author  nipkow 
Fri, 24 Nov 2000 16:49:27 +0100  
changeset 10519  ade64af4c57c 
parent 10489  a4684cf28edf 
child 11432  8a203ae6efe3 
permissions  rwrr 
923  1 
(* Title: HOL/HOL.thy 
2 
ID: $Id$ 

3 
Author: Tobias Nipkow 

4 
Copyright 1993 University of Cambridge 

5 

2260  6 
HigherOrder Logic. 
923  7 
*) 
8 

7357  9 
theory HOL = CPure 
9869  10 
files ("HOL_lemmas.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML") 
11 
("meson_lemmas.ML") ("Tools/meson.ML"): 

923  12 

2260  13 

14 
(** Core syntax **) 

15 

3947  16 
global 
17 

7357  18 
classes "term" < logic 
19 
defaultsort "term" 

923  20 

7357  21 
typedecl bool 
923  22 

23 
arities 

7357  24 
bool :: "term" 
25 
fun :: ("term", "term") "term" 

923  26 

27 
consts 

28 

29 
(* Constants *) 

30 

7357  31 
Trueprop :: "bool => prop" ("(_)" 5) 
32 
Not :: "bool => bool" ("~ _" [40] 40) 

33 
True :: bool 

34 
False :: bool 

35 
If :: "[bool, 'a, 'a] => 'a" ("(if (_)/ then (_)/ else (_))" 10) 

3947  36 
arbitrary :: 'a 
923  37 

38 
(* Binders *) 

39 

7357  40 
Eps :: "('a => bool) => 'a" 
41 
All :: "('a => bool) => bool" (binder "ALL " 10) 

42 
Ex :: "('a => bool) => bool" (binder "EX " 10) 

43 
Ex1 :: "('a => bool) => bool" (binder "EX! " 10) 

44 
Let :: "['a, 'a => 'b] => 'b" 

923  45 

46 
(* Infixes *) 

47 

7357  48 
"=" :: "['a, 'a] => bool" (infixl 50) 
49 
& :: "[bool, bool] => bool" (infixr 35) 

50 
"" :: "[bool, bool] => bool" (infixr 30) 

51 
> :: "[bool, bool] => bool" (infixr 25) 

923  52 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

53 
local 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

54 

2260  55 

56 
(* Overloaded Constants *) 

57 

9869  58 
axclass zero < "term" 
8940  59 
axclass plus < "term" 
7357  60 
axclass minus < "term" 
61 
axclass times < "term" 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

62 
axclass inverse < "term" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

63 

3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

64 
global 
3370
5c5fdce3a4e4
Overloading of "^" requires new type class "power", with types "nat" and
paulson
parents:
3320
diff
changeset

65 

2260  66 
consts 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

67 
"0" :: "'a::zero" ("0") 
7357  68 
"+" :: "['a::plus, 'a] => 'a" (infixl 65) 
69 
 :: "['a::minus, 'a] => 'a" (infixl 65) 

70 
uminus :: "['a::minus] => 'a" (" _" [81] 80) 

7426  71 
* :: "['a::times, 'a] => 'a" (infixl 70) 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

72 

3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

73 
local 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

74 

3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

75 
consts 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

76 
abs :: "'a::minus => 'a" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

77 
inverse :: "'a::inverse => 'a" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

78 
divide :: "['a::inverse, 'a] => 'a" (infixl "'/" 70) 
2260  79 

10489  80 
syntax (xsymbols) 
81 
abs :: "'a::minus => 'a" ("\<bar>_\<bar>") 

82 
syntax (HTML output) 

83 
abs :: "'a::minus => 'a" ("\<bar>_\<bar>") 

84 

8959  85 
axclass plus_ac0 < plus, zero 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

86 
commute: "x + y = y + x" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

87 
assoc: "(x + y) + z = x + (y + z)" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

88 
zero: "0 + x = x" 
3820  89 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset

90 

2260  91 
(** Additional concrete syntax **) 
92 

4868  93 
nonterminals 
923  94 
letbinds letbind 
95 
case_syn cases_syn 

96 

97 
syntax 

7357  98 
~= :: "['a, 'a] => bool" (infixl 50) 
99 
"_Eps" :: "[pttrn, bool] => 'a" ("(3SOME _./ _)" [0, 10] 10) 

923  100 

101 
(* Let expressions *) 

102 

7357  103 
"_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10) 
104 
"" :: "letbind => letbinds" ("_") 

105 
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _") 

106 
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" 10) 

923  107 

108 
(* Case expressions *) 

109 

9060
b0dd884b1848
rename @case to _case_syntax (improves on lowlevel errors);
wenzelm
parents:
8959
diff
changeset

110 
"_case_syntax":: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10) 
b0dd884b1848
rename @case to _case_syntax (improves on lowlevel errors);
wenzelm
parents:
8959
diff
changeset

111 
"_case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10) 
7357  112 
"" :: "case_syn => cases_syn" ("_") 
9060
b0dd884b1848
rename @case to _case_syntax (improves on lowlevel errors);
wenzelm
parents:
8959
diff
changeset

113 
"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/  _") 
923  114 

115 
translations 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset

116 
"x ~= y" == "~ (x = y)" 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset

117 
"SOME x. P" == "Eps (%x. P)" 
923  118 
"_Let (_binds b bs) e" == "_Let b (_Let bs e)" 
1114  119 
"let x = a in e" == "Let a (%x. e)" 
923  120 

3820  121 
syntax ("" output) 
7357  122 
"op =" :: "['a, 'a] => bool" ("(_ =/ _)" [51, 51] 50) 
123 
"op ~=" :: "['a, 'a] => bool" ("(_ ~=/ _)" [51, 51] 50) 

2260  124 

125 
syntax (symbols) 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

126 
Not :: "bool => bool" ("\<not> _" [40] 40) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

127 
"op &" :: "[bool, bool] => bool" (infixr "\<and>" 35) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

128 
"op " :: "[bool, bool] => bool" (infixr "\<or>" 30) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

129 
"op >" :: "[bool, bool] => bool" (infixr "\<midarrow>\<rightarrow>" 25) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

130 
"op ~=" :: "['a, 'a] => bool" (infixl "\<noteq>" 50) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

131 
"ALL " :: "[idts, bool] => bool" ("(3\<forall>_./ _)" [0, 10] 10) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

132 
"EX " :: "[idts, bool] => bool" ("(3\<exists>_./ _)" [0, 10] 10) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

133 
"EX! " :: "[idts, bool] => bool" ("(3\<exists>!_./ _)" [0, 10] 10) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

134 
"_case1" :: "['a, 'b] => case_syn" ("(2_ \<Rightarrow>/ _)" 10) 
9060
b0dd884b1848
rename @case to _case_syntax (improves on lowlevel errors);
wenzelm
parents:
8959
diff
changeset

135 
(*"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ \\<orelse> _")*) 
2372  136 

9950  137 
syntax (input) 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

138 
"_Eps" :: "[pttrn, bool] => 'a" ("(3\<epsilon>_./ _)" [0, 10] 10) 
9950  139 

3820  140 
syntax (symbols output) 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

141 
"op ~=" :: "['a, 'a] => bool" ("(_ \<noteq>/ _)" [51, 51] 50) 
3820  142 

6027
9dd06eeda95c
added new print_mode "xsymbols" for extended symbol support
oheimb
parents:
5786
diff
changeset

143 
syntax (xsymbols) 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

144 
"op >" :: "[bool, bool] => bool" (infixr "\<longrightarrow>" 25) 
2260  145 

6340  146 
syntax (HTML output) 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

147 
Not :: "bool => bool" ("\<not> _" [40] 40) 
6340  148 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset

149 
syntax (HOL) 
7357  150 
"_Eps" :: "[pttrn, bool] => 'a" ("(3@ _./ _)" [0, 10] 10) 
151 
"ALL " :: "[idts, bool] => bool" ("(3! _./ _)" [0, 10] 10) 

152 
"EX " :: "[idts, bool] => bool" ("(3? _./ _)" [0, 10] 10) 

153 
"EX! " :: "[idts, bool] => bool" ("(3?! _./ _)" [0, 10] 10) 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset

154 

36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset

155 

6340  156 

2260  157 
(** Rules and definitions **) 
158 

7357  159 
axioms 
923  160 

7357  161 
eq_reflection: "(x=y) ==> (x==y)" 
923  162 

163 
(* Basic Rules *) 

164 

7357  165 
refl: "t = (t::'a)" 
166 
subst: "[ s = t; P(s) ] ==> P(t::'a)" 

6289  167 

168 
(*Extensionality is built into the metalogic, and this rule expresses 

169 
a related property. It is an etaexpanded version of the traditional 

170 
rule, and similar to the ABS rule of HOL.*) 

7357  171 
ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" 
6289  172 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

173 
someI: "P (x::'a) ==> P (SOME x. P x)" 
923  174 

7357  175 
impI: "(P ==> Q) ==> P>Q" 
176 
mp: "[ P>Q; P ] ==> Q" 

923  177 

178 
defs 

179 

7357  180 
True_def: "True == ((%x::bool. x) = (%x. x))" 
181 
All_def: "All(P) == (P = (%x. True))" 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

182 
Ex_def: "Ex(P) == P (SOME x. P x)" 
7357  183 
False_def: "False == (!P. P)" 
184 
not_def: "~ P == P>False" 

185 
and_def: "P & Q == !R. (P>Q>R) > R" 

186 
or_def: "P  Q == !R. (P>R) > (Q>R) > R" 

187 
Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) > y=x)" 

923  188 

7357  189 
axioms 
923  190 
(* Axioms *) 
191 

7357  192 
iff: "(P>Q) > (Q>P) > (P=Q)" 
193 
True_or_False: "(P=True)  (P=False)" 

923  194 

195 
defs 

5069  196 
(*misc definitions*) 
7357  197 
Let_def: "Let s f == f(s)" 
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

198 
if_def: "If P x y == SOME z::'a. (P=True > z=x) & (P=False > z=y)" 
5069  199 

200 
(*arbitrary is completely unspecified, but is made to appear as a 

201 
definition syntactically*) 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

202 
arbitrary_def: "False ==> arbitrary == (SOME x. False)" 
923  203 

3320  204 

4868  205 

7357  206 
(* theory and package setup *) 
4868  207 

9736  208 
use "HOL_lemmas.ML" 
9869  209 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

210 
lemma atomize_all: "(!!x. P x) == Trueprop (ALL x. P x)" 
9488  211 
proof (rule equal_intr_rule) 
212 
assume "!!x. P x" 

10383  213 
show "ALL x. P x" by (rule allI) 
9488  214 
next 
215 
assume "ALL x. P x" 

10383  216 
thus "!!x. P x" by (rule allE) 
9488  217 
qed 
218 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

219 
lemma atomize_imp: "(A ==> B) == Trueprop (A > B)" 
9488  220 
proof (rule equal_intr_rule) 
221 
assume r: "A ==> B" 

10383  222 
show "A > B" by (rule impI) (rule r) 
9488  223 
next 
224 
assume "A > B" and A 

10383  225 
thus B by (rule mp) 
9488  226 
qed 
227 

10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

228 
lemma atomize_eq: "(x == y) == Trueprop (x = y)" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

229 
proof (rule equal_intr_rule) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

230 
assume "x == y" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

231 
show "x = y" by (unfold prems) (rule refl) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

232 
next 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

233 
assume "x = y" 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

234 
thus "x == y" by (rule eq_reflection) 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

235 
qed 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

236 

3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

237 
lemmas atomize = atomize_all atomize_imp 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset

238 
lemmas atomize' = atomize atomize_eq 
9529  239 

10383  240 
use "cladata.ML" 
241 
setup hypsubst_setup 

242 
setup Classical.setup 

243 
setup clasetup 

244 

9869  245 
use "blastdata.ML" 
246 
setup Blast.setup 

4868  247 

9869  248 
use "simpdata.ML" 
249 
setup Simplifier.setup 

250 
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup 

251 
setup Splitter.setup setup Clasimp.setup 

252 

253 
use "meson_lemmas.ML" 

9839
da5ca8b30244
loads Tools/meson.ML: meson_tac installed by default
paulson
parents:
9736
diff
changeset

254 
use "Tools/meson.ML" 
9869  255 
setup meson_setup 
9839
da5ca8b30244
loads Tools/meson.ML: meson_tac installed by default
paulson
parents:
9736
diff
changeset

256 

923  257 
end 