kuncar@49929
|
1 |
(* Title: HOL/Library/Mapping.thy
|
kuncar@49929
|
2 |
Author: Florian Haftmann and Ondrej Kuncar
|
kuncar@49929
|
3 |
*)
|
haftmann@29708
|
4 |
|
wenzelm@60500
|
5 |
section \<open>An abstract view on maps for code generation.\<close>
|
haftmann@29708
|
6 |
|
haftmann@29708
|
7 |
theory Mapping
|
kuncar@53013
|
8 |
imports Main
|
haftmann@29708
|
9 |
begin
|
haftmann@29708
|
10 |
|
wenzelm@60500
|
11 |
subsection \<open>Parametricity transfer rules\<close>
|
kuncar@51379
|
12 |
|
wenzelm@60500
|
13 |
lemma map_of_foldr: -- \<open>FIXME move\<close>
|
haftmann@56529
|
14 |
"map_of xs = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) xs Map.empty"
|
haftmann@56529
|
15 |
using map_add_map_of_foldr [of Map.empty] by auto
|
haftmann@56529
|
16 |
|
kuncar@53013
|
17 |
context
|
kuncar@53013
|
18 |
begin
|
haftmann@56528
|
19 |
|
kuncar@53013
|
20 |
interpretation lifting_syntax .
|
kuncar@53013
|
21 |
|
haftmann@56529
|
22 |
lemma empty_parametric:
|
haftmann@56528
|
23 |
"(A ===> rel_option B) Map.empty Map.empty"
|
haftmann@56528
|
24 |
by transfer_prover
|
kuncar@51379
|
25 |
|
haftmann@56529
|
26 |
lemma lookup_parametric: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)"
|
haftmann@56528
|
27 |
by transfer_prover
|
kuncar@51379
|
28 |
|
haftmann@56529
|
29 |
lemma update_parametric:
|
kuncar@51379
|
30 |
assumes [transfer_rule]: "bi_unique A"
|
haftmann@56528
|
31 |
shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B)
|
haftmann@56528
|
32 |
(\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))"
|
haftmann@56528
|
33 |
by transfer_prover
|
kuncar@51379
|
34 |
|
haftmann@56529
|
35 |
lemma delete_parametric:
|
kuncar@51379
|
36 |
assumes [transfer_rule]: "bi_unique A"
|
blanchet@55525
|
37 |
shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B)
|
haftmann@56528
|
38 |
(\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))"
|
haftmann@56528
|
39 |
by transfer_prover
|
kuncar@51379
|
40 |
|
haftmann@56528
|
41 |
lemma is_none_parametric [transfer_rule]:
|
haftmann@56528
|
42 |
"(rel_option A ===> HOL.eq) Option.is_none Option.is_none"
|
haftmann@56528
|
43 |
by (auto simp add: is_none_def rel_fun_def rel_option_iff split: option.split)
|
kuncar@51379
|
44 |
|
haftmann@56529
|
45 |
lemma dom_parametric:
|
kuncar@51379
|
46 |
assumes [transfer_rule]: "bi_total A"
|
blanchet@55938
|
47 |
shows "((A ===> rel_option B) ===> rel_set A) dom dom"
|
haftmann@56528
|
48 |
unfolding dom_def [abs_def] is_none_def [symmetric] by transfer_prover
|
kuncar@51379
|
49 |
|
haftmann@56529
|
50 |
lemma map_of_parametric [transfer_rule]:
|
kuncar@51379
|
51 |
assumes [transfer_rule]: "bi_unique R1"
|
blanchet@55944
|
52 |
shows "(list_all2 (rel_prod R1 R2) ===> R1 ===> rel_option R2) map_of map_of"
|
haftmann@56528
|
53 |
unfolding map_of_def by transfer_prover
|
kuncar@51379
|
54 |
|
haftmann@56529
|
55 |
lemma map_entry_parametric [transfer_rule]:
|
haftmann@56529
|
56 |
assumes [transfer_rule]: "bi_unique A"
|
haftmann@56529
|
57 |
shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B)
|
haftmann@56529
|
58 |
(\<lambda>k f m. (case m k of None \<Rightarrow> m
|
haftmann@56529
|
59 |
| Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m
|
haftmann@56529
|
60 |
| Some v \<Rightarrow> m (k \<mapsto> (f v))))"
|
haftmann@56529
|
61 |
by transfer_prover
|
haftmann@56529
|
62 |
|
haftmann@56529
|
63 |
lemma tabulate_parametric:
|
kuncar@51379
|
64 |
assumes [transfer_rule]: "bi_unique A"
|
blanchet@55525
|
65 |
shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B)
|
haftmann@56528
|
66 |
(\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks)))"
|
haftmann@56528
|
67 |
by transfer_prover
|
kuncar@51379
|
68 |
|
haftmann@56529
|
69 |
lemma bulkload_parametric:
|
haftmann@56528
|
70 |
"(list_all2 A ===> HOL.eq ===> rel_option A)
|
kuncar@51379
|
71 |
(\<lambda>xs k. if k < length xs then Some (xs ! k) else None) (\<lambda>xs k. if k < length xs then Some (xs ! k) else None)"
|
haftmann@56528
|
72 |
proof
|
haftmann@56528
|
73 |
fix xs ys
|
haftmann@56528
|
74 |
assume "list_all2 A xs ys"
|
haftmann@56528
|
75 |
then show "(HOL.eq ===> rel_option A)
|
haftmann@56528
|
76 |
(\<lambda>k. if k < length xs then Some (xs ! k) else None)
|
haftmann@56528
|
77 |
(\<lambda>k. if k < length ys then Some (ys ! k) else None)"
|
haftmann@56528
|
78 |
apply induct
|
haftmann@56528
|
79 |
apply auto
|
haftmann@56528
|
80 |
unfolding rel_fun_def
|
haftmann@56528
|
81 |
apply clarsimp
|
haftmann@56528
|
82 |
apply (case_tac xa)
|
haftmann@56528
|
83 |
apply (auto dest: list_all2_lengthD list_all2_nthD)
|
haftmann@56528
|
84 |
done
|
haftmann@56528
|
85 |
qed
|
kuncar@51379
|
86 |
|
haftmann@56529
|
87 |
lemma map_parametric:
|
blanchet@55525
|
88 |
"((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D)
|
haftmann@56528
|
89 |
(\<lambda>f g m. (map_option g \<circ> m \<circ> f)) (\<lambda>f g m. (map_option g \<circ> m \<circ> f))"
|
haftmann@56528
|
90 |
by transfer_prover
|
kuncar@51379
|
91 |
|
haftmann@56529
|
92 |
end
|
kuncar@51379
|
93 |
|
kuncar@53013
|
94 |
|
wenzelm@60500
|
95 |
subsection \<open>Type definition and primitive operations\<close>
|
haftmann@29708
|
96 |
|
wenzelm@49834
|
97 |
typedef ('a, 'b) mapping = "UNIV :: ('a \<rightharpoonup> 'b) set"
|
haftmann@56528
|
98 |
morphisms rep Mapping
|
haftmann@56528
|
99 |
..
|
haftmann@37700
|
100 |
|
haftmann@59485
|
101 |
setup_lifting type_definition_mapping
|
haftmann@37700
|
102 |
|
haftmann@56528
|
103 |
lift_definition empty :: "('a, 'b) mapping"
|
haftmann@56529
|
104 |
is Map.empty parametric empty_parametric .
|
kuncar@49929
|
105 |
|
haftmann@56528
|
106 |
lift_definition lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<Rightarrow> 'b option"
|
haftmann@56529
|
107 |
is "\<lambda>m k. m k" parametric lookup_parametric .
|
haftmann@56528
|
108 |
|
haftmann@59485
|
109 |
declare [[code drop: Mapping.lookup]]
|
haftmann@59485
|
110 |
setup \<open>Code.add_default_eqn @{thm Mapping.lookup.abs_eq}\<close> -- \<open>FIXME lifting\<close>
|
haftmann@59485
|
111 |
|
haftmann@56528
|
112 |
lift_definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
|
haftmann@56529
|
113 |
is "\<lambda>k v m. m(k \<mapsto> v)" parametric update_parametric .
|
haftmann@37700
|
114 |
|
haftmann@56528
|
115 |
lift_definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
|
haftmann@56529
|
116 |
is "\<lambda>k m. m(k := None)" parametric delete_parametric .
|
haftmann@39380
|
117 |
|
haftmann@56528
|
118 |
lift_definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set"
|
haftmann@56529
|
119 |
is dom parametric dom_parametric .
|
haftmann@29708
|
120 |
|
haftmann@56528
|
121 |
lift_definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping"
|
haftmann@56529
|
122 |
is "\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))" parametric tabulate_parametric .
|
haftmann@29708
|
123 |
|
haftmann@56528
|
124 |
lift_definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping"
|
haftmann@56529
|
125 |
is "\<lambda>xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_parametric .
|
haftmann@29708
|
126 |
|
haftmann@56528
|
127 |
lift_definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping"
|
haftmann@56529
|
128 |
is "\<lambda>f g m. (map_option g \<circ> m \<circ> f)" parametric map_parametric .
|
haftmann@29708
|
129 |
|
haftmann@59485
|
130 |
declare [[code drop: map]]
|
haftmann@59485
|
131 |
|
haftmann@51161
|
132 |
|
wenzelm@60500
|
133 |
subsection \<open>Functorial structure\<close>
|
haftmann@40605
|
134 |
|
blanchet@55467
|
135 |
functor map: map
|
blanchet@55466
|
136 |
by (transfer, auto simp add: fun_eq_iff option.map_comp option.map_id)+
|
haftmann@40605
|
137 |
|
haftmann@51161
|
138 |
|
wenzelm@60500
|
139 |
subsection \<open>Derived operations\<close>
|
haftmann@29708
|
140 |
|
haftmann@56528
|
141 |
definition ordered_keys :: "('a\<Colon>linorder, 'b) mapping \<Rightarrow> 'a list"
|
haftmann@56528
|
142 |
where
|
haftmann@37052
|
143 |
"ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])"
|
haftmann@35194
|
144 |
|
haftmann@56528
|
145 |
definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool"
|
haftmann@56528
|
146 |
where
|
haftmann@37052
|
147 |
"is_empty m \<longleftrightarrow> keys m = {}"
|
haftmann@35157
|
148 |
|
haftmann@56528
|
149 |
definition size :: "('a, 'b) mapping \<Rightarrow> nat"
|
haftmann@56528
|
150 |
where
|
haftmann@37052
|
151 |
"size m = (if finite (keys m) then card (keys m) else 0)"
|
haftmann@35157
|
152 |
|
haftmann@56528
|
153 |
definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
|
haftmann@56528
|
154 |
where
|
haftmann@37052
|
155 |
"replace k v m = (if k \<in> keys m then update k v m else m)"
|
haftmann@29814
|
156 |
|
haftmann@56528
|
157 |
definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
|
haftmann@56528
|
158 |
where
|
haftmann@37052
|
159 |
"default k v m = (if k \<in> keys m then m else update k v m)"
|
haftmann@37026
|
160 |
|
wenzelm@60500
|
161 |
text \<open>Manual derivation of transfer rule is non-trivial\<close>
|
haftmann@56529
|
162 |
|
kuncar@49929
|
163 |
lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is
|
kuncar@49929
|
164 |
"\<lambda>k f m. (case m k of None \<Rightarrow> m
|
haftmann@56529
|
165 |
| Some v \<Rightarrow> m (k \<mapsto> (f v)))" parametric map_entry_parametric .
|
kuncar@49929
|
166 |
|
haftmann@56529
|
167 |
lemma map_entry_code [code]:
|
haftmann@56529
|
168 |
"map_entry k f m = (case lookup m k of None \<Rightarrow> m
|
huffman@49975
|
169 |
| Some v \<Rightarrow> update k (f v) m)"
|
huffman@49975
|
170 |
by transfer rule
|
haftmann@37026
|
171 |
|
haftmann@56528
|
172 |
definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
|
haftmann@56528
|
173 |
where
|
haftmann@37026
|
174 |
"map_default k v f m = map_entry k f (default k v m)"
|
haftmann@37026
|
175 |
|
haftmann@56529
|
176 |
definition of_alist :: "('k \<times> 'v) list \<Rightarrow> ('k, 'v) mapping"
|
haftmann@56529
|
177 |
where
|
haftmann@54853
|
178 |
"of_alist xs = foldr (\<lambda>(k, v) m. update k v m) xs empty"
|
kuncar@51379
|
179 |
|
haftmann@51161
|
180 |
instantiation mapping :: (type, type) equal
|
haftmann@51161
|
181 |
begin
|
haftmann@51161
|
182 |
|
haftmann@51161
|
183 |
definition
|
haftmann@51161
|
184 |
"HOL.equal m1 m2 \<longleftrightarrow> (\<forall>k. lookup m1 k = lookup m2 k)"
|
haftmann@51161
|
185 |
|
wenzelm@60679
|
186 |
instance
|
wenzelm@60679
|
187 |
by standard (unfold equal_mapping_def, transfer, auto)
|
haftmann@51161
|
188 |
|
haftmann@51161
|
189 |
end
|
haftmann@51161
|
190 |
|
kuncar@53013
|
191 |
context
|
kuncar@53013
|
192 |
begin
|
haftmann@56528
|
193 |
|
kuncar@53013
|
194 |
interpretation lifting_syntax .
|
kuncar@53013
|
195 |
|
haftmann@51161
|
196 |
lemma [transfer_rule]:
|
kuncar@51379
|
197 |
assumes [transfer_rule]: "bi_total A"
|
kuncar@51379
|
198 |
assumes [transfer_rule]: "bi_unique B"
|
haftmann@56528
|
199 |
shows "(pcr_mapping A B ===> pcr_mapping A B ===> op=) HOL.eq HOL.equal"
|
haftmann@56528
|
200 |
by (unfold equal) transfer_prover
|
haftmann@51161
|
201 |
|
haftmann@56529
|
202 |
lemma of_alist_transfer [transfer_rule]:
|
haftmann@56529
|
203 |
assumes [transfer_rule]: "bi_unique R1"
|
haftmann@56529
|
204 |
shows "(list_all2 (rel_prod R1 R2) ===> pcr_mapping R1 R2) map_of of_alist"
|
haftmann@56529
|
205 |
unfolding of_alist_def [abs_def] map_of_foldr [abs_def] by transfer_prover
|
haftmann@56529
|
206 |
|
kuncar@53013
|
207 |
end
|
haftmann@51161
|
208 |
|
haftmann@56528
|
209 |
|
wenzelm@60500
|
210 |
subsection \<open>Properties\<close>
|
haftmann@29708
|
211 |
|
haftmann@56528
|
212 |
lemma lookup_update:
|
haftmann@56528
|
213 |
"lookup (update k v m) k = Some v"
|
kuncar@49973
|
214 |
by transfer simp
|
kuncar@49973
|
215 |
|
haftmann@56528
|
216 |
lemma lookup_update_neq:
|
haftmann@56528
|
217 |
"k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'"
|
kuncar@49973
|
218 |
by transfer simp
|
kuncar@49973
|
219 |
|
haftmann@56528
|
220 |
lemma lookup_empty:
|
haftmann@56528
|
221 |
"lookup empty k = None"
|
kuncar@49973
|
222 |
by transfer simp
|
kuncar@49973
|
223 |
|
kuncar@49929
|
224 |
lemma keys_is_none_rep [code_unfold]:
|
haftmann@37052
|
225 |
"k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))"
|
kuncar@49929
|
226 |
by transfer (auto simp add: is_none_def)
|
haftmann@29708
|
227 |
|
haftmann@29708
|
228 |
lemma update_update:
|
haftmann@29708
|
229 |
"update k v (update k w m) = update k v m"
|
haftmann@29708
|
230 |
"k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)"
|
kuncar@49929
|
231 |
by (transfer, simp add: fun_upd_twist)+
|
haftmann@29708
|
232 |
|
haftmann@35157
|
233 |
lemma update_delete [simp]:
|
haftmann@35157
|
234 |
"update k v (delete k m) = update k v m"
|
kuncar@49929
|
235 |
by transfer simp
|
haftmann@29708
|
236 |
|
haftmann@29708
|
237 |
lemma delete_update:
|
haftmann@29708
|
238 |
"delete k (update k v m) = delete k m"
|
haftmann@29708
|
239 |
"k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)"
|
kuncar@49929
|
240 |
by (transfer, simp add: fun_upd_twist)+
|
haftmann@29708
|
241 |
|
haftmann@35157
|
242 |
lemma delete_empty [simp]:
|
haftmann@35157
|
243 |
"delete k empty = empty"
|
kuncar@49929
|
244 |
by transfer simp
|
haftmann@29708
|
245 |
|
haftmann@35157
|
246 |
lemma replace_update:
|
haftmann@37052
|
247 |
"k \<notin> keys m \<Longrightarrow> replace k v m = m"
|
haftmann@37052
|
248 |
"k \<in> keys m \<Longrightarrow> replace k v m = update k v m"
|
kuncar@49929
|
249 |
by (transfer, auto simp add: replace_def fun_upd_twist)+
|
haftmann@29708
|
250 |
|
haftmann@29708
|
251 |
lemma size_empty [simp]:
|
haftmann@29708
|
252 |
"size empty = 0"
|
kuncar@49929
|
253 |
unfolding size_def by transfer simp
|
haftmann@29708
|
254 |
|
haftmann@29708
|
255 |
lemma size_update:
|
haftmann@37052
|
256 |
"finite (keys m) \<Longrightarrow> size (update k v m) =
|
haftmann@37052
|
257 |
(if k \<in> keys m then size m else Suc (size m))"
|
kuncar@49929
|
258 |
unfolding size_def by transfer (auto simp add: insert_dom)
|
haftmann@29708
|
259 |
|
haftmann@29708
|
260 |
lemma size_delete:
|
haftmann@37052
|
261 |
"size (delete k m) = (if k \<in> keys m then size m - 1 else size m)"
|
kuncar@49929
|
262 |
unfolding size_def by transfer simp
|
haftmann@29708
|
263 |
|
haftmann@37052
|
264 |
lemma size_tabulate [simp]:
|
haftmann@29708
|
265 |
"size (tabulate ks f) = length (remdups ks)"
|
haftmann@56528
|
266 |
unfolding size_def by transfer (auto simp add: map_of_map_restrict card_set comp_def)
|
haftmann@29708
|
267 |
|
haftmann@29831
|
268 |
lemma bulkload_tabulate:
|
haftmann@29826
|
269 |
"bulkload xs = tabulate [0..<length xs] (nth xs)"
|
haftmann@56528
|
270 |
by transfer (auto simp add: map_of_map_restrict)
|
haftmann@29826
|
271 |
|
kuncar@49929
|
272 |
lemma is_empty_empty [simp]:
|
haftmann@37052
|
273 |
"is_empty empty"
|
kuncar@49929
|
274 |
unfolding is_empty_def by transfer simp
|
haftmann@37052
|
275 |
|
haftmann@37052
|
276 |
lemma is_empty_update [simp]:
|
haftmann@37052
|
277 |
"\<not> is_empty (update k v m)"
|
kuncar@49929
|
278 |
unfolding is_empty_def by transfer simp
|
haftmann@37052
|
279 |
|
haftmann@37052
|
280 |
lemma is_empty_delete:
|
haftmann@37052
|
281 |
"is_empty (delete k m) \<longleftrightarrow> is_empty m \<or> keys m = {k}"
|
kuncar@49929
|
282 |
unfolding is_empty_def by transfer (auto simp del: dom_eq_empty_conv)
|
haftmann@37052
|
283 |
|
haftmann@37052
|
284 |
lemma is_empty_replace [simp]:
|
haftmann@37052
|
285 |
"is_empty (replace k v m) \<longleftrightarrow> is_empty m"
|
kuncar@49929
|
286 |
unfolding is_empty_def replace_def by transfer auto
|
haftmann@37052
|
287 |
|
haftmann@37052
|
288 |
lemma is_empty_default [simp]:
|
haftmann@37052
|
289 |
"\<not> is_empty (default k v m)"
|
kuncar@49929
|
290 |
unfolding is_empty_def default_def by transfer auto
|
haftmann@37052
|
291 |
|
haftmann@37052
|
292 |
lemma is_empty_map_entry [simp]:
|
haftmann@37052
|
293 |
"is_empty (map_entry k f m) \<longleftrightarrow> is_empty m"
|
haftmann@56528
|
294 |
unfolding is_empty_def by transfer (auto split: option.split)
|
haftmann@37052
|
295 |
|
haftmann@37052
|
296 |
lemma is_empty_map_default [simp]:
|
haftmann@37052
|
297 |
"\<not> is_empty (map_default k v f m)"
|
haftmann@37052
|
298 |
by (simp add: map_default_def)
|
haftmann@37052
|
299 |
|
haftmann@56545
|
300 |
lemma keys_dom_lookup:
|
haftmann@56545
|
301 |
"keys m = dom (Mapping.lookup m)"
|
haftmann@56545
|
302 |
by transfer rule
|
haftmann@56545
|
303 |
|
haftmann@37052
|
304 |
lemma keys_empty [simp]:
|
haftmann@37052
|
305 |
"keys empty = {}"
|
kuncar@49929
|
306 |
by transfer simp
|
haftmann@37052
|
307 |
|
haftmann@37052
|
308 |
lemma keys_update [simp]:
|
haftmann@37052
|
309 |
"keys (update k v m) = insert k (keys m)"
|
kuncar@49929
|
310 |
by transfer simp
|
haftmann@37052
|
311 |
|
haftmann@37052
|
312 |
lemma keys_delete [simp]:
|
haftmann@37052
|
313 |
"keys (delete k m) = keys m - {k}"
|
kuncar@49929
|
314 |
by transfer simp
|
haftmann@37052
|
315 |
|
haftmann@37052
|
316 |
lemma keys_replace [simp]:
|
haftmann@37052
|
317 |
"keys (replace k v m) = keys m"
|
kuncar@49929
|
318 |
unfolding replace_def by transfer (simp add: insert_absorb)
|
haftmann@37052
|
319 |
|
haftmann@37052
|
320 |
lemma keys_default [simp]:
|
haftmann@37052
|
321 |
"keys (default k v m) = insert k (keys m)"
|
kuncar@49929
|
322 |
unfolding default_def by transfer (simp add: insert_absorb)
|
haftmann@37052
|
323 |
|
haftmann@37052
|
324 |
lemma keys_map_entry [simp]:
|
haftmann@37052
|
325 |
"keys (map_entry k f m) = keys m"
|
haftmann@56528
|
326 |
by transfer (auto split: option.split)
|
haftmann@37052
|
327 |
|
haftmann@37052
|
328 |
lemma keys_map_default [simp]:
|
haftmann@37052
|
329 |
"keys (map_default k v f m) = insert k (keys m)"
|
haftmann@37052
|
330 |
by (simp add: map_default_def)
|
haftmann@37052
|
331 |
|
haftmann@37052
|
332 |
lemma keys_tabulate [simp]:
|
haftmann@37026
|
333 |
"keys (tabulate ks f) = set ks"
|
kuncar@49929
|
334 |
by transfer (simp add: map_of_map_restrict o_def)
|
haftmann@37026
|
335 |
|
haftmann@37052
|
336 |
lemma keys_bulkload [simp]:
|
haftmann@37026
|
337 |
"keys (bulkload xs) = {0..<length xs}"
|
haftmann@56528
|
338 |
by (simp add: bulkload_tabulate)
|
haftmann@37026
|
339 |
|
haftmann@37052
|
340 |
lemma distinct_ordered_keys [simp]:
|
haftmann@37052
|
341 |
"distinct (ordered_keys m)"
|
haftmann@37052
|
342 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
343 |
|
haftmann@37052
|
344 |
lemma ordered_keys_infinite [simp]:
|
haftmann@37052
|
345 |
"\<not> finite (keys m) \<Longrightarrow> ordered_keys m = []"
|
haftmann@37052
|
346 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
347 |
|
haftmann@37052
|
348 |
lemma ordered_keys_empty [simp]:
|
haftmann@37052
|
349 |
"ordered_keys empty = []"
|
haftmann@37052
|
350 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
351 |
|
haftmann@37052
|
352 |
lemma ordered_keys_update [simp]:
|
haftmann@37052
|
353 |
"k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m"
|
haftmann@37052
|
354 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (update k v m) = insort k (ordered_keys m)"
|
haftmann@37052
|
355 |
by (simp_all add: ordered_keys_def) (auto simp only: sorted_list_of_set_insert [symmetric] insert_absorb)
|
haftmann@37052
|
356 |
|
haftmann@37052
|
357 |
lemma ordered_keys_delete [simp]:
|
haftmann@37052
|
358 |
"ordered_keys (delete k m) = remove1 k (ordered_keys m)"
|
haftmann@37052
|
359 |
proof (cases "finite (keys m)")
|
haftmann@37052
|
360 |
case False then show ?thesis by simp
|
haftmann@37052
|
361 |
next
|
haftmann@37052
|
362 |
case True note fin = True
|
haftmann@37052
|
363 |
show ?thesis
|
haftmann@37052
|
364 |
proof (cases "k \<in> keys m")
|
haftmann@37052
|
365 |
case False with fin have "k \<notin> set (sorted_list_of_set (keys m))" by simp
|
haftmann@37052
|
366 |
with False show ?thesis by (simp add: ordered_keys_def remove1_idem)
|
haftmann@37052
|
367 |
next
|
haftmann@37052
|
368 |
case True with fin show ?thesis by (simp add: ordered_keys_def sorted_list_of_set_remove)
|
haftmann@37052
|
369 |
qed
|
haftmann@37052
|
370 |
qed
|
haftmann@37052
|
371 |
|
haftmann@37052
|
372 |
lemma ordered_keys_replace [simp]:
|
haftmann@37052
|
373 |
"ordered_keys (replace k v m) = ordered_keys m"
|
haftmann@37052
|
374 |
by (simp add: replace_def)
|
haftmann@37052
|
375 |
|
haftmann@37052
|
376 |
lemma ordered_keys_default [simp]:
|
haftmann@37052
|
377 |
"k \<in> keys m \<Longrightarrow> ordered_keys (default k v m) = ordered_keys m"
|
haftmann@37052
|
378 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (default k v m) = insort k (ordered_keys m)"
|
haftmann@37052
|
379 |
by (simp_all add: default_def)
|
haftmann@37052
|
380 |
|
haftmann@37052
|
381 |
lemma ordered_keys_map_entry [simp]:
|
haftmann@37052
|
382 |
"ordered_keys (map_entry k f m) = ordered_keys m"
|
haftmann@37052
|
383 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
384 |
|
haftmann@37052
|
385 |
lemma ordered_keys_map_default [simp]:
|
haftmann@37052
|
386 |
"k \<in> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = ordered_keys m"
|
haftmann@37052
|
387 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = insort k (ordered_keys m)"
|
haftmann@37052
|
388 |
by (simp_all add: map_default_def)
|
haftmann@37052
|
389 |
|
haftmann@37052
|
390 |
lemma ordered_keys_tabulate [simp]:
|
haftmann@37052
|
391 |
"ordered_keys (tabulate ks f) = sort (remdups ks)"
|
haftmann@37052
|
392 |
by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups)
|
haftmann@37052
|
393 |
|
haftmann@37052
|
394 |
lemma ordered_keys_bulkload [simp]:
|
haftmann@37052
|
395 |
"ordered_keys (bulkload ks) = [0..<length ks]"
|
haftmann@37052
|
396 |
by (simp add: ordered_keys_def)
|
haftmann@36110
|
397 |
|
haftmann@56528
|
398 |
lemma tabulate_fold:
|
haftmann@56528
|
399 |
"tabulate xs f = fold (\<lambda>k m. update k (f k) m) xs empty"
|
haftmann@56528
|
400 |
proof transfer
|
haftmann@56528
|
401 |
fix f :: "'a \<Rightarrow> 'b" and xs
|
haftmann@56529
|
402 |
have "map_of (List.map (\<lambda>k. (k, f k)) xs) = foldr (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty"
|
haftmann@56529
|
403 |
by (simp add: foldr_map comp_def map_of_foldr)
|
haftmann@56528
|
404 |
also have "foldr (\<lambda>k m. m(k \<mapsto> f k)) xs = fold (\<lambda>k m. m(k \<mapsto> f k)) xs"
|
haftmann@56528
|
405 |
by (rule foldr_fold) (simp add: fun_eq_iff)
|
haftmann@56528
|
406 |
ultimately show "map_of (List.map (\<lambda>k. (k, f k)) xs) = fold (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty"
|
haftmann@56528
|
407 |
by simp
|
haftmann@56528
|
408 |
qed
|
haftmann@56528
|
409 |
|
haftmann@31459
|
410 |
|
wenzelm@60500
|
411 |
subsection \<open>Code generator setup\<close>
|
haftmann@31459
|
412 |
|
kuncar@49929
|
413 |
hide_const (open) empty is_empty rep lookup update delete ordered_keys keys size
|
haftmann@54853
|
414 |
replace default map_entry map_default tabulate bulkload map of_alist
|
haftmann@35157
|
415 |
|
huffman@49975
|
416 |
end
|
haftmann@59485
|
417 |
|