src/HOL/Library/Code_Index.thy
author haftmann
Thu Sep 25 10:17:22 2008 +0200 (2008-09-25)
changeset 28351 abfc66969d1f
parent 28346 b8390cd56b8f
child 28562 4e74209f113e
permissions -rw-r--r--
non left-linear equations for nbe
haftmann@24999
     1
(*  ID:         $Id$
haftmann@24999
     2
    Author:     Florian Haftmann, TU Muenchen
haftmann@24999
     3
*)
haftmann@24999
     4
haftmann@24999
     5
header {* Type of indices *}
haftmann@24999
     6
haftmann@24999
     7
theory Code_Index
haftmann@28228
     8
imports Plain "~~/src/HOL/Code_Eval" "~~/src/HOL/Presburger"
haftmann@24999
     9
begin
haftmann@24999
    10
haftmann@24999
    11
text {*
haftmann@25767
    12
  Indices are isomorphic to HOL @{typ nat} but
haftmann@27104
    13
  mapped to target-language builtin integers.
haftmann@24999
    14
*}
haftmann@24999
    15
haftmann@24999
    16
subsection {* Datatype of indices *}
haftmann@24999
    17
haftmann@26140
    18
typedef index = "UNIV \<Colon> nat set"
haftmann@26140
    19
  morphisms nat_of_index index_of_nat by rule
haftmann@24999
    20
haftmann@26140
    21
lemma index_of_nat_nat_of_index [simp]:
haftmann@26140
    22
  "index_of_nat (nat_of_index k) = k"
haftmann@26140
    23
  by (rule nat_of_index_inverse)
haftmann@24999
    24
haftmann@26140
    25
lemma nat_of_index_index_of_nat [simp]:
haftmann@26140
    26
  "nat_of_index (index_of_nat n) = n"
haftmann@26140
    27
  by (rule index_of_nat_inverse) 
haftmann@26140
    28
    (unfold index_def, rule UNIV_I)
haftmann@24999
    29
haftmann@24999
    30
lemma index:
haftmann@25767
    31
  "(\<And>n\<Colon>index. PROP P n) \<equiv> (\<And>n\<Colon>nat. PROP P (index_of_nat n))"
haftmann@24999
    32
proof
haftmann@25767
    33
  fix n :: nat
haftmann@25767
    34
  assume "\<And>n\<Colon>index. PROP P n"
haftmann@25767
    35
  then show "PROP P (index_of_nat n)" .
haftmann@24999
    36
next
haftmann@25767
    37
  fix n :: index
haftmann@25767
    38
  assume "\<And>n\<Colon>nat. PROP P (index_of_nat n)"
haftmann@25767
    39
  then have "PROP P (index_of_nat (nat_of_index n))" .
haftmann@25767
    40
  then show "PROP P n" by simp
haftmann@24999
    41
qed
haftmann@24999
    42
haftmann@26140
    43
lemma index_case:
haftmann@26140
    44
  assumes "\<And>n. k = index_of_nat n \<Longrightarrow> P"
haftmann@26140
    45
  shows P
haftmann@26140
    46
  by (rule assms [of "nat_of_index k"]) simp
haftmann@26140
    47
wenzelm@26304
    48
lemma index_induct_raw:
haftmann@26140
    49
  assumes "\<And>n. P (index_of_nat n)"
haftmann@26140
    50
  shows "P k"
haftmann@26140
    51
proof -
haftmann@26140
    52
  from assms have "P (index_of_nat (nat_of_index k))" .
haftmann@26140
    53
  then show ?thesis by simp
haftmann@26140
    54
qed
haftmann@26140
    55
haftmann@26140
    56
lemma nat_of_index_inject [simp]:
haftmann@26140
    57
  "nat_of_index k = nat_of_index l \<longleftrightarrow> k = l"
haftmann@26140
    58
  by (rule nat_of_index_inject)
haftmann@26140
    59
haftmann@26140
    60
lemma index_of_nat_inject [simp]:
haftmann@26140
    61
  "index_of_nat n = index_of_nat m \<longleftrightarrow> n = m"
haftmann@26140
    62
  by (auto intro!: index_of_nat_inject simp add: index_def)
haftmann@26140
    63
haftmann@26140
    64
instantiation index :: zero
haftmann@26140
    65
begin
haftmann@26140
    66
haftmann@26140
    67
definition [simp, code func del]:
haftmann@26140
    68
  "0 = index_of_nat 0"
haftmann@26140
    69
haftmann@26140
    70
instance ..
haftmann@26140
    71
haftmann@26140
    72
end
haftmann@26140
    73
haftmann@26140
    74
definition [simp]:
haftmann@26140
    75
  "Suc_index k = index_of_nat (Suc (nat_of_index k))"
haftmann@26140
    76
haftmann@27104
    77
rep_datatype "0 \<Colon> index" Suc_index
haftmann@26140
    78
proof -
haftmann@27104
    79
  fix P :: "index \<Rightarrow> bool"
haftmann@27104
    80
  fix k :: index
haftmann@26140
    81
  assume "P 0" then have init: "P (index_of_nat 0)" by simp
haftmann@26140
    82
  assume "\<And>k. P k \<Longrightarrow> P (Suc_index k)"
haftmann@27104
    83
    then have "\<And>n. P (index_of_nat n) \<Longrightarrow> P (Suc_index (index_of_nat n))" .
haftmann@26140
    84
    then have step: "\<And>n. P (index_of_nat n) \<Longrightarrow> P (index_of_nat (Suc n))" by simp
haftmann@26140
    85
  from init step have "P (index_of_nat (nat_of_index k))"
haftmann@26140
    86
    by (induct "nat_of_index k") simp_all
haftmann@26140
    87
  then show "P k" by simp
haftmann@27104
    88
qed simp_all
haftmann@26140
    89
haftmann@26140
    90
lemmas [code func del] = index.recs index.cases
haftmann@26140
    91
haftmann@26140
    92
declare index_case [case_names nat, cases type: index]
haftmann@27104
    93
declare index.induct [case_names nat, induct type: index]
haftmann@26140
    94
haftmann@26140
    95
lemma [code func]:
haftmann@26140
    96
  "index_size = nat_of_index"
haftmann@26140
    97
proof (rule ext)
haftmann@26140
    98
  fix k
haftmann@26140
    99
  have "index_size k = nat_size (nat_of_index k)"
haftmann@26140
   100
    by (induct k rule: index.induct) (simp_all del: zero_index_def Suc_index_def, simp_all)
haftmann@26140
   101
  also have "nat_size (nat_of_index k) = nat_of_index k" by (induct "nat_of_index k") simp_all
haftmann@26140
   102
  finally show "index_size k = nat_of_index k" .
haftmann@26140
   103
qed
haftmann@26140
   104
haftmann@26140
   105
lemma [code func]:
haftmann@26140
   106
  "size = nat_of_index"
haftmann@26140
   107
proof (rule ext)
haftmann@26140
   108
  fix k
haftmann@26140
   109
  show "size k = nat_of_index k"
haftmann@26140
   110
  by (induct k) (simp_all del: zero_index_def Suc_index_def, simp_all)
haftmann@26140
   111
qed
haftmann@26140
   112
haftmann@26140
   113
lemma [code func]:
haftmann@28346
   114
  "eq_class.eq k l \<longleftrightarrow> eq_class.eq (nat_of_index k) (nat_of_index l)"
haftmann@28346
   115
  by (cases k, cases l) (simp add: eq)
haftmann@24999
   116
haftmann@28351
   117
lemma [code nbe]:
haftmann@28351
   118
  "eq_class.eq (k::index) k \<longleftrightarrow> True"
haftmann@28351
   119
  by (rule HOL.eq_refl)
haftmann@28351
   120
haftmann@24999
   121
haftmann@25767
   122
subsection {* Indices as datatype of ints *}
haftmann@25767
   123
haftmann@25767
   124
instantiation index :: number
haftmann@25767
   125
begin
haftmann@24999
   126
haftmann@25767
   127
definition
haftmann@25767
   128
  "number_of = index_of_nat o nat"
haftmann@25767
   129
haftmann@25767
   130
instance ..
haftmann@25767
   131
haftmann@25767
   132
end
haftmann@24999
   133
haftmann@26264
   134
lemma nat_of_index_number [simp]:
haftmann@26264
   135
  "nat_of_index (number_of k) = number_of k"
haftmann@26264
   136
  by (simp add: number_of_index_def nat_number_of_def number_of_is_id)
haftmann@26264
   137
haftmann@24999
   138
code_datatype "number_of \<Colon> int \<Rightarrow> index"
haftmann@24999
   139
haftmann@24999
   140
haftmann@24999
   141
subsection {* Basic arithmetic *}
haftmann@24999
   142
haftmann@25767
   143
instantiation index :: "{minus, ordered_semidom, Divides.div, linorder}"
haftmann@25767
   144
begin
haftmann@24999
   145
haftmann@24999
   146
lemma zero_index_code [code inline, code func]:
haftmann@24999
   147
  "(0\<Colon>index) = Numeral0"
haftmann@25767
   148
  by (simp add: number_of_index_def Pls_def)
haftmann@25967
   149
lemma [code post]: "Numeral0 = (0\<Colon>index)"
haftmann@25967
   150
  using zero_index_code ..
haftmann@25767
   151
haftmann@25767
   152
definition [simp, code func del]:
haftmann@25767
   153
  "(1\<Colon>index) = index_of_nat 1"
haftmann@24999
   154
haftmann@24999
   155
lemma one_index_code [code inline, code func]:
haftmann@24999
   156
  "(1\<Colon>index) = Numeral1"
huffman@26086
   157
  by (simp add: number_of_index_def Pls_def Bit1_def)
haftmann@25967
   158
lemma [code post]: "Numeral1 = (1\<Colon>index)"
haftmann@25967
   159
  using one_index_code ..
haftmann@25767
   160
haftmann@25767
   161
definition [simp, code func del]:
haftmann@25767
   162
  "n + m = index_of_nat (nat_of_index n + nat_of_index m)"
haftmann@25767
   163
haftmann@25767
   164
lemma plus_index_code [code func]:
haftmann@25767
   165
  "index_of_nat n + index_of_nat m = index_of_nat (n + m)"
haftmann@25767
   166
  by simp
haftmann@25767
   167
haftmann@25767
   168
definition [simp, code func del]:
haftmann@25767
   169
  "n - m = index_of_nat (nat_of_index n - nat_of_index m)"
haftmann@25767
   170
haftmann@25767
   171
definition [simp, code func del]:
haftmann@25767
   172
  "n * m = index_of_nat (nat_of_index n * nat_of_index m)"
haftmann@25767
   173
haftmann@25767
   174
lemma times_index_code [code func]:
haftmann@25767
   175
  "index_of_nat n * index_of_nat m = index_of_nat (n * m)"
haftmann@24999
   176
  by simp
haftmann@24999
   177
haftmann@25767
   178
definition [simp, code func del]:
haftmann@25767
   179
  "n div m = index_of_nat (nat_of_index n div nat_of_index m)"
haftmann@24999
   180
haftmann@25767
   181
definition [simp, code func del]:
haftmann@25767
   182
  "n mod m = index_of_nat (nat_of_index n mod nat_of_index m)"
haftmann@24999
   183
haftmann@25767
   184
lemma div_index_code [code func]:
haftmann@25767
   185
  "index_of_nat n div index_of_nat m = index_of_nat (n div m)"
haftmann@25767
   186
  by simp
haftmann@25335
   187
haftmann@25767
   188
lemma mod_index_code [code func]:
haftmann@25767
   189
  "index_of_nat n mod index_of_nat m = index_of_nat (n mod m)"
haftmann@25767
   190
  by simp
haftmann@24999
   191
haftmann@25767
   192
definition [simp, code func del]:
haftmann@25767
   193
  "n \<le> m \<longleftrightarrow> nat_of_index n \<le> nat_of_index m"
haftmann@24999
   194
haftmann@25767
   195
definition [simp, code func del]:
haftmann@25767
   196
  "n < m \<longleftrightarrow> nat_of_index n < nat_of_index m"
haftmann@24999
   197
haftmann@25767
   198
lemma less_eq_index_code [code func]:
haftmann@25767
   199
  "index_of_nat n \<le> index_of_nat m \<longleftrightarrow> n \<le> m"
haftmann@25767
   200
  by simp
haftmann@24999
   201
haftmann@25767
   202
lemma less_index_code [code func]:
haftmann@25767
   203
  "index_of_nat n < index_of_nat m \<longleftrightarrow> n < m"
haftmann@25767
   204
  by simp
haftmann@24999
   205
haftmann@25767
   206
instance by default (auto simp add: left_distrib index)
haftmann@25767
   207
haftmann@25767
   208
end
haftmann@24999
   209
haftmann@26140
   210
lemma Suc_index_minus_one: "Suc_index n - 1 = n" by simp
haftmann@26140
   211
haftmann@25928
   212
lemma index_of_nat_code [code]:
haftmann@25918
   213
  "index_of_nat = of_nat"
haftmann@25918
   214
proof
haftmann@25918
   215
  fix n :: nat
haftmann@25918
   216
  have "of_nat n = index_of_nat n"
haftmann@25918
   217
    by (induct n) simp_all
haftmann@25918
   218
  then show "index_of_nat n = of_nat n"
haftmann@25918
   219
    by (rule sym)
haftmann@25918
   220
qed
haftmann@25918
   221
haftmann@25928
   222
lemma index_not_eq_zero: "i \<noteq> index_of_nat 0 \<longleftrightarrow> i \<ge> 1"
haftmann@25928
   223
  by (cases i) auto
haftmann@25928
   224
haftmann@25928
   225
definition
haftmann@25928
   226
  nat_of_index_aux :: "index \<Rightarrow> nat \<Rightarrow> nat"
haftmann@25928
   227
where
haftmann@25928
   228
  "nat_of_index_aux i n = nat_of_index i + n"
haftmann@25928
   229
haftmann@25928
   230
lemma nat_of_index_aux_code [code]:
haftmann@25928
   231
  "nat_of_index_aux i n = (if i = 0 then n else nat_of_index_aux (i - 1) (Suc n))"
haftmann@25928
   232
  by (auto simp add: nat_of_index_aux_def index_not_eq_zero)
haftmann@25928
   233
haftmann@25928
   234
lemma nat_of_index_code [code]:
haftmann@25928
   235
  "nat_of_index i = nat_of_index_aux i 0"
haftmann@25928
   236
  by (simp add: nat_of_index_aux_def)
haftmann@25918
   237
haftmann@24999
   238
krauss@28042
   239
text {* Measure function (for termination proofs) *}
krauss@28042
   240
haftmann@28228
   241
lemma [measure_function]:
haftmann@28228
   242
  "is_measure nat_of_index" by (rule is_measure_trivial)
krauss@28042
   243
haftmann@24999
   244
subsection {* ML interface *}
haftmann@24999
   245
haftmann@24999
   246
ML {*
haftmann@24999
   247
structure Index =
haftmann@24999
   248
struct
haftmann@24999
   249
haftmann@25928
   250
fun mk k = HOLogic.mk_number @{typ index} k;
haftmann@24999
   251
haftmann@24999
   252
end;
haftmann@24999
   253
*}
haftmann@24999
   254
haftmann@24999
   255
haftmann@26009
   256
subsection {* Specialized @{term "op - \<Colon> index \<Rightarrow> index \<Rightarrow> index"},
haftmann@26009
   257
  @{term "op div \<Colon> index \<Rightarrow> index \<Rightarrow> index"} and @{term "op mod \<Colon> index \<Rightarrow> index \<Rightarrow> index"}
haftmann@26009
   258
  operations *}
haftmann@26009
   259
haftmann@26009
   260
definition
haftmann@26009
   261
  minus_index_aux :: "index \<Rightarrow> index \<Rightarrow> index"
haftmann@26009
   262
where
haftmann@26009
   263
  [code func del]: "minus_index_aux = op -"
haftmann@26009
   264
haftmann@26009
   265
lemma [code func]: "op - = minus_index_aux"
haftmann@26009
   266
  using minus_index_aux_def ..
haftmann@26009
   267
haftmann@26009
   268
definition
haftmann@26009
   269
  div_mod_index ::  "index \<Rightarrow> index \<Rightarrow> index \<times> index"
haftmann@26009
   270
where
haftmann@26009
   271
  [code func del]: "div_mod_index n m = (n div m, n mod m)"
haftmann@26009
   272
haftmann@26009
   273
lemma [code func]:
haftmann@26009
   274
  "div_mod_index n m = (if m = 0 then (0, n) else (n div m, n mod m))"
haftmann@26009
   275
  unfolding div_mod_index_def by auto
haftmann@26009
   276
haftmann@26009
   277
lemma [code func]:
haftmann@26009
   278
  "n div m = fst (div_mod_index n m)"
haftmann@26009
   279
  unfolding div_mod_index_def by simp
haftmann@26009
   280
haftmann@26009
   281
lemma [code func]:
haftmann@26009
   282
  "n mod m = snd (div_mod_index n m)"
haftmann@26009
   283
  unfolding div_mod_index_def by simp
haftmann@26009
   284
haftmann@26009
   285
haftmann@28228
   286
subsection {* Code generator setup *}
haftmann@24999
   287
haftmann@25767
   288
text {* Implementation of indices by bounded integers *}
haftmann@25767
   289
haftmann@24999
   290
code_type index
haftmann@24999
   291
  (SML "int")
haftmann@24999
   292
  (OCaml "int")
haftmann@25967
   293
  (Haskell "Int")
haftmann@24999
   294
haftmann@24999
   295
code_instance index :: eq
haftmann@24999
   296
  (Haskell -)
haftmann@24999
   297
haftmann@24999
   298
setup {*
haftmann@25928
   299
  fold (Numeral.add_code @{const_name number_index_inst.number_of_index}
haftmann@25928
   300
    false false) ["SML", "OCaml", "Haskell"]
haftmann@24999
   301
*}
haftmann@24999
   302
haftmann@25918
   303
code_reserved SML Int int
haftmann@25918
   304
code_reserved OCaml Pervasives int
haftmann@24999
   305
haftmann@24999
   306
code_const "op + \<Colon> index \<Rightarrow> index \<Rightarrow> index"
haftmann@25928
   307
  (SML "Int.+/ ((_),/ (_))")
haftmann@25967
   308
  (OCaml "Pervasives.( + )")
haftmann@24999
   309
  (Haskell infixl 6 "+")
haftmann@24999
   310
haftmann@26009
   311
code_const "minus_index_aux \<Colon> index \<Rightarrow> index \<Rightarrow> index"
haftmann@25918
   312
  (SML "Int.max/ (_/ -/ _,/ 0 : int)")
haftmann@25918
   313
  (OCaml "Pervasives.max/ (_/ -/ _)/ (0 : int) ")
haftmann@25918
   314
  (Haskell "max/ (_/ -/ _)/ (0 :: Int)")
haftmann@24999
   315
haftmann@24999
   316
code_const "op * \<Colon> index \<Rightarrow> index \<Rightarrow> index"
haftmann@25928
   317
  (SML "Int.*/ ((_),/ (_))")
haftmann@25967
   318
  (OCaml "Pervasives.( * )")
haftmann@24999
   319
  (Haskell infixl 7 "*")
haftmann@24999
   320
haftmann@26009
   321
code_const div_mod_index
haftmann@26009
   322
  (SML "(fn n => fn m =>/ (n div m, n mod m))")
haftmann@26009
   323
  (OCaml "(fun n -> fun m ->/ (n '/ m, n mod m))")
haftmann@26009
   324
  (Haskell "divMod")
haftmann@25928
   325
haftmann@28346
   326
code_const "eq_class.eq \<Colon> index \<Rightarrow> index \<Rightarrow> bool"
haftmann@24999
   327
  (SML "!((_ : Int.int) = _)")
haftmann@25967
   328
  (OCaml "!((_ : int) = _)")
haftmann@24999
   329
  (Haskell infixl 4 "==")
haftmann@24999
   330
haftmann@24999
   331
code_const "op \<le> \<Colon> index \<Rightarrow> index \<Rightarrow> bool"
haftmann@25928
   332
  (SML "Int.<=/ ((_),/ (_))")
haftmann@25967
   333
  (OCaml "!((_ : int) <= _)")
haftmann@24999
   334
  (Haskell infix 4 "<=")
haftmann@24999
   335
haftmann@24999
   336
code_const "op < \<Colon> index \<Rightarrow> index \<Rightarrow> bool"
haftmann@25928
   337
  (SML "Int.</ ((_),/ (_))")
haftmann@25967
   338
  (OCaml "!((_ : int) < _)")
haftmann@24999
   339
  (Haskell infix 4 "<")
haftmann@24999
   340
haftmann@28228
   341
text {* Evaluation *}
haftmann@28228
   342
haftmann@28228
   343
lemma [code func, code func del]:
haftmann@28228
   344
  "(Code_Eval.term_of \<Colon> index \<Rightarrow> term) = Code_Eval.term_of" ..
haftmann@28228
   345
haftmann@28228
   346
code_const "Code_Eval.term_of \<Colon> index \<Rightarrow> term"
haftmann@28228
   347
  (SML "HOLogic.mk'_number/ HOLogic.indexT/ (IntInf.fromInt/ _)")
haftmann@28228
   348
haftmann@24999
   349
end