21083
   432
      val t = HOLogic.mk_Trueprop(le $ r $ s);
haftmann@21083
   433
  in case find_first (prp t) prems of
haftmann@21083
   434
       NONE =>
haftmann@21083
   435
         let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))
haftmann@21083
   436
         in case find_first (prp t) prems of
haftmann@21083
   437
              NONE => NONE
haftmann@21083
   438
            | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv3))
haftmann@21083
   439
         end
haftmann@21083
   440
     | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv2))
haftmann@21083
   441
  end
haftmann@21083
   442
  handle THM _ => NONE;
nipkow@15524
   443
haftmann@21248
   444
fun add_simprocs procs thy =
haftmann@21248
   445
  (Simplifier.change_simpset_of thy (fn ss => ss
haftmann@21248
   446
    addsimprocs (map (fn (name, raw_ts, proc) =>
haftmann@21248
   447
      Simplifier.simproc thy name raw_ts proc)) procs); thy);
haftmann@21248
   448
fun add_solver name tac thy =
haftmann@21248
   449
  (Simplifier.change_simpset_of thy (fn ss => ss addSolver
haftmann@21248
   450
    (mk_solver name (K tac))); thy);
haftmann@21083
   451
haftmann@21083
   452
in
haftmann@21248
   453
  add_simprocs [
haftmann@21248
   454
       ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
haftmann@21248
   455
       ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
haftmann@21248
   456
     ]
haftmann@21248
   457
  #> add_solver "Trans_linear" Order_Tac.linear_tac
haftmann@21248
   458
  #> add_solver "Trans_partial" Order_Tac.partial_tac
haftmann@21248
   459
  (* Adding the transitivity reasoners also as safe solvers showed a slight
haftmann@21248
   460
     speed up, but the reasoning strength appears to be not higher (at least
haftmann@21248
   461
     no breaking of additional proofs in the entire HOL distribution, as
haftmann@21248
   462
     of 5 March 2004, was observed). *)
haftmann@21083
   463
end
haftmann@21083
   464
*}
nipkow@15524
   465
nipkow@15524
   466
haftmann@21083
   467
subsection {* Bounded quantifiers *}
haftmann@21083
   468
haftmann@21083
   469
syntax
wenzelm@21180
   470
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   471
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   472
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   473
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
haftmann@21083
   474
wenzelm@21180
   475
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   476
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   477
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   478
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
haftmann@21083
   479
haftmann@21083
   480
syntax (xsymbols)
wenzelm@21180
   481
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   482
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   483
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   484
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
haftmann@21083
   485
wenzelm@21180
   486
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   487
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   488
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   489
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
haftmann@21083
   490
haftmann@21083
   491
syntax (HOL)
wenzelm@21180
   492
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   493
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   494
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   495
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
haftmann@21083
   496
haftmann@21083
   497
syntax (HTML output)
wenzelm@21180
   498
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   499
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   500
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   501
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
haftmann@21083
   502
wenzelm@21180
   503
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   504
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   505
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   506
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
haftmann@21083
   507
haftmann@21083
   508
translations
haftmann@21083
   509
  "ALL x<y. P"   =>  "ALL x. x < y \<longrightarrow> P"
haftmann@21083
   510
  "EX x<y. P"    =>  "EX x. x < y \<and> P"
haftmann@21083
   511
  "ALL x<=y. P"  =>  "ALL x. x <= y \<longrightarrow> P"
haftmann@21083
   512
  "EX x<=y. P"   =>  "EX x. x <= y \<and> P"
haftmann@21083
   513
  "ALL x>y. P"   =>  "ALL x. x > y \<longrightarrow> P"
haftmann@21083
   514
  "EX x>y. P"    =>  "EX x. x > y \<and> P"
haftmann@21083
   515
  "ALL x>=y. P"  =>  "ALL x. x >= y \<longrightarrow> P"
haftmann@21083
   516
  "EX x>=y. P"   =>  "EX x. x >= y \<and> P"
haftmann@21083
   517
haftmann@21083
   518
print_translation {*
haftmann@21083
   519
let
wenzelm@21180
   520
  val syntax_name = Sign.const_syntax_name (the_context ());
wenzelm@21524
   521
  val binder_name = Syntax.binder_name o syntax_name;
wenzelm@21524
   522
  val All_binder = binder_name "All";
wenzelm@21524
   523
  val Ex_binder = binder_name "Ex";
wenzelm@21180
   524
  val impl = syntax_name "op -->";
wenzelm@21180
   525
  val conj = syntax_name "op &";
wenzelm@21180
   526
  val less = syntax_name "Orderings.less";
wenzelm@21180
   527
  val less_eq = syntax_name "Orderings.less_eq";
wenzelm@21180
   528
wenzelm@21180
   529
  val trans =
wenzelm@21524
   530
   [((All_binder, impl, less), ("_All_less", "_All_greater")),
wenzelm@21524
   531
    ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
wenzelm@21524
   532
    ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
wenzelm@21524
   533
    ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
wenzelm@21180
   534
krauss@22344
   535
  fun matches_bound v t = 
krauss@22344
   536
     case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
krauss@22344
   537
              | _ => false
krauss@22344
   538
  fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false)
krauss@22344
   539
  fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P
wenzelm@21180
   540
wenzelm@21180
   541
  fun tr' q = (q,
wenzelm@21180
   542
    fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
wenzelm@21180
   543
      (case AList.lookup (op =) trans (q, c, d) of
wenzelm@21180
   544
        NONE => raise Match
wenzelm@21180
   545
      | SOME (l, g) =>
krauss@22344
   546
          if matches_bound v t andalso not (contains_var v u) then mk v l u P
krauss@22344
   547
          else if matches_bound v u andalso not (contains_var v t) then mk v g t P
krauss@22344
   548
          else raise Match)
wenzelm@21180
   549
     | _ => raise Match);
wenzelm@21524
   550
in [tr' All_binder, tr' Ex_binder] end
haftmann@21083
   551
*}
haftmann@21083
   552
haftmann@21083
   553
haftmann@21383
   554
subsection {* Transitivity reasoning *}
haftmann@21383
   555
haftmann@21383
   556
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
haftmann@21383
   557
  by (rule subst)
haftmann@21383
   558
haftmann@21383
   559
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
haftmann@21383
   560
  by (rule ssubst)
haftmann@21383
   561
haftmann@21383
   562
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
haftmann@21383
   563
  by (rule subst)
haftmann@21383
   564
haftmann@21383
   565
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
haftmann@21383
   566
  by (rule ssubst)
haftmann@21383
   567
haftmann@21383
   568
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
haftmann@21383
   569
  (!!x y. x < y ==> f x < f y) ==> f a < c"
haftmann@21383
   570
proof -
haftmann@21383
   571
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   572
  assume "a < b" hence "f a < f b" by (rule r)
haftmann@21383
   573
  also assume "f b < c"
haftmann@21383
   574
  finally (order_less_trans) show ?thesis .
haftmann@21383
   575
qed
haftmann@21383
   576
haftmann@21383
   577
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
haftmann@21383
   578
  (!!x y. x < y ==> f x < f y) ==> a < f c"
haftmann@21383
   579
proof -
haftmann@21383
   580
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   581
  assume "a < f b"
haftmann@21383
   582
  also assume "b < c" hence "f b < f c" by (rule r)
haftmann@21383
   583
  finally (order_less_trans) show ?thesis .
haftmann@21383
   584
qed
haftmann@21383
   585
haftmann@21383
   586
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
haftmann@21383
   587
  (!!x y. x <= y ==> f x <= f y) ==> f a < c"
haftmann@21383
   588
proof -
haftmann@21383
   589
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   590
  assume "a <= b" hence "f a <= f b" by (rule r)
haftmann@21383
   591
  also assume "f b < c"
haftmann@21383
   592
  finally (order_le_less_trans) show ?thesis .
haftmann@21383
   593
qed
haftmann@21383
   594
haftmann@21383
   595
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
haftmann@21383
   596
  (!!x y. x < y ==> f x < f y) ==> a < f c"
haftmann@21383
   597
proof -
haftmann@21383
   598
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   599
  assume "a <= f b"
haftmann@21383
   600
  also assume "b < c" hence "f b < f c" by (rule r)
haftmann@21383
   601
  finally (order_le_less_trans) show ?thesis .
haftmann@21383
   602
qed
haftmann@21383
   603
haftmann@21383
   604
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
haftmann@21383
   605
  (!!x y. x < y ==> f x < f y) ==> f a < c"
haftmann@21383
   606
proof -
haftmann@21383
   607
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   608
  assume "a < b" hence "f a < f b" by (rule r)
haftmann@21383
   609
  also assume "f b <= c"
haftmann@21383
   610
  finally (order_less_le_trans) show ?thesis .
haftmann@21383
   611
qed
haftmann@21383
   612
haftmann@21383
   613
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
haftmann@21383
   614
  (!!x y. x <= y ==> f x <= f y) ==> a < f c"
haftmann@21383
   615
proof -
haftmann@21383
   616
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   617
  assume "a < f b"
haftmann@21383
   618
  also assume "b <= c" hence "f b <= f c" by (rule r)
haftmann@21383
   619
  finally (order_less_le_trans) show ?thesis .
haftmann@21383
   620
qed
haftmann@21383
   621
haftmann@21383
   622
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
haftmann@21383
   623
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
haftmann@21383
   624
proof -
haftmann@21383
   625
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   626
  assume "a <= f b"
haftmann@21383
   627
  also assume "b <= c" hence "f b <= f c" by (rule r)
haftmann@21383
   628
  finally (order_trans) show ?thesis .
haftmann@21383
   629
qed
haftmann@21383
   630
haftmann@21383
   631
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
haftmann@21383
   632
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
haftmann@21383
   633
proof -
haftmann@21383
   634
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   635
  assume "a <= b" hence "f a <= f b" by (rule r)
haftmann@21383
   636
  also assume "f b <= c"
haftmann@21383
   637
  finally (order_trans) show ?thesis .
haftmann@21383
   638
qed
haftmann@21383
   639
haftmann@21383
   640
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
haftmann@21383
   641
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
haftmann@21383
   642
proof -
haftmann@21383
   643
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   644
  assume "a <= b" hence "f a <= f b" by (rule r)
haftmann@21383
   645
  also assume "f b = c"
haftmann@21383
   646
  finally (ord_le_eq_trans) show ?thesis .
haftmann@21383
   647
qed
haftmann@21383
   648
haftmann@21383
   649
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
haftmann@21383
   650
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
haftmann@21383
   651
proof -
haftmann@21383
   652
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   653
  assume "a = f b"
haftmann@21383
   654
  also assume "b <= c" hence "f b <= f c" by (rule r)
haftmann@21383
   655
  finally (ord_eq_le_trans) show ?thesis .
haftmann@21383
   656
qed
haftmann@21383
   657
haftmann@21383
   658
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
haftmann@21383
   659
  (!!x y. x < y ==> f x < f y) ==> f a < c"
haftmann@21383
   660
proof -
haftmann@21383
   661
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   662
  assume "a < b" hence "f a < f b" by (rule r)
haftmann@21383
   663
  also assume "f b = c"
haftmann@21383
   664
  finally (ord_less_eq_trans) show ?thesis .
haftmann@21383
   665
qed
haftmann@21383
   666
haftmann@21383
   667
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
haftmann@21383
   668
  (!!x y. x < y ==> f x < f y) ==> a < f c"
haftmann@21383
   669
proof -
haftmann@21383
   670
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   671
  assume "a = f b"
haftmann@21383
   672
  also assume "b < c" hence "f b < f c" by (rule r)
haftmann@21383
   673
  finally (ord_eq_less_trans) show ?thesis .
haftmann@21383
   674
qed
haftmann@21383
   675
haftmann@21383
   676
text {*
haftmann@21383
   677
  Note that this list of rules is in reverse order of priorities.
haftmann@21383
   678
*}
haftmann@21383
   679
haftmann@21383
   680
lemmas order_trans_rules [trans] =
haftmann@21383
   681
  order_less_subst2
haftmann@21383
   682
  order_less_subst1
haftmann@21383
   683
  order_le_less_subst2
haftmann@21383
   684
  order_le_less_subst1
haftmann@21383
   685
  order_less_le_subst2
haftmann@21383
   686
  order_less_le_subst1
haftmann@21383
   687
  order_subst2
haftmann@21383
   688
  order_subst1
haftmann@21383
   689
  ord_le_eq_subst
haftmann@21383
   690
  ord_eq_le_subst
haftmann@21383
   691
  ord_less_eq_subst
haftmann@21383
   692
  ord_eq_less_subst
haftmann@21383
   693
  forw_subst
haftmann@21383
   694
  back_subst
haftmann@21383
   695
  rev_mp
haftmann@21383
   696
  mp
haftmann@21383
   697
  order_neq_le_trans
haftmann@21383
   698
  order_le_neq_trans
haftmann@21383
   699
  order_less_trans
haftmann@21383
   700
  order_less_asym'
haftmann@21383
   701
  order_le_less_trans
haftmann@21383
   702
  order_less_le_trans
haftmann@21383
   703
  order_trans
haftmann@21383
   704
  order_antisym
haftmann@21383
   705
  ord_le_eq_trans
haftmann@21383
   706
  ord_eq_le_trans
haftmann@21383
   707
  ord_less_eq_trans
haftmann@21383
   708
  ord_eq_less_trans
haftmann@21383
   709
  trans
haftmann@21383
   710
haftmann@21083
   711
wenzelm@21180
   712
(* FIXME cleanup *)
wenzelm@21180
   713
haftmann@21083
   714
text {* These support proving chains of decreasing inequalities
haftmann@21083
   715
    a >= b >= c ... in Isar proofs. *}
haftmann@21083
   716
haftmann@21083
   717
lemma xt1:
haftmann@21083
   718
  "a = b ==> b > c ==> a > c"
haftmann@21083
   719
  "a > b ==> b = c ==> a > c"
haftmann@21083
   720
  "a = b ==> b >= c ==> a >= c"
haftmann@21083
   721
  "a >= b ==> b = c ==> a >= c"
haftmann@21083
   722
  "(x::'a::order) >= y ==> y >= x ==> x = y"
haftmann@21083
   723
  "(x::'a::order) >= y ==> y >= z ==> x >= z"
haftmann@21083
   724
  "(x::'a::order) > y ==> y >= z ==> x > z"
haftmann@21083
   725
  "(x::'a::order) >= y ==> y > z ==> x > z"
haftmann@21083
   726
  "(a::'a::order) > b ==> b > a ==> ?P"
haftmann@21083
   727
  "(x::'a::order) > y ==> y > z ==> x > z"
haftmann@21083
   728
  "(a::'a::order) >= b ==> a ~= b ==> a > b"
haftmann@21083
   729
  "(a::'a::order) ~= b ==> a >= b ==> a > b"
haftmann@21083
   730
  "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" 
haftmann@21083
   731
  "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   732
  "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
haftmann@21083
   733
  "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
haftmann@21083
   734
by auto
haftmann@21083
   735
haftmann@21083
   736
lemma xt2:
haftmann@21083
   737
  "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
haftmann@21083
   738
by (subgoal_tac "f b >= f c", force, force)
haftmann@21083
   739
haftmann@21083
   740
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> 
haftmann@21083
   741
    (!!x y. x >= y ==> f x >= f y) ==> f a >= c"
haftmann@21083
   742
by (subgoal_tac "f a >= f b", force, force)
haftmann@21083
   743
haftmann@21083
   744
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
haftmann@21083
   745
  (!!x y. x >= y ==> f x >= f y) ==> a > f c"
haftmann@21083
   746
by (subgoal_tac "f b >= f c", force, force)
haftmann@21083
   747
haftmann@21083
   748
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
haftmann@21083
   749
    (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   750
by (subgoal_tac "f a > f b", force, force)
haftmann@21083
   751
haftmann@21083
   752
lemma xt6: "(a::'a::order) >= f b ==> b > c ==>
haftmann@21083
   753
    (!!x y. x > y ==> f x > f y) ==> a > f c"
haftmann@21083
   754
by (subgoal_tac "f b > f c", force, force)
haftmann@21083
   755
haftmann@21083
   756
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
haftmann@21083
   757
    (!!x y. x >= y ==> f x >= f y) ==> f a > c"
haftmann@21083
   758
by (subgoal_tac "f a >= f b", force, force)
haftmann@21083
   759
haftmann@21083
   760
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
haftmann@21083
   761
    (!!x y. x > y ==> f x > f y) ==> a > f c"
haftmann@21083
   762
by (subgoal_tac "f b > f c", force, force)
haftmann@21083
   763
haftmann@21083
   764
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
haftmann@21083
   765
    (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   766
by (subgoal_tac "f a > f b", force, force)
haftmann@21083
   767
haftmann@21083
   768
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9
haftmann@21083
   769
haftmann@21083
   770
(* 
haftmann@21083
   771
  Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
haftmann@21083
   772
  for the wrong thing in an Isar proof.
haftmann@21083
   773
haftmann@21083
   774
  The extra transitivity rules can be used as follows: 
haftmann@21083
   775
haftmann@21083
   776
lemma "(a::'a::order) > z"
haftmann@21083
   777
proof -
haftmann@21083
   778
  have "a >= b" (is "_ >= ?rhs")
haftmann@21083
   779
    sorry
haftmann@21083
   780
  also have "?rhs >= c" (is "_ >= ?rhs")
haftmann@21083
   781
    sorry
haftmann@21083
   782
  also (xtrans) have "?rhs = d" (is "_ = ?rhs")
haftmann@21083
   783
    sorry
haftmann@21083
   784
  also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
haftmann@21083
   785
    sorry
haftmann@21083
   786
  also (xtrans) have "?rhs > f" (is "_ > ?rhs")
haftmann@21083
   787
    sorry
haftmann@21083
   788
  also (xtrans) have "?rhs > z"
haftmann@21083
   789
    sorry
haftmann@21083
   790
  finally (xtrans) show ?thesis .
haftmann@21083
   791
qed
haftmann@21083
   792
haftmann@21083
   793
  Alternatively, one can use "declare xtrans [trans]" and then
haftmann@21083
   794
  leave out the "(xtrans)" above.
haftmann@21083
   795
*)
haftmann@21083
   796
haftmann@21546
   797
subsection {* Order on bool *}
haftmann@21546
   798
haftmann@21546
   799
instance bool :: linorder 
haftmann@21546
   800
  le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q"
haftmann@21546
   801
  less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q"
haftmann@21546
   802
  by default (auto simp add: le_bool_def less_bool_def)
haftmann@21546
   803
haftmann@21546
   804
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"
haftmann@21546
   805
  by (simp add: le_bool_def)
haftmann@21546
   806
haftmann@21546
   807
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"
haftmann@21546
   808
  by (simp add: le_bool_def)
haftmann@21546
   809
haftmann@21546
   810
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@21546
   811
  by (simp add: le_bool_def)
haftmann@21546
   812
haftmann@21546
   813
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"
haftmann@21546
   814
  by (simp add: le_bool_def)
haftmann@21546
   815
haftmann@22348
   816
lemma [code func]:
haftmann@22348
   817
  "False \<le> b \<longleftrightarrow> True"
haftmann@22348
   818
  "True \<le> b \<longleftrightarrow> b"
haftmann@22348
   819
  "False < b \<longleftrightarrow> b"
haftmann@22348
   820
  "True < b \<longleftrightarrow> False"
haftmann@22348
   821
  unfolding le_bool_def less_bool_def by simp_all
haftmann@22348
   822
haftmann@21383
   823
subsection {* Monotonicity, syntactic least value operator and min/max *}
haftmann@21083
   824
haftmann@21216
   825
locale mono =
haftmann@21216
   826
  fixes f
haftmann@21216
   827
  assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B"
haftmann@21216
   828
haftmann@21216
   829
lemmas monoI [intro?] = mono.intro
haftmann@21216
   830
  and monoD [dest?] = mono.mono
haftmann@21083
   831
haftmann@21083
   832
constdefs
haftmann@21083
   833
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
haftmann@21083
   834
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
haftmann@21083
   835
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
haftmann@21083
   836
haftmann@21383
   837
lemma LeastI2_order:
haftmann@21383
   838
  "[| P (x::'a::order);
haftmann@21383
   839
      !!y. P y ==> x <= y;
haftmann@21383
   840
      !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
haftmann@21383
   841
   ==> Q (Least P)"
haftmann@21383
   842
  apply (unfold Least_def)
haftmann@21383
   843
  apply (rule theI2)
haftmann@21383
   844
    apply (blast intro: order_antisym)+
haftmann@21383
   845
  done
haftmann@21383
   846
haftmann@21383
   847
lemma Least_equality:
haftmann@21383
   848
    "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
haftmann@21383
   849
  apply (simp add: Least_def)
haftmann@21383
   850
  apply (rule the_equality)
haftmann@21383
   851
  apply (auto intro!: order_antisym)
haftmann@21383
   852
  done
haftmann@21383
   853
haftmann@21083
   854
constdefs
haftmann@21083
   855
  min :: "['a::ord, 'a] => 'a"
haftmann@21083
   856
  "min a b == (if a <= b then a else b)"
haftmann@21083
   857
  max :: "['a::ord, 'a] => 'a"
haftmann@21083
   858
  "max a b == (if a <= b then b else a)"
haftmann@21083
   859
haftmann@21383
   860
lemma min_linorder:
haftmann@21383
   861
  "linorder.min (op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool) = min"
haftmann@22316
   862
  by rule+ (simp add: min_def linorder_class.min_def)
haftmann@21383
   863
haftmann@21383
   864
lemma max_linorder:
haftmann@21383
   865
  "linorder.max (op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool) = max"
haftmann@22316
   866
  by rule+ (simp add: max_def linorder_class.max_def)
haftmann@21383
   867
haftmann@22316
   868
lemmas min_le_iff_disj = linorder_class.min_le_iff_disj [unfolded min_linorder]
haftmann@22316
   869
lemmas le_max_iff_disj = linorder_class.le_max_iff_disj [unfolded max_linorder]
haftmann@22316
   870
lemmas min_less_iff_disj = linorder_class.min_less_iff_disj [unfolded min_linorder]
haftmann@22316
   871
lemmas less_max_iff_disj = linorder_class.less_max_iff_disj [unfolded max_linorder]
haftmann@22316
   872
lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj [unfolded min_linorder]
haftmann@22316
   873
lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj [unfolded max_linorder]
haftmann@22316
   874
lemmas split_min = linorder_class.split_min [unfolded min_linorder]
haftmann@22316
   875
lemmas split_max = linorder_class.split_max [unfolded max_linorder]
haftmann@21383
   876
haftmann@21383
   877
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
haftmann@21383
   878
  by (simp add: min_def)
haftmann@21383
   879
haftmann@21383
   880
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
haftmann@21383
   881
  by (simp add: max_def)
haftmann@21383
   882
haftmann@21383
   883
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"
haftmann@21383
   884
  apply (simp add: min_def)
haftmann@21383
   885
  apply (blast intro: order_antisym)
haftmann@21383
   886
  done
haftmann@21383
   887
haftmann@21383
   888
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"
haftmann@21383
   889
  apply (simp add: max_def)
haftmann@21383
   890
  apply (blast intro: order_antisym)
haftmann@21383
   891
  done
haftmann@21383
   892
haftmann@21383
   893
lemma min_of_mono:
haftmann@21383
   894
    "(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)"
haftmann@21383
   895
  by (simp add: min_def)
haftmann@21383
   896
haftmann@21383
   897
lemma max_of_mono:
haftmann@21383
   898
    "(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)"
haftmann@21383
   899
  by (simp add: max_def)
haftmann@21383
   900
wenzelm@21673
   901
wenzelm@21673
   902
subsection {* Basic ML bindings *}
wenzelm@21673
   903
wenzelm@21673
   904
ML {*
wenzelm@21673
   905
val leD = thm "leD";
wenzelm@21673
   906
val leI = thm "leI";
wenzelm@21673
   907
val linorder_neqE = thm "linorder_neqE";
wenzelm@21673
   908
val linorder_neq_iff = thm "linorder_neq_iff";
wenzelm@21673
   909
val linorder_not_le = thm "linorder_not_le";
wenzelm@21673
   910
val linorder_not_less = thm "linorder_not_less";
wenzelm@21673
   911
val monoD = thm "monoD";
wenzelm@21673
   912
val monoI = thm "monoI";
wenzelm@21673
   913
val order_antisym = thm "order_antisym";
wenzelm@21673
   914
val order_less_irrefl = thm "order_less_irrefl";
wenzelm@21673
   915
val order_refl = thm "order_refl";
wenzelm@21673
   916
val order_trans = thm "order_trans";
wenzelm@21673
   917
val split_max = thm "split_max";
wenzelm@21673
   918
val split_min = thm "split_min";
wenzelm@21673
   919
*}
wenzelm@21673
   920
wenzelm@21673
   921
ML {*
wenzelm@21673
   922
structure HOL =
wenzelm@21673
   923
struct
wenzelm@21673
   924
  val thy = theory "HOL";
wenzelm@21673
   925
end;
wenzelm@21673
   926
*}  -- "belongs to theory HOL"
wenzelm@21673
   927
nipkow@15524
   928
end