src/ZF/UNITY/ClientImpl.thy
author paulson
Fri Jun 20 18:13:16 2003 +0200 (2003-06-20)
changeset 14061 abcb32a7b212
parent 14057 57de6d68389e
child 14072 f932be305381
permissions -rw-r--r--
conversion of ClientImpl to Isar script
paulson@14053
     1
(*  Title:      ZF/UNITY/ClientImpl.thy
paulson@14053
     2
    ID:         $Id$
paulson@14053
     3
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
paulson@14053
     4
    Copyright   2002  University of Cambridge
paulson@14053
     5
paulson@14053
     6
Distributed Resource Management System:  Client Implementation
paulson@14053
     7
*)
paulson@14053
     8
paulson@14053
     9
paulson@14061
    10
theory ClientImpl = AllocBase + Guar:
paulson@14053
    11
consts
paulson@14053
    12
  ask :: i (* input history:  tokens requested *)
paulson@14053
    13
  giv :: i (* output history: tokens granted *)
paulson@14053
    14
  rel :: i (* input history: tokens released *)
paulson@14053
    15
  tok :: i (* the number of available tokens *)
paulson@14053
    16
paulson@14053
    17
translations
paulson@14053
    18
  "ask" == "Var(Nil)"
paulson@14053
    19
  "giv" == "Var([0])"
paulson@14053
    20
  "rel" == "Var([1])"
paulson@14053
    21
  "tok" == "Var([2])"
paulson@14053
    22
paulson@14061
    23
axioms
paulson@14061
    24
  type_assumes:
paulson@14053
    25
  "type_of(ask) = list(tokbag) & type_of(giv) = list(tokbag) & 
paulson@14053
    26
   type_of(rel) = list(tokbag) & type_of(tok) = nat"
paulson@14061
    27
  default_val_assumes:
paulson@14053
    28
  "default_val(ask) = Nil & default_val(giv)  = Nil & 
paulson@14053
    29
   default_val(rel)  = Nil & default_val(tok)  = 0"
paulson@14053
    30
paulson@14053
    31
paulson@14053
    32
(*Array indexing is translated to list indexing as A[n] == nth(n-1,A). *)
paulson@14053
    33
paulson@14053
    34
constdefs
paulson@14053
    35
 (** Release some client_tokens **)
paulson@14053
    36
  
paulson@14053
    37
  client_rel_act ::i
paulson@14053
    38
    "client_rel_act ==
paulson@14061
    39
     {<s,t> \<in> state*state.
paulson@14061
    40
      \<exists>nrel \<in> nat. nrel = length(s`rel) &
paulson@14057
    41
                   t = s(rel:=(s`rel)@[nth(nrel, s`giv)]) &
paulson@14057
    42
                   nrel < length(s`giv) &
paulson@14061
    43
                   nth(nrel, s`ask) \<le> nth(nrel, s`giv)}"
paulson@14053
    44
  
paulson@14053
    45
  (** Choose a new token requirement **)
paulson@14057
    46
  (** Including t=s suppresses fairness, allowing the non-trivial part
paulson@14053
    47
      of the action to be ignored **)
paulson@14053
    48
paulson@14053
    49
  client_tok_act :: i
paulson@14061
    50
 "client_tok_act == {<s,t> \<in> state*state. t=s |
paulson@14057
    51
		     t = s(tok:=succ(s`tok mod NbT))}"
paulson@14053
    52
paulson@14053
    53
  client_ask_act :: i
paulson@14061
    54
  "client_ask_act == {<s,t> \<in> state*state. t=s | (t=s(ask:=s`ask@[s`tok]))}"
paulson@14053
    55
  
paulson@14053
    56
  client_prog :: i
paulson@14053
    57
  "client_prog ==
paulson@14061
    58
   mk_program({s \<in> state. s`tok \<le> NbT & s`giv = Nil &
paulson@14053
    59
	               s`ask = Nil & s`rel = Nil},
paulson@14053
    60
                    {client_rel_act, client_tok_act, client_ask_act},
paulson@14061
    61
                   \<Union>G \<in> preserves(lift(rel)) Int
paulson@14053
    62
			 preserves(lift(ask)) Int
paulson@14053
    63
	                 preserves(lift(tok)).  Acts(G))"
paulson@14061
    64
paulson@14061
    65
paulson@14061
    66
declare type_assumes [simp] default_val_assumes [simp]
paulson@14061
    67
(* This part should be automated *)
paulson@14061
    68
paulson@14061
    69
(*????MOVE UP*)
paulson@14061
    70
method_setup constrains = {*
paulson@14061
    71
    Method.ctxt_args (fn ctxt =>
paulson@14061
    72
        Method.METHOD (fn facts =>
paulson@14061
    73
            gen_constrains_tac (Classical.get_local_claset ctxt,
paulson@14061
    74
                               Simplifier.get_local_simpset ctxt) 1)) *}
paulson@14061
    75
    "for proving safety properties"
paulson@14061
    76
paulson@14061
    77
(*For using "disjunction" (union over an index set) to eliminate a variable.
paulson@14061
    78
  ????move way up*)
paulson@14061
    79
lemma UN_conj_eq: "\<forall>s\<in>state. f(s) \<in> A
paulson@14061
    80
      ==> (\<Union>k\<in>A. {s\<in>state. P(s) & f(s) = k}) = {s\<in>state. P(s)}"
paulson@14061
    81
by blast
paulson@14061
    82
paulson@14061
    83
lemma ask_value_type [simp,TC]: "s \<in> state ==> s`ask \<in> list(nat)"
paulson@14061
    84
apply (unfold state_def)
paulson@14061
    85
apply (drule_tac a = ask in apply_type, auto)
paulson@14061
    86
done
paulson@14061
    87
paulson@14061
    88
lemma giv_value_type [simp,TC]: "s \<in> state ==> s`giv \<in> list(nat)"
paulson@14061
    89
apply (unfold state_def)
paulson@14061
    90
apply (drule_tac a = giv in apply_type, auto)
paulson@14061
    91
done
paulson@14061
    92
paulson@14061
    93
lemma rel_value_type [simp,TC]: "s \<in> state ==> s`rel \<in> list(nat)"
paulson@14061
    94
apply (unfold state_def)
paulson@14061
    95
apply (drule_tac a = rel in apply_type, auto)
paulson@14061
    96
done
paulson@14061
    97
paulson@14061
    98
lemma tok_value_type [simp,TC]: "s \<in> state ==> s`tok \<in> nat"
paulson@14061
    99
apply (unfold state_def)
paulson@14061
   100
apply (drule_tac a = tok in apply_type, auto)
paulson@14061
   101
done
paulson@14061
   102
paulson@14061
   103
(** The Client Program **)
paulson@14061
   104
paulson@14061
   105
lemma client_type [simp,TC]: "client_prog \<in> program"
paulson@14061
   106
apply (unfold client_prog_def)
paulson@14061
   107
apply (simp (no_asm))
paulson@14061
   108
done
paulson@14061
   109
paulson@14061
   110
declare client_prog_def [THEN def_prg_Init, simp]
paulson@14061
   111
declare client_prog_def [THEN def_prg_AllowedActs, simp]
paulson@14061
   112
ML
paulson@14061
   113
{*
paulson@14061
   114
program_defs_ref := [thm"client_prog_def"]
paulson@14061
   115
*}
paulson@14061
   116
paulson@14061
   117
declare  client_rel_act_def [THEN def_act_simp, simp]
paulson@14061
   118
declare  client_tok_act_def [THEN def_act_simp, simp]
paulson@14061
   119
declare  client_ask_act_def [THEN def_act_simp, simp]
paulson@14061
   120
paulson@14061
   121
lemma client_prog_ok_iff:
paulson@14061
   122
  "\<forall>G \<in> program. (client_prog ok G) <->  
paulson@14061
   123
   (G \<in> preserves(lift(rel)) & G \<in> preserves(lift(ask)) &  
paulson@14061
   124
    G \<in> preserves(lift(tok)) &  client_prog \<in> Allowed(G))"
paulson@14061
   125
by (auto simp add: ok_iff_Allowed client_prog_def [THEN def_prg_Allowed])
paulson@14061
   126
paulson@14061
   127
lemma client_prog_preserves:
paulson@14061
   128
    "client_prog:(\<Inter>x \<in> var-{ask, rel, tok}. preserves(lift(x)))"
paulson@14061
   129
apply (rule Inter_var_DiffI, force)
paulson@14061
   130
apply (rule ballI)
paulson@14061
   131
apply (rule preservesI, constrains, auto)
paulson@14061
   132
done
paulson@14061
   133
paulson@14061
   134
paulson@14061
   135
lemma preserves_lift_imp_stable:
paulson@14061
   136
     "G \<in> preserves(lift(ff)) ==> G \<in> stable({s \<in> state. P(s`ff)})";
paulson@14061
   137
apply (drule preserves_imp_stable)
paulson@14061
   138
apply (simp add: lift_def) 
paulson@14061
   139
done
paulson@14061
   140
paulson@14061
   141
lemma preserves_imp_prefix:
paulson@14061
   142
     "G \<in> preserves(lift(ff)) 
paulson@14061
   143
      ==> G \<in> stable({s \<in> state. \<langle>k, s`ff\<rangle> \<in> prefix(nat)})";
paulson@14061
   144
by (erule preserves_lift_imp_stable) 
paulson@14061
   145
paulson@14061
   146
(*Safety property 1: ask, rel are increasing: (24) *)
paulson@14061
   147
lemma client_prog_Increasing_ask_rel: 
paulson@14061
   148
"client_prog: program guarantees Incr(lift(ask)) Int Incr(lift(rel))"
paulson@14061
   149
apply (unfold guar_def)
paulson@14061
   150
apply (auto intro!: increasing_imp_Increasing 
paulson@14061
   151
            simp add: client_prog_ok_iff increasing_def preserves_imp_prefix)
paulson@14061
   152
apply (constrains, force, force)+
paulson@14061
   153
done
paulson@14061
   154
paulson@14061
   155
declare nth_append [simp] append_one_prefix [simp]
paulson@14061
   156
paulson@14061
   157
lemma NbT_pos2: "0<NbT"
paulson@14061
   158
apply (cut_tac NbT_pos)
paulson@14061
   159
apply (rule Ord_0_lt, auto)
paulson@14061
   160
done
paulson@14061
   161
paulson@14061
   162
(*Safety property 2: the client never requests too many tokens.
paulson@14061
   163
With no Substitution Axiom, we must prove the two invariants simultaneously. *)
paulson@14061
   164
paulson@14061
   165
lemma ask_Bounded_lemma: 
paulson@14061
   166
"[| client_prog ok G; G \<in> program |] 
paulson@14061
   167
      ==> client_prog Join G \<in>    
paulson@14061
   168
              Always({s \<in> state. s`tok \<le> NbT}  Int   
paulson@14061
   169
                      {s \<in> state. \<forall>elt \<in> set_of_list(s`ask). elt \<le> NbT})"
paulson@14061
   170
apply (rotate_tac -1)
paulson@14061
   171
apply (auto simp add: client_prog_ok_iff)
paulson@14061
   172
apply (rule invariantI [THEN stable_Join_Always2], force) 
paulson@14061
   173
 prefer 2
paulson@14061
   174
 apply (fast intro: stable_Int preserves_lift_imp_stable, constrains)
paulson@14061
   175
apply (auto dest: ActsD)
paulson@14061
   176
apply (cut_tac NbT_pos)
paulson@14061
   177
apply (rule NbT_pos2 [THEN mod_less_divisor])
paulson@14061
   178
apply (auto dest: ActsD preserves_imp_eq simp add: set_of_list_append)
paulson@14061
   179
done
paulson@14061
   180
paulson@14061
   181
(* Export version, with no mention of tok in the postcondition, but
paulson@14061
   182
  unfortunately tok must be declared local.*)
paulson@14061
   183
lemma client_prog_ask_Bounded: 
paulson@14061
   184
    "client_prog \<in> program guarantees  
paulson@14061
   185
                   Always({s \<in> state. \<forall>elt \<in> set_of_list(s`ask). elt \<le> NbT})"
paulson@14061
   186
apply (rule guaranteesI)
paulson@14061
   187
apply (erule ask_Bounded_lemma [THEN Always_weaken], auto)
paulson@14061
   188
done
paulson@14061
   189
paulson@14061
   190
(*** Towards proving the liveness property ***)
paulson@14061
   191
paulson@14061
   192
lemma client_prog_stable_rel_le_giv: 
paulson@14061
   193
    "client_prog \<in> stable({s \<in> state. <s`rel, s`giv> \<in> prefix(nat)})"
paulson@14061
   194
by (constrains, auto)
paulson@14061
   195
paulson@14061
   196
lemma client_prog_Join_Stable_rel_le_giv: 
paulson@14061
   197
"[| client_prog Join G \<in> Incr(lift(giv)); G \<in> preserves(lift(rel)) |]  
paulson@14061
   198
    ==> client_prog Join G \<in> Stable({s \<in> state. <s`rel, s`giv> \<in> prefix(nat)})"
paulson@14061
   199
apply (rule client_prog_stable_rel_le_giv [THEN Increasing_preserves_Stable])
paulson@14061
   200
apply (auto simp add: lift_def)
paulson@14061
   201
done
paulson@14061
   202
paulson@14061
   203
lemma client_prog_Join_Always_rel_le_giv:
paulson@14061
   204
     "[| client_prog Join G \<in> Incr(lift(giv)); G \<in> preserves(lift(rel)) |]  
paulson@14061
   205
    ==> client_prog Join G  \<in> Always({s \<in> state. <s`rel, s`giv> \<in> prefix(nat)})"
paulson@14061
   206
by (force intro!: AlwaysI client_prog_Join_Stable_rel_le_giv)
paulson@14061
   207
paulson@14061
   208
lemma def_act_eq:
paulson@14061
   209
     "A == {<s, t> \<in> state*state. P(s, t)} ==> A={<s, t> \<in> state*state. P(s, t)}"
paulson@14061
   210
by auto
paulson@14061
   211
paulson@14061
   212
lemma act_subset: "A={<s,t> \<in> state*state. P(s, t)} ==> A<=state*state"
paulson@14061
   213
by auto
paulson@14061
   214
paulson@14061
   215
lemma transient_lemma: 
paulson@14061
   216
"client_prog \<in>  
paulson@14061
   217
  transient({s \<in> state. s`rel = k & <k, h> \<in> strict_prefix(nat)  
paulson@14061
   218
   & <h, s`giv> \<in> prefix(nat) & h pfixGe s`ask})"
paulson@14061
   219
apply (rule_tac act = client_rel_act in transientI)
paulson@14061
   220
apply (simp (no_asm) add: client_prog_def [THEN def_prg_Acts])
paulson@14061
   221
apply (simp (no_asm) add: client_rel_act_def [THEN def_act_eq, THEN act_subset])
paulson@14061
   222
apply (auto simp add: client_prog_def [THEN def_prg_Acts] domain_def)
paulson@14061
   223
apply (rule ReplaceI)
paulson@14061
   224
apply (rule_tac x = "x (rel:= x`rel @ [nth (length (x`rel), x`giv) ]) " in exI)
paulson@14061
   225
apply (auto intro!: state_update_type app_type length_type nth_type, auto)
paulson@14061
   226
apply (blast intro: lt_trans2 prefix_length_le strict_prefix_length_lt)
paulson@14061
   227
apply (blast intro: lt_trans2 prefix_length_le strict_prefix_length_lt)
paulson@14061
   228
apply (simp (no_asm_use) add: gen_prefix_iff_nth)
paulson@14061
   229
apply (subgoal_tac "h \<in> list(nat)")
paulson@14061
   230
 apply (simp_all (no_asm_simp) add: prefix_type [THEN subsetD, THEN SigmaD1])
paulson@14061
   231
apply (auto simp add: prefix_def Ge_def)
paulson@14061
   232
apply (drule strict_prefix_length_lt)
paulson@14061
   233
apply (drule_tac x = "length (x`rel) " in spec)
paulson@14061
   234
apply auto
paulson@14061
   235
apply (simp (no_asm_use) add: gen_prefix_iff_nth)
paulson@14061
   236
apply (auto simp add: id_def lam_def)
paulson@14061
   237
done
paulson@14061
   238
paulson@14061
   239
lemma strict_prefix_is_prefix: 
paulson@14061
   240
    "<xs, ys> \<in> strict_prefix(A) <->  <xs, ys> \<in> prefix(A) & xs\<noteq>ys"
paulson@14061
   241
apply (unfold strict_prefix_def id_def lam_def)
paulson@14061
   242
apply (auto dest: prefix_type [THEN subsetD])
paulson@14061
   243
done
paulson@14061
   244
paulson@14061
   245
lemma induct_lemma: 
paulson@14061
   246
"[| client_prog Join G \<in> Incr(lift(giv)); client_prog ok G; G \<in> program |]  
paulson@14061
   247
  ==> client_prog Join G \<in>  
paulson@14061
   248
  {s \<in> state. s`rel = k & <k,h> \<in> strict_prefix(nat)  
paulson@14061
   249
   & <h, s`giv> \<in> prefix(nat) & h pfixGe s`ask}   
paulson@14061
   250
        LeadsTo {s \<in> state. <k, s`rel> \<in> strict_prefix(nat)  
paulson@14061
   251
                          & <s`rel, s`giv> \<in> prefix(nat) &  
paulson@14061
   252
                                  <h, s`giv> \<in> prefix(nat) &  
paulson@14061
   253
                h pfixGe s`ask}"
paulson@14061
   254
apply (rule single_LeadsTo_I)
paulson@14061
   255
 prefer 2 apply simp
paulson@14061
   256
apply (frule client_prog_Increasing_ask_rel [THEN guaranteesD])
paulson@14061
   257
apply (rotate_tac [3] 2)
paulson@14061
   258
apply (auto simp add: client_prog_ok_iff)
paulson@14061
   259
apply (rule transient_lemma [THEN Join_transient_I1, THEN transient_imp_leadsTo, THEN leadsTo_imp_LeadsTo, THEN PSP_Stable, THEN LeadsTo_weaken])
paulson@14061
   260
apply (rule Stable_Int [THEN Stable_Int, THEN Stable_Int])
paulson@14061
   261
apply (erule_tac f = "lift (giv) " and a = "s`giv" in Increasing_imp_Stable)
paulson@14061
   262
apply (simp (no_asm_simp))
paulson@14061
   263
apply (erule_tac f = "lift (ask) " and a = "s`ask" in Increasing_imp_Stable)
paulson@14061
   264
apply (simp (no_asm_simp))
paulson@14061
   265
apply (erule_tac f = "lift (rel) " and a = "s`rel" in Increasing_imp_Stable)
paulson@14061
   266
apply (simp (no_asm_simp))
paulson@14061
   267
apply (erule client_prog_Join_Stable_rel_le_giv, blast, simp_all)
paulson@14061
   268
 prefer 2
paulson@14061
   269
 apply (blast intro: sym strict_prefix_is_prefix [THEN iffD2] prefix_trans prefix_imp_pfixGe pfixGe_trans)
paulson@14061
   270
apply (auto intro: strict_prefix_is_prefix [THEN iffD1, THEN conjunct1] 
paulson@14061
   271
                   prefix_trans)
paulson@14061
   272
done
paulson@14061
   273
paulson@14061
   274
lemma rel_progress_lemma: 
paulson@14061
   275
"[| client_prog Join G  \<in> Incr(lift(giv)); client_prog ok G; G \<in> program |]  
paulson@14061
   276
  ==> client_prog Join G  \<in>  
paulson@14061
   277
     {s \<in> state. <s`rel, h> \<in> strict_prefix(nat)  
paulson@14061
   278
           & <h, s`giv> \<in> prefix(nat) & h pfixGe s`ask}   
paulson@14061
   279
                      LeadsTo {s \<in> state. <h, s`rel> \<in> prefix(nat)}"
paulson@14061
   280
apply (rule_tac f = "\<lambda>x \<in> state. length(h) #- length(x`rel)" 
paulson@14061
   281
       in LessThan_induct)
paulson@14061
   282
apply (auto simp add: vimage_def)
paulson@14061
   283
 prefer 2 apply (force simp add: lam_def) 
paulson@14061
   284
apply (rule single_LeadsTo_I)
paulson@14061
   285
 prefer 2 apply simp 
paulson@14061
   286
apply (subgoal_tac "h \<in> list(nat)")
paulson@14061
   287
 prefer 2 apply (blast dest: prefix_type [THEN subsetD]) 
paulson@14061
   288
apply (rule induct_lemma [THEN LeadsTo_weaken])
paulson@14061
   289
    apply (simp add: length_type lam_def)
paulson@14061
   290
apply (auto intro: strict_prefix_is_prefix [THEN iffD2]
paulson@14061
   291
            dest: common_prefix_linear  prefix_type [THEN subsetD])
paulson@14061
   292
apply (erule swap)
paulson@14061
   293
apply (rule imageI)
paulson@14061
   294
 apply (force dest!: simp add: lam_def) 
paulson@14061
   295
apply (simp add: length_type lam_def, clarify) 
paulson@14061
   296
apply (drule strict_prefix_length_lt)+
paulson@14061
   297
apply (drule less_imp_succ_add, simp)+
paulson@14061
   298
apply clarify 
paulson@14061
   299
apply simp 
paulson@14061
   300
apply (erule diff_le_self [THEN ltD])
paulson@14061
   301
done
paulson@14061
   302
paulson@14061
   303
lemma progress_lemma: 
paulson@14061
   304
"[| client_prog Join G \<in> Incr(lift(giv)); client_prog ok G; G \<in> program |] 
paulson@14061
   305
 ==> client_prog Join G  \<in>  
paulson@14061
   306
      {s \<in> state. <h, s`giv> \<in> prefix(nat) & h pfixGe s`ask}   
paulson@14061
   307
      LeadsTo  {s \<in> state. <h, s`rel> \<in> prefix(nat)}"
paulson@14061
   308
apply (rule client_prog_Join_Always_rel_le_giv [THEN Always_LeadsToI], assumption)
paulson@14061
   309
apply (force simp add: client_prog_ok_iff)
paulson@14061
   310
apply (rule LeadsTo_weaken_L) 
paulson@14061
   311
apply (rule LeadsTo_Un [OF rel_progress_lemma 
paulson@14061
   312
                           subset_refl [THEN subset_imp_LeadsTo]])
paulson@14061
   313
apply (auto intro: strict_prefix_is_prefix [THEN iffD2]
paulson@14061
   314
            dest: common_prefix_linear prefix_type [THEN subsetD])
paulson@14061
   315
done
paulson@14061
   316
paulson@14061
   317
(*Progress property: all tokens that are given will be released*)
paulson@14061
   318
lemma client_prog_progress: 
paulson@14061
   319
"client_prog \<in> Incr(lift(giv))  guarantees   
paulson@14061
   320
      (\<Inter>h \<in> list(nat). {s \<in> state. <h, s`giv> \<in> prefix(nat) & 
paulson@14061
   321
              h pfixGe s`ask} LeadsTo {s \<in> state. <h, s`rel> \<in> prefix(nat)})"
paulson@14061
   322
apply (rule guaranteesI)
paulson@14061
   323
apply (blast intro: progress_lemma, auto)
paulson@14061
   324
done
paulson@14061
   325
paulson@14061
   326
lemma client_prog_Allowed:
paulson@14061
   327
     "Allowed(client_prog) =  
paulson@14061
   328
      preserves(lift(rel)) Int preserves(lift(ask)) Int preserves(lift(tok))"
paulson@14061
   329
apply (cut_tac v = "lift (ask)" in preserves_type)
paulson@14061
   330
apply (auto simp add: Allowed_def client_prog_def [THEN def_prg_Allowed] 
paulson@14061
   331
                      cons_Int_distrib safety_prop_Acts_iff)
paulson@14061
   332
done
paulson@14061
   333
paulson@14053
   334
end