src/HOL/Lattices.thy
author haftmann
Thu May 24 08:37:39 2007 +0200 (2007-05-24)
changeset 23087 ad7244663431
parent 23018 1d29bc31b0cb
child 23389 aaca6a8e5414
permissions -rw-r--r--
rudimentary class target implementation
haftmann@21249
     1
(*  Title:      HOL/Lattices.thy
haftmann@21249
     2
    ID:         $Id$
haftmann@21249
     3
    Author:     Tobias Nipkow
haftmann@21249
     4
*)
haftmann@21249
     5
haftmann@22454
     6
header {* Abstract lattices *}
haftmann@21249
     7
haftmann@21249
     8
theory Lattices
haftmann@21249
     9
imports Orderings
haftmann@21249
    10
begin
haftmann@21249
    11
haftmann@21249
    12
subsection{* Lattices *}
haftmann@21249
    13
haftmann@22454
    14
text{*
haftmann@22454
    15
  This theory of lattices only defines binary sup and inf
haftmann@22916
    16
  operations. The extension to complete lattices is done in theory
haftmann@22916
    17
  @{text FixedPoint}.
haftmann@22454
    18
*}
haftmann@21249
    19
haftmann@22422
    20
class lower_semilattice = order +
haftmann@21249
    21
  fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)
haftmann@22737
    22
  assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x"
haftmann@22737
    23
  and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y"
nipkow@21733
    24
  and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"
haftmann@21249
    25
haftmann@22422
    26
class upper_semilattice = order +
haftmann@21249
    27
  fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)
haftmann@22737
    28
  assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y"
haftmann@22737
    29
  and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y"
nipkow@21733
    30
  and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x"
haftmann@21249
    31
haftmann@22422
    32
class lattice = lower_semilattice + upper_semilattice
haftmann@21249
    33
nipkow@21733
    34
subsubsection{* Intro and elim rules*}
nipkow@21733
    35
nipkow@21733
    36
context lower_semilattice
nipkow@21733
    37
begin
haftmann@21249
    38
haftmann@22422
    39
lemmas antisym_intro [intro!] = antisym
haftmann@22422
    40
lemmas (in -) [rule del] = antisym_intro
haftmann@21249
    41
nipkow@21734
    42
lemma le_infI1[intro]: "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
nipkow@21733
    43
apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> a")
haftmann@22384
    44
 apply(blast intro: order_trans)
nipkow@21733
    45
apply simp
nipkow@21733
    46
done
haftmann@22422
    47
lemmas (in -) [rule del] = le_infI1
haftmann@21249
    48
nipkow@21734
    49
lemma le_infI2[intro]: "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
nipkow@21733
    50
apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> b")
haftmann@22384
    51
 apply(blast intro: order_trans)
nipkow@21733
    52
apply simp
nipkow@21733
    53
done
haftmann@22422
    54
lemmas (in -) [rule del] = le_infI2
nipkow@21733
    55
nipkow@21734
    56
lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b"
nipkow@21733
    57
by(blast intro: inf_greatest)
haftmann@22422
    58
lemmas (in -) [rule del] = le_infI
haftmann@21249
    59
haftmann@22422
    60
lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@22422
    61
  by (blast intro: order_trans)
haftmann@22422
    62
lemmas (in -) [rule del] = le_infE
haftmann@21249
    63
nipkow@21734
    64
lemma le_inf_iff [simp]:
nipkow@21733
    65
 "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)"
nipkow@21733
    66
by blast
nipkow@21733
    67
nipkow@21734
    68
lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)"
nipkow@22168
    69
by(blast dest:eq_iff[THEN iffD1])
haftmann@21249
    70
nipkow@21733
    71
end
nipkow@21733
    72
nipkow@21733
    73
nipkow@21733
    74
context upper_semilattice
nipkow@21733
    75
begin
haftmann@21249
    76
haftmann@22422
    77
lemmas antisym_intro [intro!] = antisym
haftmann@22422
    78
lemmas (in -) [rule del] = antisym_intro
haftmann@21249
    79
nipkow@21734
    80
lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
nipkow@21733
    81
apply(subgoal_tac "a \<sqsubseteq> a \<squnion> b")
haftmann@22384
    82
 apply(blast intro: order_trans)
nipkow@21733
    83
apply simp
nipkow@21733
    84
done
haftmann@22422
    85
lemmas (in -) [rule del] = le_supI1
haftmann@21249
    86
nipkow@21734
    87
lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
nipkow@21733
    88
apply(subgoal_tac "b \<sqsubseteq> a \<squnion> b")
haftmann@22384
    89
 apply(blast intro: order_trans)
nipkow@21733
    90
apply simp
nipkow@21733
    91
done
haftmann@22422
    92
lemmas (in -) [rule del] = le_supI2
nipkow@21733
    93
nipkow@21734
    94
lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x"
nipkow@21733
    95
by(blast intro: sup_least)
haftmann@22422
    96
lemmas (in -) [rule del] = le_supI
haftmann@21249
    97
nipkow@21734
    98
lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@22422
    99
  by (blast intro: order_trans)
haftmann@22422
   100
lemmas (in -) [rule del] = le_supE
haftmann@22422
   101
haftmann@21249
   102
nipkow@21734
   103
lemma ge_sup_conv[simp]:
nipkow@21733
   104
 "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)"
nipkow@21733
   105
by blast
nipkow@21733
   106
nipkow@21734
   107
lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"
nipkow@22168
   108
by(blast dest:eq_iff[THEN iffD1])
nipkow@21734
   109
nipkow@21733
   110
end
nipkow@21733
   111
nipkow@21733
   112
nipkow@21733
   113
subsubsection{* Equational laws *}
haftmann@21249
   114
haftmann@21249
   115
nipkow@21733
   116
context lower_semilattice
nipkow@21733
   117
begin
nipkow@21733
   118
nipkow@21733
   119
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"
nipkow@21733
   120
by blast
nipkow@21733
   121
nipkow@21733
   122
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
nipkow@21733
   123
by blast
nipkow@21733
   124
nipkow@21733
   125
lemma inf_idem[simp]: "x \<sqinter> x = x"
nipkow@21733
   126
by blast
nipkow@21733
   127
nipkow@21733
   128
lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
nipkow@21733
   129
by blast
nipkow@21733
   130
nipkow@21733
   131
lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
nipkow@21733
   132
by blast
nipkow@21733
   133
nipkow@21733
   134
lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
nipkow@21733
   135
by blast
nipkow@21733
   136
nipkow@21733
   137
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"
nipkow@21733
   138
by blast
nipkow@21733
   139
nipkow@21733
   140
lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem
nipkow@21733
   141
nipkow@21733
   142
end
nipkow@21733
   143
nipkow@21733
   144
nipkow@21733
   145
context upper_semilattice
nipkow@21733
   146
begin
haftmann@21249
   147
nipkow@21733
   148
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)"
nipkow@21733
   149
by blast
nipkow@21733
   150
nipkow@21733
   151
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
nipkow@21733
   152
by blast
nipkow@21733
   153
nipkow@21733
   154
lemma sup_idem[simp]: "x \<squnion> x = x"
nipkow@21733
   155
by blast
nipkow@21733
   156
nipkow@21733
   157
lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
nipkow@21733
   158
by blast
nipkow@21733
   159
nipkow@21733
   160
lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
nipkow@21733
   161
by blast
nipkow@21733
   162
nipkow@21733
   163
lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
nipkow@21733
   164
by blast
haftmann@21249
   165
nipkow@21733
   166
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"
nipkow@21733
   167
by blast
nipkow@21733
   168
nipkow@21733
   169
lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem
nipkow@21733
   170
nipkow@21733
   171
end
haftmann@21249
   172
nipkow@21733
   173
context lattice
nipkow@21733
   174
begin
nipkow@21733
   175
nipkow@21733
   176
lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x"
nipkow@21733
   177
by(blast intro: antisym inf_le1 inf_greatest sup_ge1)
nipkow@21733
   178
nipkow@21733
   179
lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x"
nipkow@21733
   180
by(blast intro: antisym sup_ge1 sup_least inf_le1)
nipkow@21733
   181
nipkow@21734
   182
lemmas ACI = inf_ACI sup_ACI
nipkow@21734
   183
haftmann@22454
   184
lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2
haftmann@22454
   185
nipkow@21734
   186
text{* Towards distributivity *}
haftmann@21249
   187
nipkow@21734
   188
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)"
nipkow@21734
   189
by blast
nipkow@21734
   190
nipkow@21734
   191
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)"
nipkow@21734
   192
by blast
nipkow@21734
   193
nipkow@21734
   194
nipkow@21734
   195
text{* If you have one of them, you have them all. *}
haftmann@21249
   196
nipkow@21733
   197
lemma distrib_imp1:
haftmann@21249
   198
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   199
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   200
proof-
haftmann@21249
   201
  have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb)
haftmann@21249
   202
  also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc)
haftmann@21249
   203
  also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"
haftmann@21249
   204
    by(simp add:inf_sup_absorb inf_commute)
haftmann@21249
   205
  also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D)
haftmann@21249
   206
  finally show ?thesis .
haftmann@21249
   207
qed
haftmann@21249
   208
nipkow@21733
   209
lemma distrib_imp2:
haftmann@21249
   210
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   211
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   212
proof-
haftmann@21249
   213
  have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb)
haftmann@21249
   214
  also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc)
haftmann@21249
   215
  also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"
haftmann@21249
   216
    by(simp add:sup_inf_absorb sup_commute)
haftmann@21249
   217
  also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D)
haftmann@21249
   218
  finally show ?thesis .
haftmann@21249
   219
qed
haftmann@21249
   220
nipkow@21734
   221
(* seems unused *)
nipkow@21734
   222
lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z"
nipkow@21734
   223
by blast
nipkow@21734
   224
nipkow@21733
   225
end
haftmann@21249
   226
haftmann@21249
   227
haftmann@21249
   228
subsection{* Distributive lattices *}
haftmann@21249
   229
haftmann@22454
   230
class distrib_lattice = lattice +
haftmann@21249
   231
  assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   232
nipkow@21733
   233
context distrib_lattice
nipkow@21733
   234
begin
nipkow@21733
   235
nipkow@21733
   236
lemma sup_inf_distrib2:
haftmann@21249
   237
 "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"
haftmann@21249
   238
by(simp add:ACI sup_inf_distrib1)
haftmann@21249
   239
nipkow@21733
   240
lemma inf_sup_distrib1:
haftmann@21249
   241
 "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   242
by(rule distrib_imp2[OF sup_inf_distrib1])
haftmann@21249
   243
nipkow@21733
   244
lemma inf_sup_distrib2:
haftmann@21249
   245
 "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"
haftmann@21249
   246
by(simp add:ACI inf_sup_distrib1)
haftmann@21249
   247
nipkow@21733
   248
lemmas distrib =
haftmann@21249
   249
  sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2
haftmann@21249
   250
nipkow@21733
   251
end
nipkow@21733
   252
haftmann@21249
   253
haftmann@22454
   254
subsection {* Uniqueness of inf and sup *}
haftmann@22454
   255
haftmann@22737
   256
lemma (in lower_semilattice) inf_unique:
haftmann@22454
   257
  fixes f (infixl "\<triangle>" 70)
haftmann@22737
   258
  assumes le1: "\<And>x y. x \<triangle> y \<^loc>\<le> x" and le2: "\<And>x y. x \<triangle> y \<^loc>\<le> y"
haftmann@22737
   259
  and greatest: "\<And>x y z. x \<^loc>\<le> y \<Longrightarrow> x \<^loc>\<le> z \<Longrightarrow> x \<^loc>\<le> y \<triangle> z"
haftmann@22737
   260
  shows "x \<sqinter> y = x \<triangle> y"
haftmann@22454
   261
proof (rule antisym)
haftmann@22737
   262
  show "x \<triangle> y \<^loc>\<le> x \<sqinter> y" by (rule le_infI) (rule le1 le2)
haftmann@22454
   263
next
haftmann@22737
   264
  have leI: "\<And>x y z. x \<^loc>\<le> y \<Longrightarrow> x \<^loc>\<le> z \<Longrightarrow> x \<^loc>\<le> y \<triangle> z" by (blast intro: greatest)
haftmann@22737
   265
  show "x \<sqinter> y \<^loc>\<le> x \<triangle> y" by (rule leI) simp_all
haftmann@22454
   266
qed
haftmann@22454
   267
haftmann@22737
   268
lemma (in upper_semilattice) sup_unique:
haftmann@22454
   269
  fixes f (infixl "\<nabla>" 70)
haftmann@22737
   270
  assumes ge1 [simp]: "\<And>x y. x \<^loc>\<le> x \<nabla> y" and ge2: "\<And>x y. y \<^loc>\<le> x \<nabla> y"
haftmann@22737
   271
  and least: "\<And>x y z. y \<^loc>\<le> x \<Longrightarrow> z \<^loc>\<le> x \<Longrightarrow> y \<nabla> z \<^loc>\<le> x"
haftmann@22737
   272
  shows "x \<squnion> y = x \<nabla> y"
haftmann@22454
   273
proof (rule antisym)
haftmann@22737
   274
  show "x \<squnion> y \<^loc>\<le> x \<nabla> y" by (rule le_supI) (rule ge1 ge2)
haftmann@22454
   275
next
haftmann@22737
   276
  have leI: "\<And>x y z. x \<^loc>\<le> z \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<nabla> y \<^loc>\<le> z" by (blast intro: least)
haftmann@22737
   277
  show "x \<nabla> y \<^loc>\<le> x \<squnion> y" by (rule leI) simp_all
haftmann@22454
   278
qed
haftmann@22454
   279
  
haftmann@22454
   280
haftmann@22916
   281
subsection {* @{const min}/@{const max} on linear orders as
haftmann@22916
   282
  special case of @{const inf}/@{const sup} *}
haftmann@22916
   283
haftmann@22916
   284
lemma (in linorder) distrib_lattice_min_max:
haftmann@23018
   285
  "distrib_lattice (op \<^loc>\<le>) (op \<^loc><) min max"
haftmann@22916
   286
proof unfold_locales
haftmann@22916
   287
  have aux: "\<And>x y \<Colon> 'a. x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x \<Longrightarrow> x = y"
haftmann@22916
   288
    by (auto simp add: less_le antisym)
haftmann@22916
   289
  fix x y z
haftmann@22916
   290
  show "max x (min y z) = min (max x y) (max x z)"
haftmann@22916
   291
  unfolding min_def max_def
haftmann@22916
   292
    by (auto simp add: intro: antisym, unfold not_le,
haftmann@22916
   293
      auto intro: less_trans le_less_trans aux)
haftmann@22916
   294
qed (auto simp add: min_def max_def not_le less_imp_le)
haftmann@21249
   295
haftmann@21249
   296
interpretation min_max:
haftmann@22454
   297
  distrib_lattice ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max]
haftmann@23087
   298
  by (rule distrib_lattice_min_max [folded ord_class.min ord_class.max])
haftmann@21249
   299
haftmann@22454
   300
lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
haftmann@22454
   301
  by (rule ext)+ auto
nipkow@21733
   302
haftmann@22454
   303
lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
haftmann@22454
   304
  by (rule ext)+ auto
nipkow@21733
   305
haftmann@21249
   306
lemmas le_maxI1 = min_max.sup_ge1
haftmann@21249
   307
lemmas le_maxI2 = min_max.sup_ge2
haftmann@21381
   308
 
haftmann@21249
   309
lemmas max_ac = min_max.sup_assoc min_max.sup_commute
haftmann@22422
   310
  mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute]
haftmann@21249
   311
haftmann@21249
   312
lemmas min_ac = min_max.inf_assoc min_max.inf_commute
haftmann@22422
   313
  mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute]
haftmann@21249
   314
haftmann@22454
   315
text {*
haftmann@22454
   316
  Now we have inherited antisymmetry as an intro-rule on all
haftmann@22454
   317
  linear orders. This is a problem because it applies to bool, which is
haftmann@22454
   318
  undesirable.
haftmann@22454
   319
*}
haftmann@22454
   320
haftmann@22454
   321
lemmas [rule del] = min_max.antisym_intro min_max.le_infI min_max.le_supI
haftmann@22454
   322
  min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2
haftmann@22454
   323
  min_max.le_infI1 min_max.le_infI2
haftmann@22454
   324
haftmann@22454
   325
haftmann@22454
   326
subsection {* Bool as lattice *}
haftmann@22454
   327
haftmann@22454
   328
instance bool :: distrib_lattice
haftmann@22454
   329
  inf_bool_eq: "inf P Q \<equiv> P \<and> Q"
haftmann@22454
   330
  sup_bool_eq: "sup P Q \<equiv> P \<or> Q"
haftmann@22454
   331
  by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def)
haftmann@22454
   332
haftmann@22454
   333
haftmann@22454
   334
text {* duplicates *}
haftmann@22454
   335
haftmann@22454
   336
lemmas inf_aci = inf_ACI
haftmann@22454
   337
lemmas sup_aci = sup_ACI
haftmann@22454
   338
haftmann@21249
   339
end