src/HOL/Lifting_Set.thy
author Andreas Lochbihler
Thu Sep 26 15:50:33 2013 +0200 (2013-09-26)
changeset 53927 abe2b313f0e5
parent 53012 cb82606b8215
child 53945 4191acef9d0e
permissions -rw-r--r--
add lemmas
kuncar@53012
     1
(*  Title:      HOL/Lifting_Set.thy
kuncar@53012
     2
    Author:     Brian Huffman and Ondrej Kuncar
kuncar@53012
     3
*)
kuncar@53012
     4
kuncar@53012
     5
header {* Setup for Lifting/Transfer for the set type *}
kuncar@53012
     6
kuncar@53012
     7
theory Lifting_Set
kuncar@53012
     8
imports Lifting
kuncar@53012
     9
begin
kuncar@53012
    10
kuncar@53012
    11
subsection {* Relator and predicator properties *}
kuncar@53012
    12
kuncar@53012
    13
definition set_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"
kuncar@53012
    14
  where "set_rel R = (\<lambda>A B. (\<forall>x\<in>A. \<exists>y\<in>B. R x y) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. R x y))"
kuncar@53012
    15
kuncar@53012
    16
lemma set_relI:
kuncar@53012
    17
  assumes "\<And>x. x \<in> A \<Longrightarrow> \<exists>y\<in>B. R x y"
kuncar@53012
    18
  assumes "\<And>y. y \<in> B \<Longrightarrow> \<exists>x\<in>A. R x y"
kuncar@53012
    19
  shows "set_rel R A B"
kuncar@53012
    20
  using assms unfolding set_rel_def by simp
kuncar@53012
    21
Andreas@53927
    22
lemma set_relD1: "\<lbrakk> set_rel R A B; x \<in> A \<rbrakk> \<Longrightarrow> \<exists>y \<in> B. R x y"
Andreas@53927
    23
  and set_relD2: "\<lbrakk> set_rel R A B; y \<in> B \<rbrakk> \<Longrightarrow> \<exists>x \<in> A. R x y"
Andreas@53927
    24
by(simp_all add: set_rel_def)
Andreas@53927
    25
kuncar@53012
    26
lemma set_rel_conversep: "set_rel (conversep R) = conversep (set_rel R)"
kuncar@53012
    27
  unfolding set_rel_def by auto
kuncar@53012
    28
kuncar@53012
    29
lemma set_rel_eq [relator_eq]: "set_rel (op =) = (op =)"
kuncar@53012
    30
  unfolding set_rel_def fun_eq_iff by auto
kuncar@53012
    31
kuncar@53012
    32
lemma set_rel_mono[relator_mono]:
kuncar@53012
    33
  assumes "A \<le> B"
kuncar@53012
    34
  shows "set_rel A \<le> set_rel B"
kuncar@53012
    35
using assms unfolding set_rel_def by blast
kuncar@53012
    36
kuncar@53012
    37
lemma set_rel_OO[relator_distr]: "set_rel R OO set_rel S = set_rel (R OO S)"
kuncar@53012
    38
  apply (rule sym)
kuncar@53012
    39
  apply (intro ext, rename_tac X Z)
kuncar@53012
    40
  apply (rule iffI)
kuncar@53012
    41
  apply (rule_tac b="{y. (\<exists>x\<in>X. R x y) \<and> (\<exists>z\<in>Z. S y z)}" in relcomppI)
kuncar@53012
    42
  apply (simp add: set_rel_def, fast)
kuncar@53012
    43
  apply (simp add: set_rel_def, fast)
kuncar@53012
    44
  apply (simp add: set_rel_def, fast)
kuncar@53012
    45
  done
kuncar@53012
    46
kuncar@53012
    47
lemma Domainp_set[relator_domain]:
kuncar@53012
    48
  assumes "Domainp T = R"
kuncar@53012
    49
  shows "Domainp (set_rel T) = (\<lambda>A. Ball A R)"
kuncar@53012
    50
using assms unfolding set_rel_def Domainp_iff[abs_def]
kuncar@53012
    51
apply (intro ext)
kuncar@53012
    52
apply (rule iffI) 
kuncar@53012
    53
apply blast
kuncar@53012
    54
apply (rename_tac A, rule_tac x="{y. \<exists>x\<in>A. T x y}" in exI, fast)
kuncar@53012
    55
done
kuncar@53012
    56
kuncar@53012
    57
lemma reflp_set_rel[reflexivity_rule]: "reflp R \<Longrightarrow> reflp (set_rel R)"
kuncar@53012
    58
  unfolding reflp_def set_rel_def by fast
kuncar@53012
    59
kuncar@53012
    60
lemma left_total_set_rel[reflexivity_rule]: 
kuncar@53012
    61
  "left_total A \<Longrightarrow> left_total (set_rel A)"
kuncar@53012
    62
  unfolding left_total_def set_rel_def
kuncar@53012
    63
  apply safe
kuncar@53012
    64
  apply (rename_tac X, rule_tac x="{y. \<exists>x\<in>X. A x y}" in exI, fast)
kuncar@53012
    65
done
kuncar@53012
    66
kuncar@53012
    67
lemma left_unique_set_rel[reflexivity_rule]: 
kuncar@53012
    68
  "left_unique A \<Longrightarrow> left_unique (set_rel A)"
kuncar@53012
    69
  unfolding left_unique_def set_rel_def
kuncar@53012
    70
  by fast
kuncar@53012
    71
kuncar@53012
    72
lemma right_total_set_rel [transfer_rule]:
kuncar@53012
    73
  "right_total A \<Longrightarrow> right_total (set_rel A)"
kuncar@53012
    74
  unfolding right_total_def set_rel_def
kuncar@53012
    75
  by (rule allI, rename_tac Y, rule_tac x="{x. \<exists>y\<in>Y. A x y}" in exI, fast)
kuncar@53012
    76
kuncar@53012
    77
lemma right_unique_set_rel [transfer_rule]:
kuncar@53012
    78
  "right_unique A \<Longrightarrow> right_unique (set_rel A)"
kuncar@53012
    79
  unfolding right_unique_def set_rel_def by fast
kuncar@53012
    80
kuncar@53012
    81
lemma bi_total_set_rel [transfer_rule]:
kuncar@53012
    82
  "bi_total A \<Longrightarrow> bi_total (set_rel A)"
kuncar@53012
    83
  unfolding bi_total_def set_rel_def
kuncar@53012
    84
  apply safe
kuncar@53012
    85
  apply (rename_tac X, rule_tac x="{y. \<exists>x\<in>X. A x y}" in exI, fast)
kuncar@53012
    86
  apply (rename_tac Y, rule_tac x="{x. \<exists>y\<in>Y. A x y}" in exI, fast)
kuncar@53012
    87
  done
kuncar@53012
    88
kuncar@53012
    89
lemma bi_unique_set_rel [transfer_rule]:
kuncar@53012
    90
  "bi_unique A \<Longrightarrow> bi_unique (set_rel A)"
kuncar@53012
    91
  unfolding bi_unique_def set_rel_def by fast
kuncar@53012
    92
kuncar@53012
    93
lemma set_invariant_commute [invariant_commute]:
kuncar@53012
    94
  "set_rel (Lifting.invariant P) = Lifting.invariant (\<lambda>A. Ball A P)"
kuncar@53012
    95
  unfolding fun_eq_iff set_rel_def Lifting.invariant_def Ball_def by fast
kuncar@53012
    96
kuncar@53012
    97
subsection {* Quotient theorem for the Lifting package *}
kuncar@53012
    98
kuncar@53012
    99
lemma Quotient_set[quot_map]:
kuncar@53012
   100
  assumes "Quotient R Abs Rep T"
kuncar@53012
   101
  shows "Quotient (set_rel R) (image Abs) (image Rep) (set_rel T)"
kuncar@53012
   102
  using assms unfolding Quotient_alt_def4
kuncar@53012
   103
  apply (simp add: set_rel_OO[symmetric] set_rel_conversep)
kuncar@53012
   104
  apply (simp add: set_rel_def, fast)
kuncar@53012
   105
  done
kuncar@53012
   106
kuncar@53012
   107
subsection {* Transfer rules for the Transfer package *}
kuncar@53012
   108
kuncar@53012
   109
subsubsection {* Unconditional transfer rules *}
kuncar@53012
   110
kuncar@53012
   111
context
kuncar@53012
   112
begin
kuncar@53012
   113
interpretation lifting_syntax .
kuncar@53012
   114
kuncar@53012
   115
lemma empty_transfer [transfer_rule]: "(set_rel A) {} {}"
kuncar@53012
   116
  unfolding set_rel_def by simp
kuncar@53012
   117
kuncar@53012
   118
lemma insert_transfer [transfer_rule]:
kuncar@53012
   119
  "(A ===> set_rel A ===> set_rel A) insert insert"
kuncar@53012
   120
  unfolding fun_rel_def set_rel_def by auto
kuncar@53012
   121
kuncar@53012
   122
lemma union_transfer [transfer_rule]:
kuncar@53012
   123
  "(set_rel A ===> set_rel A ===> set_rel A) union union"
kuncar@53012
   124
  unfolding fun_rel_def set_rel_def by auto
kuncar@53012
   125
kuncar@53012
   126
lemma Union_transfer [transfer_rule]:
kuncar@53012
   127
  "(set_rel (set_rel A) ===> set_rel A) Union Union"
kuncar@53012
   128
  unfolding fun_rel_def set_rel_def by simp fast
kuncar@53012
   129
kuncar@53012
   130
lemma image_transfer [transfer_rule]:
kuncar@53012
   131
  "((A ===> B) ===> set_rel A ===> set_rel B) image image"
kuncar@53012
   132
  unfolding fun_rel_def set_rel_def by simp fast
kuncar@53012
   133
kuncar@53012
   134
lemma UNION_transfer [transfer_rule]:
kuncar@53012
   135
  "(set_rel A ===> (A ===> set_rel B) ===> set_rel B) UNION UNION"
kuncar@53012
   136
  unfolding SUP_def [abs_def] by transfer_prover
kuncar@53012
   137
kuncar@53012
   138
lemma Ball_transfer [transfer_rule]:
kuncar@53012
   139
  "(set_rel A ===> (A ===> op =) ===> op =) Ball Ball"
kuncar@53012
   140
  unfolding set_rel_def fun_rel_def by fast
kuncar@53012
   141
kuncar@53012
   142
lemma Bex_transfer [transfer_rule]:
kuncar@53012
   143
  "(set_rel A ===> (A ===> op =) ===> op =) Bex Bex"
kuncar@53012
   144
  unfolding set_rel_def fun_rel_def by fast
kuncar@53012
   145
kuncar@53012
   146
lemma Pow_transfer [transfer_rule]:
kuncar@53012
   147
  "(set_rel A ===> set_rel (set_rel A)) Pow Pow"
kuncar@53012
   148
  apply (rule fun_relI, rename_tac X Y, rule set_relI)
kuncar@53012
   149
  apply (rename_tac X', rule_tac x="{y\<in>Y. \<exists>x\<in>X'. A x y}" in rev_bexI, clarsimp)
kuncar@53012
   150
  apply (simp add: set_rel_def, fast)
kuncar@53012
   151
  apply (rename_tac Y', rule_tac x="{x\<in>X. \<exists>y\<in>Y'. A x y}" in rev_bexI, clarsimp)
kuncar@53012
   152
  apply (simp add: set_rel_def, fast)
kuncar@53012
   153
  done
kuncar@53012
   154
kuncar@53012
   155
lemma set_rel_transfer [transfer_rule]:
kuncar@53012
   156
  "((A ===> B ===> op =) ===> set_rel A ===> set_rel B ===> op =)
kuncar@53012
   157
    set_rel set_rel"
kuncar@53012
   158
  unfolding fun_rel_def set_rel_def by fast
kuncar@53012
   159
Andreas@53927
   160
lemma SUPR_parametric [transfer_rule]:
Andreas@53927
   161
  "(set_rel R ===> (R ===> op =) ===> op =) SUPR SUPR"
Andreas@53927
   162
proof(rule fun_relI)+
Andreas@53927
   163
  fix A B f and g :: "'b \<Rightarrow> 'c"
Andreas@53927
   164
  assume AB: "set_rel R A B"
Andreas@53927
   165
    and fg: "(R ===> op =) f g"
Andreas@53927
   166
  show "SUPR A f = SUPR B g"
Andreas@53927
   167
    by(rule SUPR_eq)(auto 4 4 dest: set_relD1[OF AB] set_relD2[OF AB] fun_relD[OF fg] intro: rev_bexI)
Andreas@53927
   168
qed
kuncar@53012
   169
kuncar@53012
   170
subsubsection {* Rules requiring bi-unique, bi-total or right-total relations *}
kuncar@53012
   171
kuncar@53012
   172
lemma member_transfer [transfer_rule]:
kuncar@53012
   173
  assumes "bi_unique A"
kuncar@53012
   174
  shows "(A ===> set_rel A ===> op =) (op \<in>) (op \<in>)"
kuncar@53012
   175
  using assms unfolding fun_rel_def set_rel_def bi_unique_def by fast
kuncar@53012
   176
kuncar@53012
   177
lemma right_total_Collect_transfer[transfer_rule]:
kuncar@53012
   178
  assumes "right_total A"
kuncar@53012
   179
  shows "((A ===> op =) ===> set_rel A) (\<lambda>P. Collect (\<lambda>x. P x \<and> Domainp A x)) Collect"
kuncar@53012
   180
  using assms unfolding right_total_def set_rel_def fun_rel_def Domainp_iff by fast
kuncar@53012
   181
kuncar@53012
   182
lemma Collect_transfer [transfer_rule]:
kuncar@53012
   183
  assumes "bi_total A"
kuncar@53012
   184
  shows "((A ===> op =) ===> set_rel A) Collect Collect"
kuncar@53012
   185
  using assms unfolding fun_rel_def set_rel_def bi_total_def by fast
kuncar@53012
   186
kuncar@53012
   187
lemma inter_transfer [transfer_rule]:
kuncar@53012
   188
  assumes "bi_unique A"
kuncar@53012
   189
  shows "(set_rel A ===> set_rel A ===> set_rel A) inter inter"
kuncar@53012
   190
  using assms unfolding fun_rel_def set_rel_def bi_unique_def by fast
kuncar@53012
   191
kuncar@53012
   192
lemma Diff_transfer [transfer_rule]:
kuncar@53012
   193
  assumes "bi_unique A"
kuncar@53012
   194
  shows "(set_rel A ===> set_rel A ===> set_rel A) (op -) (op -)"
kuncar@53012
   195
  using assms unfolding fun_rel_def set_rel_def bi_unique_def
kuncar@53012
   196
  unfolding Ball_def Bex_def Diff_eq
kuncar@53012
   197
  by (safe, simp, metis, simp, metis)
kuncar@53012
   198
kuncar@53012
   199
lemma subset_transfer [transfer_rule]:
kuncar@53012
   200
  assumes [transfer_rule]: "bi_unique A"
kuncar@53012
   201
  shows "(set_rel A ===> set_rel A ===> op =) (op \<subseteq>) (op \<subseteq>)"
kuncar@53012
   202
  unfolding subset_eq [abs_def] by transfer_prover
kuncar@53012
   203
kuncar@53012
   204
lemma right_total_UNIV_transfer[transfer_rule]: 
kuncar@53012
   205
  assumes "right_total A"
kuncar@53012
   206
  shows "(set_rel A) (Collect (Domainp A)) UNIV"
kuncar@53012
   207
  using assms unfolding right_total_def set_rel_def Domainp_iff by blast
kuncar@53012
   208
kuncar@53012
   209
lemma UNIV_transfer [transfer_rule]:
kuncar@53012
   210
  assumes "bi_total A"
kuncar@53012
   211
  shows "(set_rel A) UNIV UNIV"
kuncar@53012
   212
  using assms unfolding set_rel_def bi_total_def by simp
kuncar@53012
   213
kuncar@53012
   214
lemma right_total_Compl_transfer [transfer_rule]:
kuncar@53012
   215
  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
kuncar@53012
   216
  shows "(set_rel A ===> set_rel A) (\<lambda>S. uminus S \<inter> Collect (Domainp A)) uminus"
kuncar@53012
   217
  unfolding Compl_eq [abs_def]
kuncar@53012
   218
  by (subst Collect_conj_eq[symmetric]) transfer_prover
kuncar@53012
   219
kuncar@53012
   220
lemma Compl_transfer [transfer_rule]:
kuncar@53012
   221
  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
kuncar@53012
   222
  shows "(set_rel A ===> set_rel A) uminus uminus"
kuncar@53012
   223
  unfolding Compl_eq [abs_def] by transfer_prover
kuncar@53012
   224
kuncar@53012
   225
lemma right_total_Inter_transfer [transfer_rule]:
kuncar@53012
   226
  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
kuncar@53012
   227
  shows "(set_rel (set_rel A) ===> set_rel A) (\<lambda>S. Inter S \<inter> Collect (Domainp A)) Inter"
kuncar@53012
   228
  unfolding Inter_eq[abs_def]
kuncar@53012
   229
  by (subst Collect_conj_eq[symmetric]) transfer_prover
kuncar@53012
   230
kuncar@53012
   231
lemma Inter_transfer [transfer_rule]:
kuncar@53012
   232
  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
kuncar@53012
   233
  shows "(set_rel (set_rel A) ===> set_rel A) Inter Inter"
kuncar@53012
   234
  unfolding Inter_eq [abs_def] by transfer_prover
kuncar@53012
   235
kuncar@53012
   236
lemma filter_transfer [transfer_rule]:
kuncar@53012
   237
  assumes [transfer_rule]: "bi_unique A"
kuncar@53012
   238
  shows "((A ===> op=) ===> set_rel A ===> set_rel A) Set.filter Set.filter"
kuncar@53012
   239
  unfolding Set.filter_def[abs_def] fun_rel_def set_rel_def by blast
kuncar@53012
   240
kuncar@53012
   241
lemma bi_unique_set_rel_lemma:
kuncar@53012
   242
  assumes "bi_unique R" and "set_rel R X Y"
kuncar@53012
   243
  obtains f where "Y = image f X" and "inj_on f X" and "\<forall>x\<in>X. R x (f x)"
kuncar@53012
   244
proof
kuncar@53012
   245
  let ?f = "\<lambda>x. THE y. R x y"
kuncar@53012
   246
  from assms show f: "\<forall>x\<in>X. R x (?f x)"
kuncar@53012
   247
    apply (clarsimp simp add: set_rel_def)
kuncar@53012
   248
    apply (drule (1) bspec, clarify)
kuncar@53012
   249
    apply (rule theI2, assumption)
kuncar@53012
   250
    apply (simp add: bi_unique_def)
kuncar@53012
   251
    apply assumption
kuncar@53012
   252
    done
kuncar@53012
   253
  from assms show "Y = image ?f X"
kuncar@53012
   254
    apply safe
kuncar@53012
   255
    apply (clarsimp simp add: set_rel_def)
kuncar@53012
   256
    apply (drule (1) bspec, clarify)
kuncar@53012
   257
    apply (rule image_eqI)
kuncar@53012
   258
    apply (rule the_equality [symmetric], assumption)
kuncar@53012
   259
    apply (simp add: bi_unique_def)
kuncar@53012
   260
    apply assumption
kuncar@53012
   261
    apply (clarsimp simp add: set_rel_def)
kuncar@53012
   262
    apply (frule (1) bspec, clarify)
kuncar@53012
   263
    apply (rule theI2, assumption)
kuncar@53012
   264
    apply (clarsimp simp add: bi_unique_def)
kuncar@53012
   265
    apply (simp add: bi_unique_def, metis)
kuncar@53012
   266
    done
kuncar@53012
   267
  show "inj_on ?f X"
kuncar@53012
   268
    apply (rule inj_onI)
kuncar@53012
   269
    apply (drule f [rule_format])
kuncar@53012
   270
    apply (drule f [rule_format])
kuncar@53012
   271
    apply (simp add: assms(1) [unfolded bi_unique_def])
kuncar@53012
   272
    done
kuncar@53012
   273
qed
kuncar@53012
   274
kuncar@53012
   275
lemma finite_transfer [transfer_rule]:
kuncar@53012
   276
  "bi_unique A \<Longrightarrow> (set_rel A ===> op =) finite finite"
kuncar@53012
   277
  by (rule fun_relI, erule (1) bi_unique_set_rel_lemma,
kuncar@53012
   278
    auto dest: finite_imageD)
kuncar@53012
   279
kuncar@53012
   280
lemma card_transfer [transfer_rule]:
kuncar@53012
   281
  "bi_unique A \<Longrightarrow> (set_rel A ===> op =) card card"
kuncar@53012
   282
  by (rule fun_relI, erule (1) bi_unique_set_rel_lemma, simp add: card_image)
kuncar@53012
   283
Andreas@53927
   284
lemma vimage_parametric [transfer_rule]:
Andreas@53927
   285
  assumes [transfer_rule]: "bi_total A" "bi_unique B"
Andreas@53927
   286
  shows "((A ===> B) ===> set_rel B ===> set_rel A) vimage vimage"
Andreas@53927
   287
unfolding vimage_def[abs_def] by transfer_prover
Andreas@53927
   288
Andreas@53927
   289
lemma setsum_parametric [transfer_rule]:
Andreas@53927
   290
  assumes "bi_unique A"
Andreas@53927
   291
  shows "((A ===> op =) ===> set_rel A ===> op =) setsum setsum"
Andreas@53927
   292
proof(rule fun_relI)+
Andreas@53927
   293
  fix f :: "'a \<Rightarrow> 'c" and g S T
Andreas@53927
   294
  assume fg: "(A ===> op =) f g"
Andreas@53927
   295
    and ST: "set_rel A S T"
Andreas@53927
   296
  show "setsum f S = setsum g T"
Andreas@53927
   297
  proof(rule setsum_reindex_cong)
Andreas@53927
   298
    let ?f = "\<lambda>t. THE s. A s t"
Andreas@53927
   299
    show "S = ?f ` T"
Andreas@53927
   300
      by(blast dest: set_relD1[OF ST] set_relD2[OF ST] bi_uniqueDl[OF assms] 
Andreas@53927
   301
           intro: rev_image_eqI the_equality[symmetric] subst[rotated, where P="\<lambda>x. x \<in> S"])
Andreas@53927
   302
Andreas@53927
   303
    show "inj_on ?f T"
Andreas@53927
   304
    proof(rule inj_onI)
Andreas@53927
   305
      fix t1 t2
Andreas@53927
   306
      assume "t1 \<in> T" "t2 \<in> T" "?f t1 = ?f t2"
Andreas@53927
   307
      from ST `t1 \<in> T` obtain s1 where "A s1 t1" "s1 \<in> S" by(auto dest: set_relD2)
Andreas@53927
   308
      hence "?f t1 = s1" by(auto dest: bi_uniqueDl[OF assms])
Andreas@53927
   309
      moreover
Andreas@53927
   310
      from ST `t2 \<in> T` obtain s2 where "A s2 t2" "s2 \<in> S" by(auto dest: set_relD2)
Andreas@53927
   311
      hence "?f t2 = s2" by(auto dest: bi_uniqueDl[OF assms])
Andreas@53927
   312
      ultimately have "s1 = s2" using `?f t1 = ?f t2` by simp
Andreas@53927
   313
      with `A s1 t1` `A s2 t2` show "t1 = t2" by(auto dest: bi_uniqueDr[OF assms])
Andreas@53927
   314
    qed
Andreas@53927
   315
Andreas@53927
   316
    fix t
Andreas@53927
   317
    assume "t \<in> T"
Andreas@53927
   318
    with ST obtain s where "A s t" "s \<in> S" by(auto dest: set_relD2)
Andreas@53927
   319
    hence "?f t = s" by(auto dest: bi_uniqueDl[OF assms])
Andreas@53927
   320
    moreover from fg `A s t` have "f s = g t" by(rule fun_relD)
Andreas@53927
   321
    ultimately show "g t = f (?f t)" by simp
Andreas@53927
   322
  qed
Andreas@53927
   323
qed
Andreas@53927
   324
kuncar@53012
   325
end
kuncar@53012
   326
kuncar@53012
   327
end