src/HOL/HOL.thy
author wenzelm
Fri Jan 04 19:29:30 2002 +0100 (2002-01-04)
changeset 12633 ad9277743664
parent 12436 a2df07fefed7
child 12650 fbc17f1e746b
permissions -rw-r--r--
tuned ``syntax (output)'';
clasohm@923
     1
(*  Title:      HOL/HOL.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@11750
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
wenzelm@12386
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
wenzelm@11750
     5
*)
clasohm@923
     6
wenzelm@11750
     7
header {* The basis of Higher-Order Logic *}
clasohm@923
     8
wenzelm@7357
     9
theory HOL = CPure
paulson@11451
    10
files ("HOL_lemmas.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML"):
clasohm@923
    11
wenzelm@2260
    12
wenzelm@11750
    13
subsection {* Primitive logic *}
wenzelm@11750
    14
wenzelm@11750
    15
subsubsection {* Core syntax *}
wenzelm@2260
    16
wenzelm@12338
    17
classes type < logic
wenzelm@12338
    18
defaultsort type
wenzelm@3947
    19
wenzelm@12338
    20
global
clasohm@923
    21
wenzelm@7357
    22
typedecl bool
clasohm@923
    23
clasohm@923
    24
arities
wenzelm@12338
    25
  bool :: type
wenzelm@12338
    26
  fun :: (type, type) type
clasohm@923
    27
wenzelm@11750
    28
judgment
wenzelm@11750
    29
  Trueprop      :: "bool => prop"                   ("(_)" 5)
clasohm@923
    30
wenzelm@11750
    31
consts
wenzelm@7357
    32
  Not           :: "bool => bool"                   ("~ _" [40] 40)
wenzelm@7357
    33
  True          :: bool
wenzelm@7357
    34
  False         :: bool
wenzelm@7357
    35
  If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
wenzelm@3947
    36
  arbitrary     :: 'a
clasohm@923
    37
wenzelm@11432
    38
  The           :: "('a => bool) => 'a"
wenzelm@7357
    39
  All           :: "('a => bool) => bool"           (binder "ALL " 10)
wenzelm@7357
    40
  Ex            :: "('a => bool) => bool"           (binder "EX " 10)
wenzelm@7357
    41
  Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
wenzelm@7357
    42
  Let           :: "['a, 'a => 'b] => 'b"
clasohm@923
    43
wenzelm@7357
    44
  "="           :: "['a, 'a] => bool"               (infixl 50)
wenzelm@7357
    45
  &             :: "[bool, bool] => bool"           (infixr 35)
wenzelm@7357
    46
  "|"           :: "[bool, bool] => bool"           (infixr 30)
wenzelm@7357
    47
  -->           :: "[bool, bool] => bool"           (infixr 25)
clasohm@923
    48
wenzelm@10432
    49
local
wenzelm@10432
    50
wenzelm@2260
    51
wenzelm@11750
    52
subsubsection {* Additional concrete syntax *}
wenzelm@2260
    53
wenzelm@4868
    54
nonterminals
clasohm@923
    55
  letbinds  letbind
clasohm@923
    56
  case_syn  cases_syn
clasohm@923
    57
clasohm@923
    58
syntax
wenzelm@7357
    59
  ~=            :: "['a, 'a] => bool"                    (infixl 50)
wenzelm@11432
    60
  "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
clasohm@923
    61
wenzelm@7357
    62
  "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
wenzelm@7357
    63
  ""            :: "letbind => letbinds"                 ("_")
wenzelm@7357
    64
  "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
wenzelm@7357
    65
  "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
clasohm@923
    66
wenzelm@9060
    67
  "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
wenzelm@9060
    68
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
wenzelm@7357
    69
  ""            :: "case_syn => cases_syn"               ("_")
wenzelm@9060
    70
  "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
clasohm@923
    71
clasohm@923
    72
translations
wenzelm@7238
    73
  "x ~= y"                == "~ (x = y)"
wenzelm@11432
    74
  "THE x. P"              == "The (%x. P)"
clasohm@923
    75
  "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
nipkow@1114
    76
  "let x = a in e"        == "Let a (%x. e)"
clasohm@923
    77
wenzelm@12633
    78
syntax (output)
wenzelm@11687
    79
  "="           :: "['a, 'a] => bool"                    (infix 50)
wenzelm@11687
    80
  "~="          :: "['a, 'a] => bool"                    (infix 50)
wenzelm@2260
    81
wenzelm@12114
    82
syntax (xsymbols)
wenzelm@11687
    83
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
wenzelm@11687
    84
  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
wenzelm@11687
    85
  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
wenzelm@12114
    86
  "op -->"      :: "[bool, bool] => bool"                (infixr "\<longrightarrow>" 25)
wenzelm@11687
    87
  "op ~="       :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@11687
    88
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
wenzelm@11687
    89
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
wenzelm@11687
    90
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
wenzelm@11687
    91
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
wenzelm@9060
    92
(*"_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ \\<orelse> _")*)
wenzelm@2372
    93
wenzelm@12114
    94
syntax (xsymbols output)
wenzelm@11687
    95
  "op ~="       :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@3820
    96
wenzelm@6340
    97
syntax (HTML output)
wenzelm@11687
    98
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
wenzelm@6340
    99
wenzelm@7238
   100
syntax (HOL)
wenzelm@7357
   101
  "ALL "        :: "[idts, bool] => bool"                ("(3! _./ _)" [0, 10] 10)
wenzelm@7357
   102
  "EX "         :: "[idts, bool] => bool"                ("(3? _./ _)" [0, 10] 10)
wenzelm@7357
   103
  "EX! "        :: "[idts, bool] => bool"                ("(3?! _./ _)" [0, 10] 10)
wenzelm@7238
   104
wenzelm@7238
   105
wenzelm@11750
   106
subsubsection {* Axioms and basic definitions *}
wenzelm@2260
   107
wenzelm@7357
   108
axioms
wenzelm@7357
   109
  eq_reflection: "(x=y) ==> (x==y)"
clasohm@923
   110
wenzelm@7357
   111
  refl:         "t = (t::'a)"
wenzelm@7357
   112
  subst:        "[| s = t; P(s) |] ==> P(t::'a)"
paulson@6289
   113
wenzelm@7357
   114
  ext:          "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
wenzelm@11750
   115
    -- {* Extensionality is built into the meta-logic, and this rule expresses *}
wenzelm@11750
   116
    -- {* a related property.  It is an eta-expanded version of the traditional *}
wenzelm@11750
   117
    -- {* rule, and similar to the ABS rule of HOL *}
paulson@6289
   118
wenzelm@11432
   119
  the_eq_trivial: "(THE x. x = a) = (a::'a)"
clasohm@923
   120
wenzelm@7357
   121
  impI:         "(P ==> Q) ==> P-->Q"
wenzelm@7357
   122
  mp:           "[| P-->Q;  P |] ==> Q"
clasohm@923
   123
clasohm@923
   124
defs
wenzelm@7357
   125
  True_def:     "True      == ((%x::bool. x) = (%x. x))"
wenzelm@7357
   126
  All_def:      "All(P)    == (P = (%x. True))"
paulson@11451
   127
  Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
wenzelm@7357
   128
  False_def:    "False     == (!P. P)"
wenzelm@7357
   129
  not_def:      "~ P       == P-->False"
wenzelm@7357
   130
  and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
wenzelm@7357
   131
  or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
wenzelm@7357
   132
  Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
clasohm@923
   133
wenzelm@7357
   134
axioms
wenzelm@7357
   135
  iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
wenzelm@7357
   136
  True_or_False:  "(P=True) | (P=False)"
clasohm@923
   137
clasohm@923
   138
defs
wenzelm@7357
   139
  Let_def:      "Let s f == f(s)"
paulson@11451
   140
  if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
wenzelm@5069
   141
paulson@11451
   142
  arbitrary_def:  "False ==> arbitrary == (THE x. False)"
wenzelm@11750
   143
    -- {* @{term arbitrary} is completely unspecified, but is made to appear as a
wenzelm@11750
   144
    definition syntactically *}
clasohm@923
   145
nipkow@3320
   146
wenzelm@11750
   147
subsubsection {* Generic algebraic operations *}
wenzelm@4868
   148
wenzelm@12338
   149
axclass zero < type
wenzelm@12338
   150
axclass one < type
wenzelm@12338
   151
axclass plus < type
wenzelm@12338
   152
axclass minus < type
wenzelm@12338
   153
axclass times < type
wenzelm@12338
   154
axclass inverse < type
wenzelm@11750
   155
wenzelm@11750
   156
global
wenzelm@11750
   157
wenzelm@11750
   158
consts
wenzelm@11750
   159
  "0"           :: "'a::zero"                       ("0")
wenzelm@11750
   160
  "1"           :: "'a::one"                        ("1")
wenzelm@11750
   161
  "+"           :: "['a::plus, 'a]  => 'a"          (infixl 65)
wenzelm@11750
   162
  -             :: "['a::minus, 'a] => 'a"          (infixl 65)
wenzelm@11750
   163
  uminus        :: "['a::minus] => 'a"              ("- _" [81] 80)
wenzelm@11750
   164
  *             :: "['a::times, 'a] => 'a"          (infixl 70)
wenzelm@11750
   165
wenzelm@11750
   166
local
wenzelm@11750
   167
wenzelm@11750
   168
typed_print_translation {*
wenzelm@11750
   169
  let
wenzelm@11750
   170
    fun tr' c = (c, fn show_sorts => fn T => fn ts =>
wenzelm@11750
   171
      if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
wenzelm@11750
   172
      else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
wenzelm@11750
   173
  in [tr' "0", tr' "1"] end;
wenzelm@11750
   174
*} -- {* show types that are presumably too general *}
wenzelm@11750
   175
wenzelm@11750
   176
wenzelm@11750
   177
consts
wenzelm@11750
   178
  abs           :: "'a::minus => 'a"
wenzelm@11750
   179
  inverse       :: "'a::inverse => 'a"
wenzelm@11750
   180
  divide        :: "['a::inverse, 'a] => 'a"        (infixl "'/" 70)
wenzelm@11750
   181
wenzelm@11750
   182
syntax (xsymbols)
wenzelm@11750
   183
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
wenzelm@11750
   184
syntax (HTML output)
wenzelm@11750
   185
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
wenzelm@11750
   186
wenzelm@11750
   187
axclass plus_ac0 < plus, zero
wenzelm@11750
   188
  commute: "x + y = y + x"
wenzelm@11750
   189
  assoc:   "(x + y) + z = x + (y + z)"
wenzelm@11750
   190
  zero:    "0 + x = x"
wenzelm@11750
   191
wenzelm@11750
   192
wenzelm@11750
   193
subsection {* Theory and package setup *}
wenzelm@11750
   194
wenzelm@11750
   195
subsubsection {* Basic lemmas *}
wenzelm@4868
   196
nipkow@9736
   197
use "HOL_lemmas.ML"
wenzelm@11687
   198
theorems case_split = case_split_thm [case_names True False]
wenzelm@9869
   199
wenzelm@12386
   200
wenzelm@12386
   201
subsubsection {* Intuitionistic Reasoning *}
wenzelm@12386
   202
wenzelm@12386
   203
lemma impE':
wenzelm@12386
   204
  (assumes 1: "P --> Q" and 2: "Q ==> R" and 3: "P --> Q ==> P") R
wenzelm@12386
   205
proof -
wenzelm@12386
   206
  from 3 and 1 have P .
wenzelm@12386
   207
  with 1 have Q by (rule impE)
wenzelm@12386
   208
  with 2 show R .
wenzelm@12386
   209
qed
wenzelm@12386
   210
wenzelm@12386
   211
lemma allE':
wenzelm@12386
   212
  (assumes 1: "ALL x. P x" and 2: "P x ==> ALL x. P x ==> Q") Q
wenzelm@12386
   213
proof -
wenzelm@12386
   214
  from 1 have "P x" by (rule spec)
wenzelm@12386
   215
  from this and 1 show Q by (rule 2)
wenzelm@12386
   216
qed
wenzelm@12386
   217
wenzelm@12386
   218
lemma notE': (assumes 1: "~ P" and 2: "~ P ==> P") R
wenzelm@12386
   219
proof -
wenzelm@12386
   220
  from 2 and 1 have P .
wenzelm@12386
   221
  with 1 show R by (rule notE)
wenzelm@12386
   222
qed
wenzelm@12386
   223
wenzelm@12386
   224
lemmas [CPure.elim!] = disjE iffE FalseE conjE exE
wenzelm@12386
   225
  and [CPure.intro!] = iffI conjI impI TrueI notI allI refl
wenzelm@12386
   226
  and [CPure.elim 2] = allE notE' impE'
wenzelm@12386
   227
  and [CPure.intro] = exI disjI2 disjI1
wenzelm@12386
   228
wenzelm@12386
   229
lemmas [trans] = trans
wenzelm@12386
   230
  and [sym] = sym not_sym
wenzelm@12386
   231
  and [CPure.elim?] = iffD1 iffD2 impE
wenzelm@11750
   232
wenzelm@11438
   233
wenzelm@11750
   234
subsubsection {* Atomizing meta-level connectives *}
wenzelm@11750
   235
wenzelm@11750
   236
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
wenzelm@12003
   237
proof
wenzelm@9488
   238
  assume "!!x. P x"
wenzelm@10383
   239
  show "ALL x. P x" by (rule allI)
wenzelm@9488
   240
next
wenzelm@9488
   241
  assume "ALL x. P x"
wenzelm@10383
   242
  thus "!!x. P x" by (rule allE)
wenzelm@9488
   243
qed
wenzelm@9488
   244
wenzelm@11750
   245
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
wenzelm@12003
   246
proof
wenzelm@9488
   247
  assume r: "A ==> B"
wenzelm@10383
   248
  show "A --> B" by (rule impI) (rule r)
wenzelm@9488
   249
next
wenzelm@9488
   250
  assume "A --> B" and A
wenzelm@10383
   251
  thus B by (rule mp)
wenzelm@9488
   252
qed
wenzelm@9488
   253
wenzelm@11750
   254
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
wenzelm@12003
   255
proof
wenzelm@10432
   256
  assume "x == y"
wenzelm@10432
   257
  show "x = y" by (unfold prems) (rule refl)
wenzelm@10432
   258
next
wenzelm@10432
   259
  assume "x = y"
wenzelm@10432
   260
  thus "x == y" by (rule eq_reflection)
wenzelm@10432
   261
qed
wenzelm@10432
   262
wenzelm@12023
   263
lemma atomize_conj [atomize]:
wenzelm@12023
   264
  "(!!C. (A ==> B ==> PROP C) ==> PROP C) == Trueprop (A & B)"
wenzelm@12003
   265
proof
wenzelm@11953
   266
  assume "!!C. (A ==> B ==> PROP C) ==> PROP C"
wenzelm@11953
   267
  show "A & B" by (rule conjI)
wenzelm@11953
   268
next
wenzelm@11953
   269
  fix C
wenzelm@11953
   270
  assume "A & B"
wenzelm@11953
   271
  assume "A ==> B ==> PROP C"
wenzelm@11953
   272
  thus "PROP C"
wenzelm@11953
   273
  proof this
wenzelm@11953
   274
    show A by (rule conjunct1)
wenzelm@11953
   275
    show B by (rule conjunct2)
wenzelm@11953
   276
  qed
wenzelm@11953
   277
qed
wenzelm@11953
   278
wenzelm@12386
   279
lemmas [symmetric, rulify] = atomize_all atomize_imp
wenzelm@12386
   280
wenzelm@11750
   281
wenzelm@11750
   282
subsubsection {* Classical Reasoner setup *}
wenzelm@9529
   283
wenzelm@10383
   284
use "cladata.ML"
wenzelm@10383
   285
setup hypsubst_setup
wenzelm@11977
   286
wenzelm@12386
   287
ML_setup {*
wenzelm@12386
   288
  Context.>> (ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac));
wenzelm@12386
   289
*}
wenzelm@11977
   290
wenzelm@10383
   291
setup Classical.setup
wenzelm@10383
   292
setup clasetup
wenzelm@10383
   293
wenzelm@12386
   294
lemmas [intro?] = ext
wenzelm@12386
   295
  and [elim?] = ex1_implies_ex
wenzelm@11977
   296
wenzelm@9869
   297
use "blastdata.ML"
wenzelm@9869
   298
setup Blast.setup
wenzelm@4868
   299
wenzelm@11750
   300
wenzelm@11750
   301
subsubsection {* Simplifier setup *}
wenzelm@11750
   302
wenzelm@12281
   303
lemma meta_eq_to_obj_eq: "x == y ==> x = y"
wenzelm@12281
   304
proof -
wenzelm@12281
   305
  assume r: "x == y"
wenzelm@12281
   306
  show "x = y" by (unfold r) (rule refl)
wenzelm@12281
   307
qed
wenzelm@12281
   308
wenzelm@12281
   309
lemma eta_contract_eq: "(%s. f s) = f" ..
wenzelm@12281
   310
wenzelm@12281
   311
lemma simp_thms:
wenzelm@12281
   312
  (not_not: "(~ ~ P) = P" and
berghofe@12436
   313
    "(P ~= Q) = (P = (~Q))"
berghofe@12436
   314
    "(P | ~P) = True"    "(~P | P) = True"
berghofe@12436
   315
    "((~P) = (~Q)) = (P=Q)"
wenzelm@12281
   316
    "(x = x) = True"
wenzelm@12281
   317
    "(~True) = False"  "(~False) = True"
berghofe@12436
   318
    "(~P) ~= P"  "P ~= (~P)"
wenzelm@12281
   319
    "(True=P) = P"  "(P=True) = P"  "(False=P) = (~P)"  "(P=False) = (~P)"
wenzelm@12281
   320
    "(True --> P) = P"  "(False --> P) = True"
wenzelm@12281
   321
    "(P --> True) = True"  "(P --> P) = True"
wenzelm@12281
   322
    "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
wenzelm@12281
   323
    "(P & True) = P"  "(True & P) = P"
wenzelm@12281
   324
    "(P & False) = False"  "(False & P) = False"
wenzelm@12281
   325
    "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
wenzelm@12281
   326
    "(P & ~P) = False"    "(~P & P) = False"
wenzelm@12281
   327
    "(P | True) = True"  "(True | P) = True"
wenzelm@12281
   328
    "(P | False) = P"  "(False | P) = P"
berghofe@12436
   329
    "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
wenzelm@12281
   330
    "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
wenzelm@12281
   331
    -- {* needed for the one-point-rule quantifier simplification procs *}
wenzelm@12281
   332
    -- {* essential for termination!! *} and
wenzelm@12281
   333
    "!!P. (EX x. x=t & P(x)) = P(t)"
wenzelm@12281
   334
    "!!P. (EX x. t=x & P(x)) = P(t)"
wenzelm@12281
   335
    "!!P. (ALL x. x=t --> P(x)) = P(t)"
wenzelm@12281
   336
    "!!P. (ALL x. t=x --> P(x)) = P(t)")
berghofe@12436
   337
  by (blast, blast, blast, blast, blast, rules+)
berghofe@12436
   338
 
wenzelm@12281
   339
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
wenzelm@12354
   340
  by rules
wenzelm@12281
   341
wenzelm@12281
   342
lemma ex_simps:
wenzelm@12281
   343
  "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
wenzelm@12281
   344
  "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
wenzelm@12281
   345
  "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
wenzelm@12281
   346
  "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
wenzelm@12281
   347
  "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
wenzelm@12281
   348
  "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
wenzelm@12281
   349
  -- {* Miniscoping: pushing in existential quantifiers. *}
berghofe@12436
   350
  by (rules | blast)+
wenzelm@12281
   351
wenzelm@12281
   352
lemma all_simps:
wenzelm@12281
   353
  "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
wenzelm@12281
   354
  "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
wenzelm@12281
   355
  "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
wenzelm@12281
   356
  "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
wenzelm@12281
   357
  "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
wenzelm@12281
   358
  "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
wenzelm@12281
   359
  -- {* Miniscoping: pushing in universal quantifiers. *}
berghofe@12436
   360
  by (rules | blast)+
wenzelm@12281
   361
wenzelm@12281
   362
lemma eq_ac:
wenzelm@12281
   363
 (eq_commute: "(a=b) = (b=a)" and
wenzelm@12281
   364
  eq_left_commute: "(P=(Q=R)) = (Q=(P=R))" and
berghofe@12436
   365
  eq_assoc: "((P=Q)=R) = (P=(Q=R))") by (rules, blast+)
berghofe@12436
   366
lemma neq_commute: "(a~=b) = (b~=a)" by rules
wenzelm@12281
   367
wenzelm@12281
   368
lemma conj_comms:
wenzelm@12281
   369
 (conj_commute: "(P&Q) = (Q&P)" and
berghofe@12436
   370
  conj_left_commute: "(P&(Q&R)) = (Q&(P&R))") by rules+
berghofe@12436
   371
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by rules
wenzelm@12281
   372
wenzelm@12281
   373
lemma disj_comms:
wenzelm@12281
   374
 (disj_commute: "(P|Q) = (Q|P)" and
berghofe@12436
   375
  disj_left_commute: "(P|(Q|R)) = (Q|(P|R))") by rules+
berghofe@12436
   376
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by rules
wenzelm@12281
   377
berghofe@12436
   378
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by rules
berghofe@12436
   379
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by rules
wenzelm@12281
   380
berghofe@12436
   381
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by rules
berghofe@12436
   382
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by rules
wenzelm@12281
   383
berghofe@12436
   384
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by rules
berghofe@12436
   385
lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by rules
berghofe@12436
   386
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by rules
wenzelm@12281
   387
wenzelm@12281
   388
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
wenzelm@12281
   389
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
wenzelm@12281
   390
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
wenzelm@12281
   391
wenzelm@12281
   392
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
wenzelm@12281
   393
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
wenzelm@12281
   394
berghofe@12436
   395
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by rules
wenzelm@12281
   396
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
wenzelm@12281
   397
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
wenzelm@12281
   398
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
wenzelm@12281
   399
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
wenzelm@12281
   400
lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
wenzelm@12281
   401
  by blast
wenzelm@12281
   402
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
wenzelm@12281
   403
berghofe@12436
   404
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by rules
wenzelm@12281
   405
wenzelm@12281
   406
wenzelm@12281
   407
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
wenzelm@12281
   408
  -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
wenzelm@12281
   409
  -- {* cases boil down to the same thing. *}
wenzelm@12281
   410
  by blast
wenzelm@12281
   411
wenzelm@12281
   412
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
wenzelm@12281
   413
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
berghofe@12436
   414
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by rules
berghofe@12436
   415
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by rules
wenzelm@12281
   416
berghofe@12436
   417
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by rules
berghofe@12436
   418
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by rules
wenzelm@12281
   419
wenzelm@12281
   420
text {*
wenzelm@12281
   421
  \medskip The @{text "&"} congruence rule: not included by default!
wenzelm@12281
   422
  May slow rewrite proofs down by as much as 50\% *}
wenzelm@12281
   423
wenzelm@12281
   424
lemma conj_cong:
wenzelm@12281
   425
    "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
wenzelm@12354
   426
  by rules
wenzelm@12281
   427
wenzelm@12281
   428
lemma rev_conj_cong:
wenzelm@12281
   429
    "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
wenzelm@12354
   430
  by rules
wenzelm@12281
   431
wenzelm@12281
   432
text {* The @{text "|"} congruence rule: not included by default! *}
wenzelm@12281
   433
wenzelm@12281
   434
lemma disj_cong:
wenzelm@12281
   435
    "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
wenzelm@12281
   436
  by blast
wenzelm@12281
   437
wenzelm@12281
   438
lemma eq_sym_conv: "(x = y) = (y = x)"
wenzelm@12354
   439
  by rules
wenzelm@12281
   440
wenzelm@12281
   441
wenzelm@12281
   442
text {* \medskip if-then-else rules *}
wenzelm@12281
   443
wenzelm@12281
   444
lemma if_True: "(if True then x else y) = x"
wenzelm@12281
   445
  by (unfold if_def) blast
wenzelm@12281
   446
wenzelm@12281
   447
lemma if_False: "(if False then x else y) = y"
wenzelm@12281
   448
  by (unfold if_def) blast
wenzelm@12281
   449
wenzelm@12281
   450
lemma if_P: "P ==> (if P then x else y) = x"
wenzelm@12281
   451
  by (unfold if_def) blast
wenzelm@12281
   452
wenzelm@12281
   453
lemma if_not_P: "~P ==> (if P then x else y) = y"
wenzelm@12281
   454
  by (unfold if_def) blast
wenzelm@12281
   455
wenzelm@12281
   456
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
wenzelm@12281
   457
  apply (rule case_split [of Q])
wenzelm@12281
   458
   apply (subst if_P)
wenzelm@12281
   459
    prefer 3 apply (subst if_not_P)
wenzelm@12281
   460
     apply blast+
wenzelm@12281
   461
  done
wenzelm@12281
   462
wenzelm@12281
   463
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
wenzelm@12281
   464
  apply (subst split_if)
wenzelm@12281
   465
  apply blast
wenzelm@12281
   466
  done
wenzelm@12281
   467
wenzelm@12281
   468
lemmas if_splits = split_if split_if_asm
wenzelm@12281
   469
wenzelm@12281
   470
lemma if_def2: "(if Q then x else y) = ((Q --> x) & (~ Q --> y))"
wenzelm@12281
   471
  by (rule split_if)
wenzelm@12281
   472
wenzelm@12281
   473
lemma if_cancel: "(if c then x else x) = x"
wenzelm@12281
   474
  apply (subst split_if)
wenzelm@12281
   475
  apply blast
wenzelm@12281
   476
  done
wenzelm@12281
   477
wenzelm@12281
   478
lemma if_eq_cancel: "(if x = y then y else x) = x"
wenzelm@12281
   479
  apply (subst split_if)
wenzelm@12281
   480
  apply blast
wenzelm@12281
   481
  done
wenzelm@12281
   482
wenzelm@12281
   483
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
wenzelm@12281
   484
  -- {* This form is useful for expanding @{text if}s on the RIGHT of the @{text "==>"} symbol. *}
wenzelm@12281
   485
  by (rule split_if)
wenzelm@12281
   486
wenzelm@12281
   487
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
wenzelm@12281
   488
  -- {* And this form is useful for expanding @{text if}s on the LEFT. *}
wenzelm@12281
   489
  apply (subst split_if)
wenzelm@12281
   490
  apply blast
wenzelm@12281
   491
  done
wenzelm@12281
   492
berghofe@12436
   493
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) rules
berghofe@12436
   494
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) rules
wenzelm@12281
   495
wenzelm@9869
   496
use "simpdata.ML"
wenzelm@9869
   497
setup Simplifier.setup
wenzelm@9869
   498
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup
wenzelm@9869
   499
setup Splitter.setup setup Clasimp.setup
wenzelm@9869
   500
wenzelm@11750
   501
wenzelm@11824
   502
subsubsection {* Generic cases and induction *}
wenzelm@11824
   503
wenzelm@11824
   504
constdefs
wenzelm@11989
   505
  induct_forall :: "('a => bool) => bool"
wenzelm@11989
   506
  "induct_forall P == \<forall>x. P x"
wenzelm@11989
   507
  induct_implies :: "bool => bool => bool"
wenzelm@11989
   508
  "induct_implies A B == A --> B"
wenzelm@11989
   509
  induct_equal :: "'a => 'a => bool"
wenzelm@11989
   510
  "induct_equal x y == x = y"
wenzelm@11989
   511
  induct_conj :: "bool => bool => bool"
wenzelm@11989
   512
  "induct_conj A B == A & B"
wenzelm@11824
   513
wenzelm@11989
   514
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
wenzelm@11989
   515
  by (simp only: atomize_all induct_forall_def)
wenzelm@11824
   516
wenzelm@11989
   517
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
wenzelm@11989
   518
  by (simp only: atomize_imp induct_implies_def)
wenzelm@11824
   519
wenzelm@11989
   520
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
wenzelm@11989
   521
  by (simp only: atomize_eq induct_equal_def)
wenzelm@11824
   522
wenzelm@11989
   523
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
wenzelm@11989
   524
    induct_conj (induct_forall A) (induct_forall B)"
wenzelm@12354
   525
  by (unfold induct_forall_def induct_conj_def) rules
wenzelm@11824
   526
wenzelm@11989
   527
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
wenzelm@11989
   528
    induct_conj (induct_implies C A) (induct_implies C B)"
wenzelm@12354
   529
  by (unfold induct_implies_def induct_conj_def) rules
wenzelm@11989
   530
wenzelm@11989
   531
lemma induct_conj_curry: "(induct_conj A B ==> C) == (A ==> B ==> C)"
wenzelm@12354
   532
  by (simp only: atomize_imp atomize_eq induct_conj_def) (rules intro: equal_intr_rule)
wenzelm@11824
   533
wenzelm@11989
   534
lemma induct_impliesI: "(A ==> B) ==> induct_implies A B"
wenzelm@11989
   535
  by (simp add: induct_implies_def)
wenzelm@11824
   536
wenzelm@12161
   537
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq
wenzelm@12161
   538
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq
wenzelm@12161
   539
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@11989
   540
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
wenzelm@11824
   541
wenzelm@11989
   542
hide const induct_forall induct_implies induct_equal induct_conj
wenzelm@11824
   543
wenzelm@11824
   544
wenzelm@11824
   545
text {* Method setup. *}
wenzelm@11824
   546
wenzelm@11824
   547
ML {*
wenzelm@11824
   548
  structure InductMethod = InductMethodFun
wenzelm@11824
   549
  (struct
wenzelm@11824
   550
    val dest_concls = HOLogic.dest_concls;
wenzelm@11824
   551
    val cases_default = thm "case_split";
wenzelm@11989
   552
    val local_impI = thm "induct_impliesI";
wenzelm@11824
   553
    val conjI = thm "conjI";
wenzelm@11989
   554
    val atomize = thms "induct_atomize";
wenzelm@11989
   555
    val rulify1 = thms "induct_rulify1";
wenzelm@11989
   556
    val rulify2 = thms "induct_rulify2";
wenzelm@12240
   557
    val localize = [Thm.symmetric (thm "induct_implies_def")];
wenzelm@11824
   558
  end);
wenzelm@11824
   559
*}
wenzelm@11824
   560
wenzelm@11824
   561
setup InductMethod.setup
wenzelm@11824
   562
wenzelm@11824
   563
wenzelm@11750
   564
subsection {* Order signatures and orders *}
wenzelm@11750
   565
wenzelm@11750
   566
axclass
wenzelm@12338
   567
  ord < type
wenzelm@11750
   568
wenzelm@11750
   569
syntax
wenzelm@11750
   570
  "op <"        :: "['a::ord, 'a] => bool"             ("op <")
wenzelm@11750
   571
  "op <="       :: "['a::ord, 'a] => bool"             ("op <=")
wenzelm@11750
   572
wenzelm@11750
   573
global
wenzelm@11750
   574
wenzelm@11750
   575
consts
wenzelm@11750
   576
  "op <"        :: "['a::ord, 'a] => bool"             ("(_/ < _)"  [50, 51] 50)
wenzelm@11750
   577
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ <= _)" [50, 51] 50)
wenzelm@11750
   578
wenzelm@11750
   579
local
wenzelm@11750
   580
wenzelm@12114
   581
syntax (xsymbols)
wenzelm@11750
   582
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
wenzelm@11750
   583
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
wenzelm@11750
   584
wenzelm@11750
   585
(*Tell blast about overloading of < and <= to reduce the risk of
wenzelm@11750
   586
  its applying a rule for the wrong type*)
wenzelm@11750
   587
ML {*
wenzelm@11750
   588
Blast.overloaded ("op <" , domain_type);
wenzelm@11750
   589
Blast.overloaded ("op <=", domain_type);
wenzelm@11750
   590
*}
wenzelm@11750
   591
wenzelm@11750
   592
wenzelm@11750
   593
subsubsection {* Monotonicity *}
wenzelm@11750
   594
wenzelm@11750
   595
constdefs
wenzelm@11750
   596
  mono :: "['a::ord => 'b::ord] => bool"
wenzelm@11750
   597
  "mono f == ALL A B. A <= B --> f A <= f B"
wenzelm@11750
   598
wenzelm@11750
   599
lemma monoI [intro?]: "(!!A B. A <= B ==> f A <= f B) ==> mono f"
wenzelm@12354
   600
  by (unfold mono_def) rules
wenzelm@11750
   601
wenzelm@11750
   602
lemma monoD [dest?]: "mono f ==> A <= B ==> f A <= f B"
wenzelm@12354
   603
  by (unfold mono_def) rules
wenzelm@11750
   604
wenzelm@11750
   605
constdefs
wenzelm@11750
   606
  min :: "['a::ord, 'a] => 'a"
wenzelm@11750
   607
  "min a b == (if a <= b then a else b)"
wenzelm@11750
   608
  max :: "['a::ord, 'a] => 'a"
wenzelm@11750
   609
  "max a b == (if a <= b then b else a)"
wenzelm@11750
   610
wenzelm@11750
   611
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
wenzelm@11750
   612
  by (simp add: min_def)
wenzelm@11750
   613
wenzelm@11750
   614
lemma min_of_mono:
wenzelm@11750
   615
    "ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"
wenzelm@11750
   616
  by (simp add: min_def)
wenzelm@11750
   617
wenzelm@11750
   618
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
wenzelm@11750
   619
  by (simp add: max_def)
wenzelm@11750
   620
wenzelm@11750
   621
lemma max_of_mono:
wenzelm@11750
   622
    "ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"
wenzelm@11750
   623
  by (simp add: max_def)
wenzelm@11750
   624
wenzelm@11750
   625
wenzelm@11750
   626
subsubsection "Orders"
wenzelm@11750
   627
wenzelm@11750
   628
axclass order < ord
wenzelm@11750
   629
  order_refl [iff]: "x <= x"
wenzelm@11750
   630
  order_trans: "x <= y ==> y <= z ==> x <= z"
wenzelm@11750
   631
  order_antisym: "x <= y ==> y <= x ==> x = y"
wenzelm@11750
   632
  order_less_le: "(x < y) = (x <= y & x ~= y)"
wenzelm@11750
   633
wenzelm@11750
   634
wenzelm@11750
   635
text {* Reflexivity. *}
wenzelm@11750
   636
wenzelm@11750
   637
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"
wenzelm@11750
   638
    -- {* This form is useful with the classical reasoner. *}
wenzelm@11750
   639
  apply (erule ssubst)
wenzelm@11750
   640
  apply (rule order_refl)
wenzelm@11750
   641
  done
wenzelm@11750
   642
wenzelm@11750
   643
lemma order_less_irrefl [simp]: "~ x < (x::'a::order)"
wenzelm@11750
   644
  by (simp add: order_less_le)
wenzelm@11750
   645
wenzelm@11750
   646
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"
wenzelm@11750
   647
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
wenzelm@11750
   648
  apply (simp add: order_less_le)
wenzelm@12256
   649
  apply blast
wenzelm@11750
   650
  done
wenzelm@11750
   651
wenzelm@11750
   652
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]
wenzelm@11750
   653
wenzelm@11750
   654
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"
wenzelm@11750
   655
  by (simp add: order_less_le)
wenzelm@11750
   656
wenzelm@11750
   657
wenzelm@11750
   658
text {* Asymmetry. *}
wenzelm@11750
   659
wenzelm@11750
   660
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"
wenzelm@11750
   661
  by (simp add: order_less_le order_antisym)
wenzelm@11750
   662
wenzelm@11750
   663
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"
wenzelm@11750
   664
  apply (drule order_less_not_sym)
wenzelm@11750
   665
  apply (erule contrapos_np)
wenzelm@11750
   666
  apply simp
wenzelm@11750
   667
  done
wenzelm@11750
   668
wenzelm@11750
   669
wenzelm@11750
   670
text {* Transitivity. *}
wenzelm@11750
   671
wenzelm@11750
   672
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"
wenzelm@11750
   673
  apply (simp add: order_less_le)
wenzelm@11750
   674
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   675
  done
wenzelm@11750
   676
wenzelm@11750
   677
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"
wenzelm@11750
   678
  apply (simp add: order_less_le)
wenzelm@11750
   679
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   680
  done
wenzelm@11750
   681
wenzelm@11750
   682
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"
wenzelm@11750
   683
  apply (simp add: order_less_le)
wenzelm@11750
   684
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   685
  done
wenzelm@11750
   686
wenzelm@11750
   687
wenzelm@11750
   688
text {* Useful for simplification, but too risky to include by default. *}
wenzelm@11750
   689
wenzelm@11750
   690
lemma order_less_imp_not_less: "(x::'a::order) < y ==>  (~ y < x) = True"
wenzelm@11750
   691
  by (blast elim: order_less_asym)
wenzelm@11750
   692
wenzelm@11750
   693
lemma order_less_imp_triv: "(x::'a::order) < y ==>  (y < x --> P) = True"
wenzelm@11750
   694
  by (blast elim: order_less_asym)
wenzelm@11750
   695
wenzelm@11750
   696
lemma order_less_imp_not_eq: "(x::'a::order) < y ==>  (x = y) = False"
wenzelm@11750
   697
  by auto
wenzelm@11750
   698
wenzelm@11750
   699
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==>  (y = x) = False"
wenzelm@11750
   700
  by auto
wenzelm@11750
   701
wenzelm@11750
   702
wenzelm@11750
   703
text {* Other operators. *}
wenzelm@11750
   704
wenzelm@11750
   705
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"
wenzelm@11750
   706
  apply (simp add: min_def)
wenzelm@11750
   707
  apply (blast intro: order_antisym)
wenzelm@11750
   708
  done
wenzelm@11750
   709
wenzelm@11750
   710
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"
wenzelm@11750
   711
  apply (simp add: max_def)
wenzelm@11750
   712
  apply (blast intro: order_antisym)
wenzelm@11750
   713
  done
wenzelm@11750
   714
wenzelm@11750
   715
wenzelm@11750
   716
subsubsection {* Least value operator *}
wenzelm@11750
   717
wenzelm@11750
   718
constdefs
wenzelm@11750
   719
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
wenzelm@11750
   720
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
wenzelm@11750
   721
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
wenzelm@11750
   722
wenzelm@11750
   723
lemma LeastI2:
wenzelm@11750
   724
  "[| P (x::'a::order);
wenzelm@11750
   725
      !!y. P y ==> x <= y;
wenzelm@11750
   726
      !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
wenzelm@12281
   727
   ==> Q (Least P)"
wenzelm@11750
   728
  apply (unfold Least_def)
wenzelm@11750
   729
  apply (rule theI2)
wenzelm@11750
   730
    apply (blast intro: order_antisym)+
wenzelm@11750
   731
  done
wenzelm@11750
   732
wenzelm@11750
   733
lemma Least_equality:
wenzelm@12281
   734
    "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
wenzelm@11750
   735
  apply (simp add: Least_def)
wenzelm@11750
   736
  apply (rule the_equality)
wenzelm@11750
   737
  apply (auto intro!: order_antisym)
wenzelm@11750
   738
  done
wenzelm@11750
   739
wenzelm@11750
   740
wenzelm@11750
   741
subsubsection "Linear / total orders"
wenzelm@11750
   742
wenzelm@11750
   743
axclass linorder < order
wenzelm@11750
   744
  linorder_linear: "x <= y | y <= x"
wenzelm@11750
   745
wenzelm@11750
   746
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"
wenzelm@11750
   747
  apply (simp add: order_less_le)
wenzelm@11750
   748
  apply (insert linorder_linear)
wenzelm@11750
   749
  apply blast
wenzelm@11750
   750
  done
wenzelm@11750
   751
wenzelm@11750
   752
lemma linorder_cases [case_names less equal greater]:
wenzelm@11750
   753
    "((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"
wenzelm@11750
   754
  apply (insert linorder_less_linear)
wenzelm@11750
   755
  apply blast
wenzelm@11750
   756
  done
wenzelm@11750
   757
wenzelm@11750
   758
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"
wenzelm@11750
   759
  apply (simp add: order_less_le)
wenzelm@11750
   760
  apply (insert linorder_linear)
wenzelm@11750
   761
  apply (blast intro: order_antisym)
wenzelm@11750
   762
  done
wenzelm@11750
   763
wenzelm@11750
   764
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"
wenzelm@11750
   765
  apply (simp add: order_less_le)
wenzelm@11750
   766
  apply (insert linorder_linear)
wenzelm@11750
   767
  apply (blast intro: order_antisym)
wenzelm@11750
   768
  done
wenzelm@11750
   769
wenzelm@11750
   770
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"
wenzelm@11750
   771
  apply (cut_tac x = x and y = y in linorder_less_linear)
wenzelm@11750
   772
  apply auto
wenzelm@11750
   773
  done
wenzelm@11750
   774
wenzelm@11750
   775
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"
wenzelm@11750
   776
  apply (simp add: linorder_neq_iff)
wenzelm@11750
   777
  apply blast
wenzelm@11750
   778
  done
wenzelm@11750
   779
wenzelm@11750
   780
wenzelm@11750
   781
subsubsection "Min and max on (linear) orders"
wenzelm@11750
   782
wenzelm@11750
   783
lemma min_same [simp]: "min (x::'a::order) x = x"
wenzelm@11750
   784
  by (simp add: min_def)
wenzelm@11750
   785
wenzelm@11750
   786
lemma max_same [simp]: "max (x::'a::order) x = x"
wenzelm@11750
   787
  by (simp add: max_def)
wenzelm@11750
   788
wenzelm@11750
   789
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"
wenzelm@11750
   790
  apply (simp add: max_def)
wenzelm@11750
   791
  apply (insert linorder_linear)
wenzelm@11750
   792
  apply (blast intro: order_trans)
wenzelm@11750
   793
  done
wenzelm@11750
   794
wenzelm@11750
   795
lemma le_maxI1: "(x::'a::linorder) <= max x y"
wenzelm@11750
   796
  by (simp add: le_max_iff_disj)
wenzelm@11750
   797
wenzelm@11750
   798
lemma le_maxI2: "(y::'a::linorder) <= max x y"
wenzelm@11750
   799
    -- {* CANNOT use with @{text "[intro!]"} because blast will give PROOF FAILED. *}
wenzelm@11750
   800
  by (simp add: le_max_iff_disj)
wenzelm@11750
   801
wenzelm@11750
   802
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"
wenzelm@11750
   803
  apply (simp add: max_def order_le_less)
wenzelm@11750
   804
  apply (insert linorder_less_linear)
wenzelm@11750
   805
  apply (blast intro: order_less_trans)
wenzelm@11750
   806
  done
wenzelm@11750
   807
wenzelm@11750
   808
lemma max_le_iff_conj [simp]:
wenzelm@11750
   809
    "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)"
wenzelm@11750
   810
  apply (simp add: max_def)
wenzelm@11750
   811
  apply (insert linorder_linear)
wenzelm@11750
   812
  apply (blast intro: order_trans)
wenzelm@11750
   813
  done
wenzelm@11750
   814
wenzelm@11750
   815
lemma max_less_iff_conj [simp]:
wenzelm@11750
   816
    "!!z::'a::linorder. (max x y < z) = (x < z & y < z)"
wenzelm@11750
   817
  apply (simp add: order_le_less max_def)
wenzelm@11750
   818
  apply (insert linorder_less_linear)
wenzelm@11750
   819
  apply (blast intro: order_less_trans)
wenzelm@11750
   820
  done
wenzelm@11750
   821
wenzelm@11750
   822
lemma le_min_iff_conj [simp]:
wenzelm@11750
   823
    "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)"
wenzelm@11750
   824
    -- {* @{text "[iff]"} screws up a Q{text blast} in MiniML *}
wenzelm@11750
   825
  apply (simp add: min_def)
wenzelm@11750
   826
  apply (insert linorder_linear)
wenzelm@11750
   827
  apply (blast intro: order_trans)
wenzelm@11750
   828
  done
wenzelm@11750
   829
wenzelm@11750
   830
lemma min_less_iff_conj [simp]:
wenzelm@11750
   831
    "!!z::'a::linorder. (z < min x y) = (z < x & z < y)"
wenzelm@11750
   832
  apply (simp add: order_le_less min_def)
wenzelm@11750
   833
  apply (insert linorder_less_linear)
wenzelm@11750
   834
  apply (blast intro: order_less_trans)
wenzelm@11750
   835
  done
wenzelm@11750
   836
wenzelm@11750
   837
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"
wenzelm@11750
   838
  apply (simp add: min_def)
wenzelm@11750
   839
  apply (insert linorder_linear)
wenzelm@11750
   840
  apply (blast intro: order_trans)
wenzelm@11750
   841
  done
wenzelm@11750
   842
wenzelm@11750
   843
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"
wenzelm@11750
   844
  apply (simp add: min_def order_le_less)
wenzelm@11750
   845
  apply (insert linorder_less_linear)
wenzelm@11750
   846
  apply (blast intro: order_less_trans)
wenzelm@11750
   847
  done
wenzelm@11750
   848
wenzelm@11750
   849
lemma split_min:
wenzelm@11750
   850
    "P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"
wenzelm@11750
   851
  by (simp add: min_def)
wenzelm@11750
   852
wenzelm@11750
   853
lemma split_max:
wenzelm@11750
   854
    "P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"
wenzelm@11750
   855
  by (simp add: max_def)
wenzelm@11750
   856
wenzelm@11750
   857
wenzelm@11750
   858
subsubsection "Bounded quantifiers"
wenzelm@11750
   859
wenzelm@11750
   860
syntax
wenzelm@11750
   861
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   862
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   863
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   864
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   865
wenzelm@12114
   866
syntax (xsymbols)
wenzelm@11750
   867
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   868
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   869
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@11750
   870
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@11750
   871
wenzelm@11750
   872
syntax (HOL)
wenzelm@11750
   873
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   874
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
   875
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   876
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
   877
wenzelm@11750
   878
translations
wenzelm@11750
   879
 "ALL x<y. P"   =>  "ALL x. x < y --> P"
wenzelm@11750
   880
 "EX x<y. P"    =>  "EX x. x < y  & P"
wenzelm@11750
   881
 "ALL x<=y. P"  =>  "ALL x. x <= y --> P"
wenzelm@11750
   882
 "EX x<=y. P"   =>  "EX x. x <= y & P"
wenzelm@11750
   883
clasohm@923
   884
end