src/HOL/GCD.thy
author haftmann
Thu Jan 28 11:48:43 2010 +0100 (2010-01-28)
changeset 34973 ae634fad947e
parent 34915 7894c7dab132
child 35028 108662d50512
permissions -rw-r--r--
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann@32479
     1
(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
nipkow@31798
     2
                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
huffman@31706
     3
huffman@31706
     4
haftmann@32479
     5
This file deals with the functions gcd and lcm.  Definitions and
haftmann@32479
     6
lemmas are proved uniformly for the natural numbers and integers.
huffman@31706
     7
huffman@31706
     8
This file combines and revises a number of prior developments.
huffman@31706
     9
huffman@31706
    10
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
huffman@31706
    11
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
huffman@31706
    12
gcd, lcm, and prime for the natural numbers.
huffman@31706
    13
huffman@31706
    14
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
huffman@31706
    15
extended gcd, lcm, primes to the integers. Amine Chaieb provided
huffman@31706
    16
another extension of the notions to the integers, and added a number
huffman@31706
    17
of results to "Primes" and "GCD". IntPrimes also defined and developed
huffman@31706
    18
the congruence relations on the integers. The notion was extended to
berghofe@34915
    19
the natural numbers by Chaieb.
huffman@31706
    20
avigad@32036
    21
Jeremy Avigad combined all of these, made everything uniform for the
avigad@32036
    22
natural numbers and the integers, and added a number of new theorems.
avigad@32036
    23
nipkow@31798
    24
Tobias Nipkow cleaned up a lot.
wenzelm@21256
    25
*)
wenzelm@21256
    26
huffman@31706
    27
berghofe@34915
    28
header {* Greatest common divisor and least common multiple *}
wenzelm@21256
    29
wenzelm@21256
    30
theory GCD
haftmann@33318
    31
imports Fact Parity
huffman@31706
    32
begin
huffman@31706
    33
huffman@31706
    34
declare One_nat_def [simp del]
huffman@31706
    35
haftmann@34030
    36
subsection {* GCD and LCM definitions *}
huffman@31706
    37
nipkow@31992
    38
class gcd = zero + one + dvd +
huffman@31706
    39
huffman@31706
    40
fixes
huffman@31706
    41
  gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" and
huffman@31706
    42
  lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
huffman@31706
    43
wenzelm@21256
    44
begin
wenzelm@21256
    45
huffman@31706
    46
abbreviation
huffman@31706
    47
  coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
huffman@31706
    48
where
huffman@31706
    49
  "coprime x y == (gcd x y = 1)"
huffman@31706
    50
huffman@31706
    51
end
huffman@31706
    52
huffman@31706
    53
instantiation nat :: gcd
huffman@31706
    54
begin
wenzelm@21256
    55
huffman@31706
    56
fun
huffman@31706
    57
  gcd_nat  :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31706
    58
where
huffman@31706
    59
  "gcd_nat x y =
huffman@31706
    60
   (if y = 0 then x else gcd y (x mod y))"
huffman@31706
    61
huffman@31706
    62
definition
huffman@31706
    63
  lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31706
    64
where
huffman@31706
    65
  "lcm_nat x y = x * y div (gcd x y)"
huffman@31706
    66
huffman@31706
    67
instance proof qed
huffman@31706
    68
huffman@31706
    69
end
huffman@31706
    70
huffman@31706
    71
instantiation int :: gcd
huffman@31706
    72
begin
wenzelm@21256
    73
huffman@31706
    74
definition
huffman@31706
    75
  gcd_int  :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31706
    76
where
huffman@31706
    77
  "gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))"
haftmann@23687
    78
huffman@31706
    79
definition
huffman@31706
    80
  lcm_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31706
    81
where
huffman@31706
    82
  "lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))"
haftmann@23687
    83
huffman@31706
    84
instance proof qed
huffman@31706
    85
huffman@31706
    86
end
haftmann@23687
    87
haftmann@23687
    88
haftmann@34030
    89
subsection {* Transfer setup *}
huffman@31706
    90
huffman@31706
    91
lemma transfer_nat_int_gcd:
huffman@31706
    92
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)"
huffman@31706
    93
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)"
haftmann@32479
    94
  unfolding gcd_int_def lcm_int_def
huffman@31706
    95
  by auto
haftmann@23687
    96
huffman@31706
    97
lemma transfer_nat_int_gcd_closures:
huffman@31706
    98
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0"
huffman@31706
    99
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0"
huffman@31706
   100
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31706
   101
huffman@31706
   102
declare TransferMorphism_nat_int[transfer add return:
huffman@31706
   103
    transfer_nat_int_gcd transfer_nat_int_gcd_closures]
huffman@31706
   104
huffman@31706
   105
lemma transfer_int_nat_gcd:
huffman@31706
   106
  "gcd (int x) (int y) = int (gcd x y)"
huffman@31706
   107
  "lcm (int x) (int y) = int (lcm x y)"
haftmann@32479
   108
  by (unfold gcd_int_def lcm_int_def, auto)
huffman@31706
   109
huffman@31706
   110
lemma transfer_int_nat_gcd_closures:
huffman@31706
   111
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0"
huffman@31706
   112
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0"
huffman@31706
   113
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31706
   114
huffman@31706
   115
declare TransferMorphism_int_nat[transfer add return:
huffman@31706
   116
    transfer_int_nat_gcd transfer_int_nat_gcd_closures]
huffman@31706
   117
huffman@31706
   118
haftmann@34030
   119
subsection {* GCD properties *}
huffman@31706
   120
huffman@31706
   121
(* was gcd_induct *)
nipkow@31952
   122
lemma gcd_nat_induct:
haftmann@23687
   123
  fixes m n :: nat
haftmann@23687
   124
  assumes "\<And>m. P m 0"
haftmann@23687
   125
    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
haftmann@23687
   126
  shows "P m n"
huffman@31706
   127
  apply (rule gcd_nat.induct)
huffman@31706
   128
  apply (case_tac "y = 0")
huffman@31706
   129
  using assms apply simp_all
huffman@31706
   130
done
huffman@31706
   131
huffman@31706
   132
(* specific to int *)
huffman@31706
   133
nipkow@31952
   134
lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y"
huffman@31706
   135
  by (simp add: gcd_int_def)
huffman@31706
   136
nipkow@31952
   137
lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y"
huffman@31706
   138
  by (simp add: gcd_int_def)
huffman@31706
   139
nipkow@31813
   140
lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y"
nipkow@31813
   141
by(simp add: gcd_int_def)
nipkow@31813
   142
nipkow@31952
   143
lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)"
nipkow@31813
   144
by (simp add: gcd_int_def)
nipkow@31813
   145
nipkow@31813
   146
lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y"
nipkow@31952
   147
by (metis abs_idempotent gcd_abs_int)
nipkow@31813
   148
nipkow@31813
   149
lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y"
nipkow@31952
   150
by (metis abs_idempotent gcd_abs_int)
huffman@31706
   151
nipkow@31952
   152
lemma gcd_cases_int:
huffman@31706
   153
  fixes x :: int and y
huffman@31706
   154
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)"
huffman@31706
   155
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))"
huffman@31706
   156
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)"
huffman@31706
   157
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))"
huffman@31706
   158
  shows "P (gcd x y)"
nipkow@31952
   159
by (insert prems, auto simp add: gcd_neg1_int gcd_neg2_int, arith)
wenzelm@21256
   160
nipkow@31952
   161
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0"
huffman@31706
   162
  by (simp add: gcd_int_def)
huffman@31706
   163
nipkow@31952
   164
lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y"
huffman@31706
   165
  by (simp add: lcm_int_def)
huffman@31706
   166
nipkow@31952
   167
lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y"
huffman@31706
   168
  by (simp add: lcm_int_def)
huffman@31706
   169
nipkow@31952
   170
lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)"
huffman@31706
   171
  by (simp add: lcm_int_def)
wenzelm@21256
   172
nipkow@31814
   173
lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j"
nipkow@31814
   174
by(simp add:lcm_int_def)
nipkow@31814
   175
nipkow@31814
   176
lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y"
nipkow@31814
   177
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   178
nipkow@31814
   179
lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y"
nipkow@31814
   180
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   181
nipkow@31952
   182
lemma lcm_cases_int:
huffman@31706
   183
  fixes x :: int and y
huffman@31706
   184
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)"
huffman@31706
   185
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))"
huffman@31706
   186
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)"
huffman@31706
   187
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))"
huffman@31706
   188
  shows "P (lcm x y)"
nipkow@31952
   189
by (insert prems, auto simp add: lcm_neg1_int lcm_neg2_int, arith)
huffman@31706
   190
nipkow@31952
   191
lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0"
huffman@31706
   192
  by (simp add: lcm_int_def)
huffman@31706
   193
huffman@31706
   194
(* was gcd_0, etc. *)
nipkow@31952
   195
lemma gcd_0_nat [simp]: "gcd (x::nat) 0 = x"
haftmann@23687
   196
  by simp
haftmann@23687
   197
huffman@31706
   198
(* was igcd_0, etc. *)
nipkow@31952
   199
lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x"
huffman@31706
   200
  by (unfold gcd_int_def, auto)
huffman@31706
   201
nipkow@31952
   202
lemma gcd_0_left_nat [simp]: "gcd 0 (x::nat) = x"
haftmann@23687
   203
  by simp
haftmann@23687
   204
nipkow@31952
   205
lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x"
huffman@31706
   206
  by (unfold gcd_int_def, auto)
huffman@31706
   207
nipkow@31952
   208
lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)"
huffman@31706
   209
  by (case_tac "y = 0", auto)
huffman@31706
   210
huffman@31706
   211
(* weaker, but useful for the simplifier *)
huffman@31706
   212
nipkow@31952
   213
lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)"
huffman@31706
   214
  by simp
huffman@31706
   215
nipkow@31952
   216
lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1"
wenzelm@21263
   217
  by simp
wenzelm@21256
   218
nipkow@31952
   219
lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0"
huffman@31706
   220
  by (simp add: One_nat_def)
huffman@31706
   221
nipkow@31952
   222
lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1"
huffman@31706
   223
  by (simp add: gcd_int_def)
huffman@30082
   224
nipkow@31952
   225
lemma gcd_idem_nat: "gcd (x::nat) x = x"
nipkow@31798
   226
by simp
huffman@31706
   227
nipkow@31952
   228
lemma gcd_idem_int: "gcd (x::int) x = abs x"
nipkow@31813
   229
by (auto simp add: gcd_int_def)
huffman@31706
   230
huffman@31706
   231
declare gcd_nat.simps [simp del]
wenzelm@21256
   232
wenzelm@21256
   233
text {*
haftmann@27556
   234
  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
wenzelm@21256
   235
  conjunctions don't seem provable separately.
wenzelm@21256
   236
*}
wenzelm@21256
   237
nipkow@31952
   238
lemma gcd_dvd1_nat [iff]: "(gcd (m::nat)) n dvd m"
nipkow@31952
   239
  and gcd_dvd2_nat [iff]: "(gcd m n) dvd n"
nipkow@31952
   240
  apply (induct m n rule: gcd_nat_induct)
nipkow@31952
   241
  apply (simp_all add: gcd_non_0_nat)
wenzelm@21256
   242
  apply (blast dest: dvd_mod_imp_dvd)
huffman@31706
   243
done
huffman@31706
   244
nipkow@31952
   245
lemma gcd_dvd1_int [iff]: "gcd (x::int) y dvd x"
nipkow@31952
   246
by (metis gcd_int_def int_dvd_iff gcd_dvd1_nat)
wenzelm@21256
   247
nipkow@31952
   248
lemma gcd_dvd2_int [iff]: "gcd (x::int) y dvd y"
nipkow@31952
   249
by (metis gcd_int_def int_dvd_iff gcd_dvd2_nat)
huffman@31706
   250
nipkow@31730
   251
lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m"
nipkow@31952
   252
by(metis gcd_dvd1_nat dvd_trans)
nipkow@31730
   253
nipkow@31730
   254
lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n"
nipkow@31952
   255
by(metis gcd_dvd2_nat dvd_trans)
nipkow@31730
   256
nipkow@31730
   257
lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m"
nipkow@31952
   258
by(metis gcd_dvd1_int dvd_trans)
nipkow@31730
   259
nipkow@31730
   260
lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n"
nipkow@31952
   261
by(metis gcd_dvd2_int dvd_trans)
nipkow@31730
   262
nipkow@31952
   263
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a"
huffman@31706
   264
  by (rule dvd_imp_le, auto)
huffman@31706
   265
nipkow@31952
   266
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b"
huffman@31706
   267
  by (rule dvd_imp_le, auto)
huffman@31706
   268
nipkow@31952
   269
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a"
huffman@31706
   270
  by (rule zdvd_imp_le, auto)
wenzelm@21256
   271
nipkow@31952
   272
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b"
huffman@31706
   273
  by (rule zdvd_imp_le, auto)
huffman@31706
   274
nipkow@31952
   275
lemma gcd_greatest_nat: "(k::nat) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   276
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod)
huffman@31706
   277
nipkow@31952
   278
lemma gcd_greatest_int:
nipkow@31813
   279
  "(k::int) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   280
  apply (subst gcd_abs_int)
huffman@31706
   281
  apply (subst abs_dvd_iff [symmetric])
nipkow@31952
   282
  apply (rule gcd_greatest_nat [transferred])
nipkow@31813
   283
  apply auto
huffman@31706
   284
done
wenzelm@21256
   285
nipkow@31952
   286
lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) =
huffman@31706
   287
    (k dvd m & k dvd n)"
nipkow@31952
   288
  by (blast intro!: gcd_greatest_nat intro: dvd_trans)
huffman@31706
   289
nipkow@31952
   290
lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)"
nipkow@31952
   291
  by (blast intro!: gcd_greatest_int intro: dvd_trans)
wenzelm@21256
   292
nipkow@31952
   293
lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)"
nipkow@31952
   294
  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat)
wenzelm@21256
   295
nipkow@31952
   296
lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)"
huffman@31706
   297
  by (auto simp add: gcd_int_def)
wenzelm@21256
   298
nipkow@31952
   299
lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   300
  by (insert gcd_zero_nat [of m n], arith)
wenzelm@21256
   301
nipkow@31952
   302
lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   303
  by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith)
huffman@31706
   304
haftmann@34973
   305
interpretation gcd_nat!: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@34973
   306
proof
haftmann@34973
   307
qed (auto intro: dvd_antisym dvd_trans)
huffman@31706
   308
haftmann@34973
   309
interpretation gcd_int!: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@34973
   310
proof
haftmann@34973
   311
qed (simp_all add: gcd_int_def gcd_nat.assoc gcd_nat.commute gcd_nat.left_commute)
wenzelm@21256
   312
haftmann@34973
   313
lemmas gcd_assoc_nat = gcd_nat.assoc
haftmann@34973
   314
lemmas gcd_commute_nat = gcd_nat.commute
haftmann@34973
   315
lemmas gcd_left_commute_nat = gcd_nat.left_commute
haftmann@34973
   316
lemmas gcd_assoc_int = gcd_int.assoc
haftmann@34973
   317
lemmas gcd_commute_int = gcd_int.commute
haftmann@34973
   318
lemmas gcd_left_commute_int = gcd_int.left_commute
huffman@31706
   319
nipkow@31952
   320
lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat
wenzelm@21256
   321
nipkow@31952
   322
lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int
huffman@31706
   323
nipkow@31952
   324
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and>
huffman@31706
   325
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
huffman@31706
   326
  apply auto
nipkow@33657
   327
  apply (rule dvd_antisym)
nipkow@31952
   328
  apply (erule (1) gcd_greatest_nat)
huffman@31706
   329
  apply auto
huffman@31706
   330
done
wenzelm@21256
   331
nipkow@31952
   332
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and>
huffman@31706
   333
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
nipkow@33657
   334
apply (case_tac "d = 0")
nipkow@33657
   335
 apply simp
nipkow@33657
   336
apply (rule iffI)
nipkow@33657
   337
 apply (rule zdvd_antisym_nonneg)
nipkow@33657
   338
 apply (auto intro: gcd_greatest_int)
huffman@31706
   339
done
huffman@30082
   340
nipkow@31798
   341
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x"
nipkow@31952
   342
by (metis dvd.eq_iff gcd_unique_nat)
nipkow@31798
   343
nipkow@31798
   344
lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y"
nipkow@31952
   345
by (metis dvd.eq_iff gcd_unique_nat)
nipkow@31798
   346
nipkow@31798
   347
lemma gcd_proj1_if_dvd_int[simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x"
nipkow@31952
   348
by (metis abs_dvd_iff abs_eq_0 gcd_0_left_int gcd_abs_int gcd_unique_int)
nipkow@31798
   349
nipkow@31798
   350
lemma gcd_proj2_if_dvd_int[simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y"
nipkow@31952
   351
by (metis gcd_proj1_if_dvd_int gcd_commute_int)
nipkow@31798
   352
nipkow@31798
   353
wenzelm@21256
   354
text {*
wenzelm@21256
   355
  \medskip Multiplication laws
wenzelm@21256
   356
*}
wenzelm@21256
   357
nipkow@31952
   358
lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)"
wenzelm@21256
   359
    -- {* \cite[page 27]{davenport92} *}
nipkow@31952
   360
  apply (induct m n rule: gcd_nat_induct)
huffman@31706
   361
  apply simp
wenzelm@21256
   362
  apply (case_tac "k = 0")
nipkow@31952
   363
  apply (simp_all add: mod_geq gcd_non_0_nat mod_mult_distrib2)
huffman@31706
   364
done
wenzelm@21256
   365
nipkow@31952
   366
lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)"
nipkow@31952
   367
  apply (subst (1 2) gcd_abs_int)
nipkow@31813
   368
  apply (subst (1 2) abs_mult)
nipkow@31952
   369
  apply (rule gcd_mult_distrib_nat [transferred])
huffman@31706
   370
  apply auto
huffman@31706
   371
done
wenzelm@21256
   372
nipkow@31952
   373
lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31952
   374
  apply (insert gcd_mult_distrib_nat [of m k n])
wenzelm@21256
   375
  apply simp
wenzelm@21256
   376
  apply (erule_tac t = m in ssubst)
wenzelm@21256
   377
  apply simp
wenzelm@21256
   378
  done
wenzelm@21256
   379
nipkow@31952
   380
lemma coprime_dvd_mult_int:
nipkow@31813
   381
  "coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31813
   382
apply (subst abs_dvd_iff [symmetric])
nipkow@31813
   383
apply (subst dvd_abs_iff [symmetric])
nipkow@31952
   384
apply (subst (asm) gcd_abs_int)
nipkow@31952
   385
apply (rule coprime_dvd_mult_nat [transferred])
nipkow@31813
   386
    prefer 4 apply assumption
nipkow@31813
   387
   apply auto
nipkow@31813
   388
apply (subst abs_mult [symmetric], auto)
huffman@31706
   389
done
huffman@31706
   390
nipkow@31952
   391
lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow>
huffman@31706
   392
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   393
  by (auto intro: coprime_dvd_mult_nat)
huffman@31706
   394
nipkow@31952
   395
lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow>
huffman@31706
   396
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   397
  by (auto intro: coprime_dvd_mult_int)
huffman@31706
   398
nipkow@31952
   399
lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n"
nipkow@33657
   400
  apply (rule dvd_antisym)
nipkow@31952
   401
  apply (rule gcd_greatest_nat)
nipkow@31952
   402
  apply (rule_tac n = k in coprime_dvd_mult_nat)
nipkow@31952
   403
  apply (simp add: gcd_assoc_nat)
nipkow@31952
   404
  apply (simp add: gcd_commute_nat)
huffman@31706
   405
  apply (simp_all add: mult_commute)
huffman@31706
   406
done
wenzelm@21256
   407
nipkow@31952
   408
lemma gcd_mult_cancel_int:
nipkow@31813
   409
  "coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n"
nipkow@31952
   410
apply (subst (1 2) gcd_abs_int)
nipkow@31813
   411
apply (subst abs_mult)
nipkow@31952
   412
apply (rule gcd_mult_cancel_nat [transferred], auto)
huffman@31706
   413
done
wenzelm@21256
   414
wenzelm@21256
   415
text {* \medskip Addition laws *}
wenzelm@21256
   416
nipkow@31952
   417
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n"
huffman@31706
   418
  apply (case_tac "n = 0")
nipkow@31952
   419
  apply (simp_all add: gcd_non_0_nat)
huffman@31706
   420
done
huffman@31706
   421
nipkow@31952
   422
lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n"
nipkow@31952
   423
  apply (subst (1 2) gcd_commute_nat)
huffman@31706
   424
  apply (subst add_commute)
huffman@31706
   425
  apply simp
huffman@31706
   426
done
huffman@31706
   427
huffman@31706
   428
(* to do: add the other variations? *)
huffman@31706
   429
nipkow@31952
   430
lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n"
nipkow@31952
   431
  by (subst gcd_add1_nat [symmetric], auto)
huffman@31706
   432
nipkow@31952
   433
lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n"
nipkow@31952
   434
  apply (subst gcd_commute_nat)
nipkow@31952
   435
  apply (subst gcd_diff1_nat [symmetric])
huffman@31706
   436
  apply auto
nipkow@31952
   437
  apply (subst gcd_commute_nat)
nipkow@31952
   438
  apply (subst gcd_diff1_nat)
huffman@31706
   439
  apply assumption
nipkow@31952
   440
  apply (rule gcd_commute_nat)
huffman@31706
   441
done
huffman@31706
   442
nipkow@31952
   443
lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
huffman@31706
   444
  apply (frule_tac b = y and a = x in pos_mod_sign)
huffman@31706
   445
  apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)
nipkow@31952
   446
  apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric]
huffman@31706
   447
    zmod_zminus1_eq_if)
huffman@31706
   448
  apply (frule_tac a = x in pos_mod_bound)
nipkow@31952
   449
  apply (subst (1 2) gcd_commute_nat)
nipkow@31952
   450
  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat
huffman@31706
   451
    nat_le_eq_zle)
huffman@31706
   452
done
wenzelm@21256
   453
nipkow@31952
   454
lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)"
huffman@31706
   455
  apply (case_tac "y = 0")
huffman@31706
   456
  apply force
huffman@31706
   457
  apply (case_tac "y > 0")
nipkow@31952
   458
  apply (subst gcd_non_0_int, auto)
nipkow@31952
   459
  apply (insert gcd_non_0_int [of "-y" "-x"])
nipkow@31952
   460
  apply (auto simp add: gcd_neg1_int gcd_neg2_int)
huffman@31706
   461
done
huffman@31706
   462
nipkow@31952
   463
lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n"
nipkow@31952
   464
by (metis gcd_red_int mod_add_self1 zadd_commute)
huffman@31706
   465
nipkow@31952
   466
lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n"
nipkow@31952
   467
by (metis gcd_add1_int gcd_commute_int zadd_commute)
wenzelm@21256
   468
nipkow@31952
   469
lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n"
nipkow@31952
   470
by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat)
wenzelm@21256
   471
nipkow@31952
   472
lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n"
nipkow@31952
   473
by (metis gcd_commute_int gcd_red_int mod_mult_self1 zadd_commute)
nipkow@31798
   474
wenzelm@21256
   475
huffman@31706
   476
(* to do: differences, and all variations of addition rules
huffman@31706
   477
    as simplification rules for nat and int *)
huffman@31706
   478
nipkow@31798
   479
(* FIXME remove iff *)
nipkow@31952
   480
lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n"
haftmann@23687
   481
  using mult_dvd_mono [of 1] by auto
chaieb@22027
   482
huffman@31706
   483
(* to do: add the three variations of these, and for ints? *)
huffman@31706
   484
nipkow@31992
   485
lemma finite_divisors_nat[simp]:
nipkow@31992
   486
  assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}"
nipkow@31734
   487
proof-
nipkow@31734
   488
  have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite)
nipkow@31734
   489
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   490
    by(bestsimp intro!:dvd_imp_le)
nipkow@31734
   491
qed
nipkow@31734
   492
nipkow@31995
   493
lemma finite_divisors_int[simp]:
nipkow@31734
   494
  assumes "(i::int) ~= 0" shows "finite{d. d dvd i}"
nipkow@31734
   495
proof-
nipkow@31734
   496
  have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if)
nipkow@31734
   497
  hence "finite{d. abs d <= abs i}" by simp
nipkow@31734
   498
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   499
    by(bestsimp intro!:dvd_imp_le_int)
nipkow@31734
   500
qed
nipkow@31734
   501
nipkow@31995
   502
lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n"
nipkow@31995
   503
apply(rule antisym)
nipkow@31995
   504
 apply (fastsimp intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)
nipkow@31995
   505
apply simp
nipkow@31995
   506
done
nipkow@31995
   507
nipkow@31995
   508
lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n"
nipkow@31995
   509
apply(rule antisym)
nipkow@31995
   510
 apply(rule Max_le_iff[THEN iffD2])
nipkow@31995
   511
   apply simp
nipkow@31995
   512
  apply fastsimp
nipkow@31995
   513
 apply (metis Collect_def abs_ge_self dvd_imp_le_int mem_def zle_trans)
nipkow@31995
   514
apply simp
nipkow@31995
   515
done
nipkow@31995
   516
nipkow@31734
   517
lemma gcd_is_Max_divisors_nat:
nipkow@31734
   518
  "m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   519
apply(rule Max_eqI[THEN sym])
nipkow@31995
   520
  apply (metis finite_Collect_conjI finite_divisors_nat)
nipkow@31734
   521
 apply simp
nipkow@31952
   522
 apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat)
nipkow@31734
   523
apply simp
nipkow@31734
   524
done
nipkow@31734
   525
nipkow@31734
   526
lemma gcd_is_Max_divisors_int:
nipkow@31734
   527
  "m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   528
apply(rule Max_eqI[THEN sym])
nipkow@31995
   529
  apply (metis finite_Collect_conjI finite_divisors_int)
nipkow@31734
   530
 apply simp
nipkow@31952
   531
 apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le)
nipkow@31734
   532
apply simp
nipkow@31734
   533
done
nipkow@31734
   534
haftmann@34030
   535
lemma gcd_code_int [code]:
haftmann@34030
   536
  "gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
haftmann@34030
   537
  by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat)
haftmann@34030
   538
chaieb@22027
   539
huffman@31706
   540
subsection {* Coprimality *}
huffman@31706
   541
nipkow@31952
   542
lemma div_gcd_coprime_nat:
huffman@31706
   543
  assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31706
   544
  shows "coprime (a div gcd a b) (b div gcd a b)"
wenzelm@22367
   545
proof -
haftmann@27556
   546
  let ?g = "gcd a b"
chaieb@22027
   547
  let ?a' = "a div ?g"
chaieb@22027
   548
  let ?b' = "b div ?g"
haftmann@27556
   549
  let ?g' = "gcd ?a' ?b'"
chaieb@22027
   550
  have dvdg: "?g dvd a" "?g dvd b" by simp_all
chaieb@22027
   551
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
wenzelm@22367
   552
  from dvdg dvdg' obtain ka kb ka' kb' where
wenzelm@22367
   553
      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
chaieb@22027
   554
    unfolding dvd_def by blast
huffman@31706
   555
  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"
huffman@31706
   556
    by simp_all
wenzelm@22367
   557
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
wenzelm@22367
   558
    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
wenzelm@22367
   559
      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
nipkow@31952
   560
  have "?g \<noteq> 0" using nz by (simp add: gcd_zero_nat)
huffman@31706
   561
  then have gp: "?g > 0" by arith
nipkow@31952
   562
  from gcd_greatest_nat [OF dvdgg'] have "?g * ?g' dvd ?g" .
wenzelm@22367
   563
  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
chaieb@22027
   564
qed
chaieb@22027
   565
nipkow@31952
   566
lemma div_gcd_coprime_int:
huffman@31706
   567
  assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31706
   568
  shows "coprime (a div gcd a b) (b div gcd a b)"
nipkow@31952
   569
apply (subst (1 2 3) gcd_abs_int)
nipkow@31813
   570
apply (subst (1 2) abs_div)
nipkow@31813
   571
  apply simp
nipkow@31813
   572
 apply simp
nipkow@31813
   573
apply(subst (1 2) abs_gcd_int)
nipkow@31952
   574
apply (rule div_gcd_coprime_nat [transferred])
nipkow@31952
   575
using nz apply (auto simp add: gcd_abs_int [symmetric])
huffman@31706
   576
done
huffman@31706
   577
nipkow@31952
   578
lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   579
  using gcd_unique_nat[of 1 a b, simplified] by auto
huffman@31706
   580
nipkow@31952
   581
lemma coprime_Suc_0_nat:
huffman@31706
   582
    "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)"
nipkow@31952
   583
  using coprime_nat by (simp add: One_nat_def)
huffman@31706
   584
nipkow@31952
   585
lemma coprime_int: "coprime (a::int) b \<longleftrightarrow>
huffman@31706
   586
    (\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   587
  using gcd_unique_int [of 1 a b]
huffman@31706
   588
  apply clarsimp
huffman@31706
   589
  apply (erule subst)
huffman@31706
   590
  apply (rule iffI)
huffman@31706
   591
  apply force
huffman@31706
   592
  apply (drule_tac x = "abs e" in exI)
huffman@31706
   593
  apply (case_tac "e >= 0")
huffman@31706
   594
  apply force
huffman@31706
   595
  apply force
huffman@31706
   596
done
huffman@31706
   597
nipkow@31952
   598
lemma gcd_coprime_nat:
huffman@31706
   599
  assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31706
   600
    b: "b = b' * gcd a b"
huffman@31706
   601
  shows    "coprime a' b'"
huffman@31706
   602
huffman@31706
   603
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31706
   604
  apply (erule ssubst)
huffman@31706
   605
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31706
   606
  apply (erule ssubst)
nipkow@31952
   607
  apply (rule div_gcd_coprime_nat)
huffman@31706
   608
  using prems
huffman@31706
   609
  apply force
huffman@31706
   610
  apply (subst (1) b)
huffman@31706
   611
  using z apply force
huffman@31706
   612
  apply (subst (1) a)
huffman@31706
   613
  using z apply force
huffman@31706
   614
done
huffman@31706
   615
nipkow@31952
   616
lemma gcd_coprime_int:
huffman@31706
   617
  assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31706
   618
    b: "b = b' * gcd a b"
huffman@31706
   619
  shows    "coprime a' b'"
huffman@31706
   620
huffman@31706
   621
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31706
   622
  apply (erule ssubst)
huffman@31706
   623
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31706
   624
  apply (erule ssubst)
nipkow@31952
   625
  apply (rule div_gcd_coprime_int)
huffman@31706
   626
  using prems
huffman@31706
   627
  apply force
huffman@31706
   628
  apply (subst (1) b)
huffman@31706
   629
  using z apply force
huffman@31706
   630
  apply (subst (1) a)
huffman@31706
   631
  using z apply force
huffman@31706
   632
done
huffman@31706
   633
nipkow@31952
   634
lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b"
huffman@31706
   635
    shows "coprime d (a * b)"
nipkow@31952
   636
  apply (subst gcd_commute_nat)
nipkow@31952
   637
  using da apply (subst gcd_mult_cancel_nat)
nipkow@31952
   638
  apply (subst gcd_commute_nat, assumption)
nipkow@31952
   639
  apply (subst gcd_commute_nat, rule db)
huffman@31706
   640
done
huffman@31706
   641
nipkow@31952
   642
lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b"
huffman@31706
   643
    shows "coprime d (a * b)"
nipkow@31952
   644
  apply (subst gcd_commute_int)
nipkow@31952
   645
  using da apply (subst gcd_mult_cancel_int)
nipkow@31952
   646
  apply (subst gcd_commute_int, assumption)
nipkow@31952
   647
  apply (subst gcd_commute_int, rule db)
huffman@31706
   648
done
huffman@31706
   649
nipkow@31952
   650
lemma coprime_lmult_nat:
huffman@31706
   651
  assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a"
huffman@31706
   652
proof -
huffman@31706
   653
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   654
    by (rule gcd_greatest_nat, auto)
huffman@31706
   655
  with dab show ?thesis
huffman@31706
   656
    by auto
huffman@31706
   657
qed
huffman@31706
   658
nipkow@31952
   659
lemma coprime_lmult_int:
nipkow@31798
   660
  assumes "coprime (d::int) (a * b)" shows "coprime d a"
huffman@31706
   661
proof -
huffman@31706
   662
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   663
    by (rule gcd_greatest_int, auto)
nipkow@31798
   664
  with assms show ?thesis
huffman@31706
   665
    by auto
huffman@31706
   666
qed
huffman@31706
   667
nipkow@31952
   668
lemma coprime_rmult_nat:
nipkow@31798
   669
  assumes "coprime (d::nat) (a * b)" shows "coprime d b"
huffman@31706
   670
proof -
huffman@31706
   671
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   672
    by (rule gcd_greatest_nat, auto intro: dvd_mult)
nipkow@31798
   673
  with assms show ?thesis
huffman@31706
   674
    by auto
huffman@31706
   675
qed
huffman@31706
   676
nipkow@31952
   677
lemma coprime_rmult_int:
huffman@31706
   678
  assumes dab: "coprime (d::int) (a * b)" shows "coprime d b"
huffman@31706
   679
proof -
huffman@31706
   680
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   681
    by (rule gcd_greatest_int, auto intro: dvd_mult)
huffman@31706
   682
  with dab show ?thesis
huffman@31706
   683
    by auto
huffman@31706
   684
qed
huffman@31706
   685
nipkow@31952
   686
lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow>
huffman@31706
   687
    coprime d a \<and>  coprime d b"
nipkow@31952
   688
  using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b]
nipkow@31952
   689
    coprime_mult_nat[of d a b]
huffman@31706
   690
  by blast
huffman@31706
   691
nipkow@31952
   692
lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow>
huffman@31706
   693
    coprime d a \<and>  coprime d b"
nipkow@31952
   694
  using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b]
nipkow@31952
   695
    coprime_mult_int[of d a b]
huffman@31706
   696
  by blast
huffman@31706
   697
nipkow@31952
   698
lemma gcd_coprime_exists_nat:
huffman@31706
   699
    assumes nz: "gcd (a::nat) b \<noteq> 0"
huffman@31706
   700
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31706
   701
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31706
   702
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   703
  using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult)
huffman@31706
   704
done
huffman@31706
   705
nipkow@31952
   706
lemma gcd_coprime_exists_int:
huffman@31706
   707
    assumes nz: "gcd (a::int) b \<noteq> 0"
huffman@31706
   708
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31706
   709
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31706
   710
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   711
  using nz apply (auto simp add: div_gcd_coprime_int dvd_div_mult_self)
huffman@31706
   712
done
huffman@31706
   713
nipkow@31952
   714
lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   715
  by (induct n, simp_all add: coprime_mult_nat)
huffman@31706
   716
nipkow@31952
   717
lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   718
  by (induct n, simp_all add: coprime_mult_int)
huffman@31706
   719
nipkow@31952
   720
lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   721
  apply (rule coprime_exp_nat)
nipkow@31952
   722
  apply (subst gcd_commute_nat)
nipkow@31952
   723
  apply (rule coprime_exp_nat)
nipkow@31952
   724
  apply (subst gcd_commute_nat, assumption)
huffman@31706
   725
done
huffman@31706
   726
nipkow@31952
   727
lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   728
  apply (rule coprime_exp_int)
nipkow@31952
   729
  apply (subst gcd_commute_int)
nipkow@31952
   730
  apply (rule coprime_exp_int)
nipkow@31952
   731
  apply (subst gcd_commute_int, assumption)
huffman@31706
   732
done
huffman@31706
   733
nipkow@31952
   734
lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n"
huffman@31706
   735
proof (cases)
huffman@31706
   736
  assume "a = 0 & b = 0"
huffman@31706
   737
  thus ?thesis by simp
huffman@31706
   738
  next assume "~(a = 0 & b = 0)"
huffman@31706
   739
  hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)"
nipkow@31952
   740
    by (auto simp:div_gcd_coprime_nat)
huffman@31706
   741
  hence "gcd ((a div gcd a b)^n * (gcd a b)^n)
huffman@31706
   742
      ((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n"
huffman@31706
   743
    apply (subst (1 2) mult_commute)
nipkow@31952
   744
    apply (subst gcd_mult_distrib_nat [symmetric])
huffman@31706
   745
    apply simp
huffman@31706
   746
    done
huffman@31706
   747
  also have "(a div gcd a b)^n * (gcd a b)^n = a^n"
huffman@31706
   748
    apply (subst div_power)
huffman@31706
   749
    apply auto
huffman@31706
   750
    apply (rule dvd_div_mult_self)
huffman@31706
   751
    apply (rule dvd_power_same)
huffman@31706
   752
    apply auto
huffman@31706
   753
    done
huffman@31706
   754
  also have "(b div gcd a b)^n * (gcd a b)^n = b^n"
huffman@31706
   755
    apply (subst div_power)
huffman@31706
   756
    apply auto
huffman@31706
   757
    apply (rule dvd_div_mult_self)
huffman@31706
   758
    apply (rule dvd_power_same)
huffman@31706
   759
    apply auto
huffman@31706
   760
    done
huffman@31706
   761
  finally show ?thesis .
huffman@31706
   762
qed
huffman@31706
   763
nipkow@31952
   764
lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n"
nipkow@31952
   765
  apply (subst (1 2) gcd_abs_int)
huffman@31706
   766
  apply (subst (1 2) power_abs)
nipkow@31952
   767
  apply (rule gcd_exp_nat [where n = n, transferred])
huffman@31706
   768
  apply auto
huffman@31706
   769
done
huffman@31706
   770
nipkow@31952
   771
lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c"
huffman@31706
   772
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31706
   773
proof-
huffman@31706
   774
  let ?g = "gcd a b"
huffman@31706
   775
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31706
   776
  moreover
huffman@31706
   777
  {assume z: "?g \<noteq> 0"
nipkow@31952
   778
    from gcd_coprime_exists_nat[OF z]
huffman@31706
   779
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   780
      by blast
huffman@31706
   781
    have thb: "?g dvd b" by auto
huffman@31706
   782
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31706
   783
    with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
huffman@31706
   784
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
huffman@31706
   785
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
huffman@31706
   786
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   787
    from coprime_dvd_mult_nat[OF ab'(3)] th_1
huffman@31706
   788
    have thc: "a' dvd c" by (subst (asm) mult_commute, blast)
huffman@31706
   789
    from ab' have "a = ?g*a'" by algebra
huffman@31706
   790
    with thb thc have ?thesis by blast }
huffman@31706
   791
  ultimately show ?thesis by blast
huffman@31706
   792
qed
huffman@31706
   793
nipkow@31952
   794
lemma division_decomp_int: assumes dc: "(a::int) dvd b * c"
huffman@31706
   795
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31706
   796
proof-
huffman@31706
   797
  let ?g = "gcd a b"
huffman@31706
   798
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31706
   799
  moreover
huffman@31706
   800
  {assume z: "?g \<noteq> 0"
nipkow@31952
   801
    from gcd_coprime_exists_int[OF z]
huffman@31706
   802
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   803
      by blast
huffman@31706
   804
    have thb: "?g dvd b" by auto
huffman@31706
   805
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31706
   806
    with dc have th0: "a' dvd b*c"
huffman@31706
   807
      using dvd_trans[of a' a "b*c"] by simp
huffman@31706
   808
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
huffman@31706
   809
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
huffman@31706
   810
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   811
    from coprime_dvd_mult_int[OF ab'(3)] th_1
huffman@31706
   812
    have thc: "a' dvd c" by (subst (asm) mult_commute, blast)
huffman@31706
   813
    from ab' have "a = ?g*a'" by algebra
huffman@31706
   814
    with thb thc have ?thesis by blast }
huffman@31706
   815
  ultimately show ?thesis by blast
chaieb@27669
   816
qed
chaieb@27669
   817
nipkow@31952
   818
lemma pow_divides_pow_nat:
huffman@31706
   819
  assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31706
   820
  shows "a dvd b"
huffman@31706
   821
proof-
huffman@31706
   822
  let ?g = "gcd a b"
huffman@31706
   823
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31706
   824
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31706
   825
  moreover
huffman@31706
   826
  {assume z: "?g \<noteq> 0"
huffman@31706
   827
    hence zn: "?g ^ n \<noteq> 0" using n by (simp add: neq0_conv)
nipkow@31952
   828
    from gcd_coprime_exists_nat[OF z]
huffman@31706
   829
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   830
      by blast
huffman@31706
   831
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31706
   832
      by (simp add: ab'(1,2)[symmetric])
huffman@31706
   833
    hence "?g^n*a'^n dvd ?g^n *b'^n"
huffman@31706
   834
      by (simp only: power_mult_distrib mult_commute)
huffman@31706
   835
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31706
   836
    have "a' dvd a'^n" by (simp add: m)
huffman@31706
   837
    with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp
huffman@31706
   838
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
nipkow@31952
   839
    from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1
huffman@31706
   840
    have "a' dvd b'" by (subst (asm) mult_commute, blast)
huffman@31706
   841
    hence "a'*?g dvd b'*?g" by simp
huffman@31706
   842
    with ab'(1,2)  have ?thesis by simp }
huffman@31706
   843
  ultimately show ?thesis by blast
huffman@31706
   844
qed
huffman@31706
   845
nipkow@31952
   846
lemma pow_divides_pow_int:
huffman@31706
   847
  assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31706
   848
  shows "a dvd b"
chaieb@27669
   849
proof-
huffman@31706
   850
  let ?g = "gcd a b"
huffman@31706
   851
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31706
   852
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31706
   853
  moreover
huffman@31706
   854
  {assume z: "?g \<noteq> 0"
huffman@31706
   855
    hence zn: "?g ^ n \<noteq> 0" using n by (simp add: neq0_conv)
nipkow@31952
   856
    from gcd_coprime_exists_int[OF z]
huffman@31706
   857
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   858
      by blast
huffman@31706
   859
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31706
   860
      by (simp add: ab'(1,2)[symmetric])
huffman@31706
   861
    hence "?g^n*a'^n dvd ?g^n *b'^n"
huffman@31706
   862
      by (simp only: power_mult_distrib mult_commute)
huffman@31706
   863
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31706
   864
    have "a' dvd a'^n" by (simp add: m)
huffman@31706
   865
    with th0 have "a' dvd b'^n"
huffman@31706
   866
      using dvd_trans[of a' "a'^n" "b'^n"] by simp
huffman@31706
   867
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
nipkow@31952
   868
    from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1
huffman@31706
   869
    have "a' dvd b'" by (subst (asm) mult_commute, blast)
huffman@31706
   870
    hence "a'*?g dvd b'*?g" by simp
huffman@31706
   871
    with ab'(1,2)  have ?thesis by simp }
huffman@31706
   872
  ultimately show ?thesis by blast
huffman@31706
   873
qed
huffman@31706
   874
nipkow@31952
   875
lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)"
nipkow@31952
   876
  by (auto intro: pow_divides_pow_nat dvd_power_same)
huffman@31706
   877
nipkow@31952
   878
lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)"
nipkow@31952
   879
  by (auto intro: pow_divides_pow_int dvd_power_same)
huffman@31706
   880
nipkow@31952
   881
lemma divides_mult_nat:
huffman@31706
   882
  assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31706
   883
  shows "m * n dvd r"
huffman@31706
   884
proof-
huffman@31706
   885
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31706
   886
    unfolding dvd_def by blast
huffman@31706
   887
  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
nipkow@31952
   888
  hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp
huffman@31706
   889
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31706
   890
  from n' k show ?thesis unfolding dvd_def by auto
huffman@31706
   891
qed
huffman@31706
   892
nipkow@31952
   893
lemma divides_mult_int:
huffman@31706
   894
  assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31706
   895
  shows "m * n dvd r"
huffman@31706
   896
proof-
huffman@31706
   897
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31706
   898
    unfolding dvd_def by blast
huffman@31706
   899
  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
nipkow@31952
   900
  hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp
huffman@31706
   901
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31706
   902
  from n' k show ?thesis unfolding dvd_def by auto
chaieb@27669
   903
qed
chaieb@27669
   904
nipkow@31952
   905
lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n"
huffman@31706
   906
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31706
   907
  apply force
nipkow@31952
   908
  apply (rule dvd_diff_nat)
huffman@31706
   909
  apply auto
huffman@31706
   910
done
huffman@31706
   911
nipkow@31952
   912
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n"
nipkow@31952
   913
  using coprime_plus_one_nat by (simp add: One_nat_def)
huffman@31706
   914
nipkow@31952
   915
lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n"
huffman@31706
   916
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31706
   917
  apply force
huffman@31706
   918
  apply (rule dvd_diff)
huffman@31706
   919
  apply auto
huffman@31706
   920
done
huffman@31706
   921
nipkow@31952
   922
lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n"
nipkow@31952
   923
  using coprime_plus_one_nat [of "n - 1"]
nipkow@31952
   924
    gcd_commute_nat [of "n - 1" n] by auto
huffman@31706
   925
nipkow@31952
   926
lemma coprime_minus_one_int: "coprime ((n::int) - 1) n"
nipkow@31952
   927
  using coprime_plus_one_int [of "n - 1"]
nipkow@31952
   928
    gcd_commute_int [of "n - 1" n] by auto
huffman@31706
   929
nipkow@31952
   930
lemma setprod_coprime_nat [rule_format]:
huffman@31706
   931
    "(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x"
huffman@31706
   932
  apply (case_tac "finite A")
huffman@31706
   933
  apply (induct set: finite)
nipkow@31952
   934
  apply (auto simp add: gcd_mult_cancel_nat)
huffman@31706
   935
done
huffman@31706
   936
nipkow@31952
   937
lemma setprod_coprime_int [rule_format]:
huffman@31706
   938
    "(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x"
huffman@31706
   939
  apply (case_tac "finite A")
huffman@31706
   940
  apply (induct set: finite)
nipkow@31952
   941
  apply (auto simp add: gcd_mult_cancel_int)
huffman@31706
   942
done
huffman@31706
   943
nipkow@31952
   944
lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31706
   945
    x dvd b \<Longrightarrow> x = 1"
huffman@31706
   946
  apply (subgoal_tac "x dvd gcd a b")
huffman@31706
   947
  apply simp
nipkow@31952
   948
  apply (erule (1) gcd_greatest_nat)
huffman@31706
   949
done
huffman@31706
   950
nipkow@31952
   951
lemma coprime_common_divisor_int: "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31706
   952
    x dvd b \<Longrightarrow> abs x = 1"
huffman@31706
   953
  apply (subgoal_tac "x dvd gcd a b")
huffman@31706
   954
  apply simp
nipkow@31952
   955
  apply (erule (1) gcd_greatest_int)
huffman@31706
   956
done
huffman@31706
   957
nipkow@31952
   958
lemma coprime_divisors_nat: "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow>
huffman@31706
   959
    coprime d e"
huffman@31706
   960
  apply (auto simp add: dvd_def)
nipkow@31952
   961
  apply (frule coprime_lmult_int)
nipkow@31952
   962
  apply (subst gcd_commute_int)
nipkow@31952
   963
  apply (subst (asm) (2) gcd_commute_int)
nipkow@31952
   964
  apply (erule coprime_lmult_int)
huffman@31706
   965
done
huffman@31706
   966
nipkow@31952
   967
lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
   968
apply (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat)
huffman@31706
   969
done
huffman@31706
   970
nipkow@31952
   971
lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
   972
apply (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int)
huffman@31706
   973
done
huffman@31706
   974
huffman@31706
   975
huffman@31706
   976
subsection {* Bezout's theorem *}
huffman@31706
   977
huffman@31706
   978
(* Function bezw returns a pair of witnesses to Bezout's theorem --
huffman@31706
   979
   see the theorems that follow the definition. *)
huffman@31706
   980
fun
huffman@31706
   981
  bezw  :: "nat \<Rightarrow> nat \<Rightarrow> int * int"
huffman@31706
   982
where
huffman@31706
   983
  "bezw x y =
huffman@31706
   984
  (if y = 0 then (1, 0) else
huffman@31706
   985
      (snd (bezw y (x mod y)),
huffman@31706
   986
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))"
huffman@31706
   987
huffman@31706
   988
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp
huffman@31706
   989
huffman@31706
   990
lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)),
huffman@31706
   991
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))"
huffman@31706
   992
  by simp
huffman@31706
   993
huffman@31706
   994
declare bezw.simps [simp del]
huffman@31706
   995
huffman@31706
   996
lemma bezw_aux [rule_format]:
huffman@31706
   997
    "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"
nipkow@31952
   998
proof (induct x y rule: gcd_nat_induct)
huffman@31706
   999
  fix m :: nat
huffman@31706
  1000
  show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"
huffman@31706
  1001
    by auto
huffman@31706
  1002
  next fix m :: nat and n
huffman@31706
  1003
    assume ngt0: "n > 0" and
huffman@31706
  1004
      ih: "fst (bezw n (m mod n)) * int n +
huffman@31706
  1005
        snd (bezw n (m mod n)) * int (m mod n) =
huffman@31706
  1006
        int (gcd n (m mod n))"
huffman@31706
  1007
    thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"
nipkow@31952
  1008
      apply (simp add: bezw_non_0 gcd_non_0_nat)
huffman@31706
  1009
      apply (erule subst)
huffman@31706
  1010
      apply (simp add: ring_simps)
huffman@31706
  1011
      apply (subst mod_div_equality [of m n, symmetric])
huffman@31706
  1012
      (* applying simp here undoes the last substitution!
huffman@31706
  1013
         what is procedure cancel_div_mod? *)
huffman@31706
  1014
      apply (simp only: ring_simps zadd_int [symmetric]
huffman@31706
  1015
        zmult_int [symmetric])
huffman@31706
  1016
      done
huffman@31706
  1017
qed
huffman@31706
  1018
nipkow@31952
  1019
lemma bezout_int:
huffman@31706
  1020
  fixes x y
huffman@31706
  1021
  shows "EX u v. u * (x::int) + v * y = gcd x y"
huffman@31706
  1022
proof -
huffman@31706
  1023
  have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow>
huffman@31706
  1024
      EX u v. u * x + v * y = gcd x y"
huffman@31706
  1025
    apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)
huffman@31706
  1026
    apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)
huffman@31706
  1027
    apply (unfold gcd_int_def)
huffman@31706
  1028
    apply simp
huffman@31706
  1029
    apply (subst bezw_aux [symmetric])
huffman@31706
  1030
    apply auto
huffman@31706
  1031
    done
huffman@31706
  1032
  have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) |
huffman@31706
  1033
      (x \<le> 0 \<and> y \<le> 0)"
huffman@31706
  1034
    by auto
huffman@31706
  1035
  moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis"
huffman@31706
  1036
    by (erule (1) bezout_aux)
huffman@31706
  1037
  moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1038
    apply (insert bezout_aux [of x "-y"])
huffman@31706
  1039
    apply auto
huffman@31706
  1040
    apply (rule_tac x = u in exI)
huffman@31706
  1041
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1042
    apply (subst gcd_neg2_int [symmetric])
huffman@31706
  1043
    apply auto
huffman@31706
  1044
    done
huffman@31706
  1045
  moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1046
    apply (insert bezout_aux [of "-x" y])
huffman@31706
  1047
    apply auto
huffman@31706
  1048
    apply (rule_tac x = "-u" in exI)
huffman@31706
  1049
    apply (rule_tac x = v in exI)
nipkow@31952
  1050
    apply (subst gcd_neg1_int [symmetric])
huffman@31706
  1051
    apply auto
huffman@31706
  1052
    done
huffman@31706
  1053
  moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1054
    apply (insert bezout_aux [of "-x" "-y"])
huffman@31706
  1055
    apply auto
huffman@31706
  1056
    apply (rule_tac x = "-u" in exI)
huffman@31706
  1057
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1058
    apply (subst gcd_neg1_int [symmetric])
nipkow@31952
  1059
    apply (subst gcd_neg2_int [symmetric])
huffman@31706
  1060
    apply auto
huffman@31706
  1061
    done
huffman@31706
  1062
  ultimately show ?thesis by blast
huffman@31706
  1063
qed
huffman@31706
  1064
huffman@31706
  1065
text {* versions of Bezout for nat, by Amine Chaieb *}
huffman@31706
  1066
huffman@31706
  1067
lemma ind_euclid:
huffman@31706
  1068
  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0"
huffman@31706
  1069
  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
chaieb@27669
  1070
  shows "P a b"
berghofe@34915
  1071
proof(induct "a + b" arbitrary: a b rule: less_induct)
berghofe@34915
  1072
  case less
chaieb@27669
  1073
  have "a = b \<or> a < b \<or> b < a" by arith
chaieb@27669
  1074
  moreover {assume eq: "a= b"
huffman@31706
  1075
    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq
huffman@31706
  1076
    by simp}
chaieb@27669
  1077
  moreover
chaieb@27669
  1078
  {assume lt: "a < b"
berghofe@34915
  1079
    hence "a + b - a < a + b \<or> a = 0" by arith
chaieb@27669
  1080
    moreover
chaieb@27669
  1081
    {assume "a =0" with z c have "P a b" by blast }
chaieb@27669
  1082
    moreover
berghofe@34915
  1083
    {assume "a + b - a < a + b"
berghofe@34915
  1084
      also have th0: "a + b - a = a + (b - a)" using lt by arith
berghofe@34915
  1085
      finally have "a + (b - a) < a + b" .
berghofe@34915
  1086
      then have "P a (a + (b - a))" by (rule add[rule_format, OF less])
berghofe@34915
  1087
      then have "P a b" by (simp add: th0[symmetric])}
chaieb@27669
  1088
    ultimately have "P a b" by blast}
chaieb@27669
  1089
  moreover
chaieb@27669
  1090
  {assume lt: "a > b"
berghofe@34915
  1091
    hence "b + a - b < a + b \<or> b = 0" by arith
chaieb@27669
  1092
    moreover
chaieb@27669
  1093
    {assume "b =0" with z c have "P a b" by blast }
chaieb@27669
  1094
    moreover
berghofe@34915
  1095
    {assume "b + a - b < a + b"
berghofe@34915
  1096
      also have th0: "b + a - b = b + (a - b)" using lt by arith
berghofe@34915
  1097
      finally have "b + (a - b) < a + b" .
berghofe@34915
  1098
      then have "P b (b + (a - b))" by (rule add[rule_format, OF less])
berghofe@34915
  1099
      then have "P b a" by (simp add: th0[symmetric])
chaieb@27669
  1100
      hence "P a b" using c by blast }
chaieb@27669
  1101
    ultimately have "P a b" by blast}
chaieb@27669
  1102
ultimately  show "P a b" by blast
chaieb@27669
  1103
qed
chaieb@27669
  1104
nipkow@31952
  1105
lemma bezout_lemma_nat:
huffman@31706
  1106
  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1107
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31706
  1108
  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>
huffman@31706
  1109
    (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
huffman@31706
  1110
  using ex
huffman@31706
  1111
  apply clarsimp
huffman@31706
  1112
  apply (rule_tac x="d" in exI, simp add: dvd_add)
huffman@31706
  1113
  apply (case_tac "a * x = b * y + d" , simp_all)
huffman@31706
  1114
  apply (rule_tac x="x + y" in exI)
huffman@31706
  1115
  apply (rule_tac x="y" in exI)
huffman@31706
  1116
  apply algebra
huffman@31706
  1117
  apply (rule_tac x="x" in exI)
huffman@31706
  1118
  apply (rule_tac x="x + y" in exI)
huffman@31706
  1119
  apply algebra
chaieb@27669
  1120
done
chaieb@27669
  1121
nipkow@31952
  1122
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1123
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31706
  1124
  apply(induct a b rule: ind_euclid)
huffman@31706
  1125
  apply blast
huffman@31706
  1126
  apply clarify
huffman@31706
  1127
  apply (rule_tac x="a" in exI, simp add: dvd_add)
huffman@31706
  1128
  apply clarsimp
huffman@31706
  1129
  apply (rule_tac x="d" in exI)
huffman@31706
  1130
  apply (case_tac "a * x = b * y + d", simp_all add: dvd_add)
huffman@31706
  1131
  apply (rule_tac x="x+y" in exI)
huffman@31706
  1132
  apply (rule_tac x="y" in exI)
huffman@31706
  1133
  apply algebra
huffman@31706
  1134
  apply (rule_tac x="x" in exI)
huffman@31706
  1135
  apply (rule_tac x="x+y" in exI)
huffman@31706
  1136
  apply algebra
chaieb@27669
  1137
done
chaieb@27669
  1138
nipkow@31952
  1139
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1140
    (a * x - b * y = d \<or> b * x - a * y = d)"
nipkow@31952
  1141
  using bezout_add_nat[of a b]
huffman@31706
  1142
  apply clarsimp
huffman@31706
  1143
  apply (rule_tac x="d" in exI, simp)
huffman@31706
  1144
  apply (rule_tac x="x" in exI)
huffman@31706
  1145
  apply (rule_tac x="y" in exI)
huffman@31706
  1146
  apply auto
chaieb@27669
  1147
done
chaieb@27669
  1148
nipkow@31952
  1149
lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)"
chaieb@27669
  1150
  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
chaieb@27669
  1151
proof-
huffman@31706
  1152
 from nz have ap: "a > 0" by simp
nipkow@31952
  1153
 from bezout_add_nat[of a b]
huffman@31706
  1154
 have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or>
huffman@31706
  1155
   (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
chaieb@27669
  1156
 moreover
huffman@31706
  1157
    {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
huffman@31706
  1158
     from H have ?thesis by blast }
chaieb@27669
  1159
 moreover
chaieb@27669
  1160
 {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
chaieb@27669
  1161
   {assume b0: "b = 0" with H  have ?thesis by simp}
huffman@31706
  1162
   moreover
chaieb@27669
  1163
   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
huffman@31706
  1164
     from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b"
huffman@31706
  1165
       by auto
chaieb@27669
  1166
     moreover
chaieb@27669
  1167
     {assume db: "d=b"
chaieb@27669
  1168
       from prems have ?thesis apply simp
wenzelm@32960
  1169
         apply (rule exI[where x = b], simp)
wenzelm@32960
  1170
         apply (rule exI[where x = b])
wenzelm@32960
  1171
        by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
chaieb@27669
  1172
    moreover
huffman@31706
  1173
    {assume db: "d < b"
wenzelm@32960
  1174
        {assume "x=0" hence ?thesis  using prems by simp }
wenzelm@32960
  1175
        moreover
wenzelm@32960
  1176
        {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
wenzelm@32960
  1177
          from db have "d \<le> b - 1" by simp
wenzelm@32960
  1178
          hence "d*b \<le> b*(b - 1)" by simp
wenzelm@32960
  1179
          with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
wenzelm@32960
  1180
          have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
wenzelm@32960
  1181
          from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)"
huffman@31706
  1182
            by simp
wenzelm@32960
  1183
          hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x"
wenzelm@32960
  1184
            by (simp only: mult_assoc right_distrib)
wenzelm@32960
  1185
          hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)"
huffman@31706
  1186
            by algebra
wenzelm@32960
  1187
          hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
wenzelm@32960
  1188
          hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)"
wenzelm@32960
  1189
            by (simp only: diff_add_assoc[OF dble, of d, symmetric])
wenzelm@32960
  1190
          hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
wenzelm@32960
  1191
            by (simp only: diff_mult_distrib2 add_commute mult_ac)
wenzelm@32960
  1192
          hence ?thesis using H(1,2)
wenzelm@32960
  1193
            apply -
wenzelm@32960
  1194
            apply (rule exI[where x=d], simp)
wenzelm@32960
  1195
            apply (rule exI[where x="(b - 1) * y"])
wenzelm@32960
  1196
            by (rule exI[where x="x*(b - 1) - d"], simp)}
wenzelm@32960
  1197
        ultimately have ?thesis by blast}
chaieb@27669
  1198
    ultimately have ?thesis by blast}
chaieb@27669
  1199
  ultimately have ?thesis by blast}
chaieb@27669
  1200
 ultimately show ?thesis by blast
chaieb@27669
  1201
qed
chaieb@27669
  1202
nipkow@31952
  1203
lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0"
chaieb@27669
  1204
  shows "\<exists>x y. a * x = b * y + gcd a b"
chaieb@27669
  1205
proof-
chaieb@27669
  1206
  let ?g = "gcd a b"
nipkow@31952
  1207
  from bezout_add_strong_nat[OF a, of b]
chaieb@27669
  1208
  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
chaieb@27669
  1209
  from d(1,2) have "d dvd ?g" by simp
chaieb@27669
  1210
  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
huffman@31706
  1211
  from d(3) have "a * x * k = (b * y + d) *k " by auto
chaieb@27669
  1212
  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
chaieb@27669
  1213
  thus ?thesis by blast
chaieb@27669
  1214
qed
chaieb@27669
  1215
huffman@31706
  1216
haftmann@34030
  1217
subsection {* LCM properties *}
huffman@31706
  1218
haftmann@34030
  1219
lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b"
huffman@31706
  1220
  by (simp add: lcm_int_def lcm_nat_def zdiv_int
huffman@31706
  1221
    zmult_int [symmetric] gcd_int_def)
huffman@31706
  1222
nipkow@31952
  1223
lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n"
huffman@31706
  1224
  unfolding lcm_nat_def
nipkow@31952
  1225
  by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat])
huffman@31706
  1226
nipkow@31952
  1227
lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n"
huffman@31706
  1228
  unfolding lcm_int_def gcd_int_def
huffman@31706
  1229
  apply (subst int_mult [symmetric])
nipkow@31952
  1230
  apply (subst prod_gcd_lcm_nat [symmetric])
huffman@31706
  1231
  apply (subst nat_abs_mult_distrib [symmetric])
huffman@31706
  1232
  apply (simp, simp add: abs_mult)
huffman@31706
  1233
done
huffman@31706
  1234
nipkow@31952
  1235
lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0"
huffman@31706
  1236
  unfolding lcm_nat_def by simp
huffman@31706
  1237
nipkow@31952
  1238
lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0"
huffman@31706
  1239
  unfolding lcm_int_def by simp
huffman@31706
  1240
nipkow@31952
  1241
lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0"
huffman@31706
  1242
  unfolding lcm_nat_def by simp
chaieb@27669
  1243
nipkow@31952
  1244
lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0"
huffman@31706
  1245
  unfolding lcm_int_def by simp
huffman@31706
  1246
nipkow@31952
  1247
lemma lcm_pos_nat:
nipkow@31798
  1248
  "(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1249
by (metis gr0I mult_is_0 prod_gcd_lcm_nat)
chaieb@27669
  1250
nipkow@31952
  1251
lemma lcm_pos_int:
nipkow@31798
  1252
  "(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1253
  apply (subst lcm_abs_int)
nipkow@31952
  1254
  apply (rule lcm_pos_nat [transferred])
nipkow@31798
  1255
  apply auto
huffman@31706
  1256
done
haftmann@23687
  1257
nipkow@31952
  1258
lemma dvd_pos_nat:
haftmann@23687
  1259
  fixes n m :: nat
haftmann@23687
  1260
  assumes "n > 0" and "m dvd n"
haftmann@23687
  1261
  shows "m > 0"
haftmann@23687
  1262
using assms by (cases m) auto
haftmann@23687
  1263
nipkow@31952
  1264
lemma lcm_least_nat:
huffman@31706
  1265
  assumes "(m::nat) dvd k" and "n dvd k"
haftmann@27556
  1266
  shows "lcm m n dvd k"
haftmann@23687
  1267
proof (cases k)
haftmann@23687
  1268
  case 0 then show ?thesis by auto
haftmann@23687
  1269
next
haftmann@23687
  1270
  case (Suc _) then have pos_k: "k > 0" by auto
nipkow@31952
  1271
  from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto
nipkow@31952
  1272
  with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp
haftmann@23687
  1273
  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
haftmann@23687
  1274
  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
haftmann@23687
  1275
  from pos_k k_m have pos_p: "p > 0" by auto
haftmann@23687
  1276
  from pos_k k_n have pos_q: "q > 0" by auto
haftmann@27556
  1277
  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
nipkow@31952
  1278
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1279
  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
haftmann@23687
  1280
    by (simp add: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1281
  also have "\<dots> = k * p * q * gcd m n"
nipkow@31952
  1282
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1283
  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
haftmann@23687
  1284
    by (simp only: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1285
  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
haftmann@23687
  1286
    by (simp add: mult_ac)
haftmann@27556
  1287
  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
haftmann@23687
  1288
    by simp
nipkow@31952
  1289
  with prod_gcd_lcm_nat [of m n]
haftmann@27556
  1290
  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
haftmann@23687
  1291
    by (simp add: mult_ac)
huffman@31706
  1292
  with pos_gcd have "lcm m n * gcd q p = k" by auto
haftmann@23687
  1293
  then show ?thesis using dvd_def by auto
haftmann@23687
  1294
qed
haftmann@23687
  1295
nipkow@31952
  1296
lemma lcm_least_int:
nipkow@31798
  1297
  "(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k"
nipkow@31952
  1298
apply (subst lcm_abs_int)
nipkow@31798
  1299
apply (rule dvd_trans)
nipkow@31952
  1300
apply (rule lcm_least_nat [transferred, of _ "abs k" _])
nipkow@31798
  1301
apply auto
huffman@31706
  1302
done
huffman@31706
  1303
nipkow@31952
  1304
lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n"
haftmann@23687
  1305
proof (cases m)
haftmann@23687
  1306
  case 0 then show ?thesis by simp
haftmann@23687
  1307
next
haftmann@23687
  1308
  case (Suc _)
haftmann@23687
  1309
  then have mpos: "m > 0" by simp
haftmann@23687
  1310
  show ?thesis
haftmann@23687
  1311
  proof (cases n)
haftmann@23687
  1312
    case 0 then show ?thesis by simp
haftmann@23687
  1313
  next
haftmann@23687
  1314
    case (Suc _)
haftmann@23687
  1315
    then have npos: "n > 0" by simp
haftmann@27556
  1316
    have "gcd m n dvd n" by simp
haftmann@27556
  1317
    then obtain k where "n = gcd m n * k" using dvd_def by auto
huffman@31706
  1318
    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n"
huffman@31706
  1319
      by (simp add: mult_ac)
nipkow@31952
  1320
    also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp
huffman@31706
  1321
    finally show ?thesis by (simp add: lcm_nat_def)
haftmann@23687
  1322
  qed
haftmann@23687
  1323
qed
haftmann@23687
  1324
nipkow@31952
  1325
lemma lcm_dvd1_int: "(m::int) dvd lcm m n"
nipkow@31952
  1326
  apply (subst lcm_abs_int)
huffman@31706
  1327
  apply (rule dvd_trans)
huffman@31706
  1328
  prefer 2
nipkow@31952
  1329
  apply (rule lcm_dvd1_nat [transferred])
huffman@31706
  1330
  apply auto
huffman@31706
  1331
done
huffman@31706
  1332
nipkow@31952
  1333
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n"
haftmann@34973
  1334
  using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def times.commute gcd_nat.commute)
huffman@31706
  1335
nipkow@31952
  1336
lemma lcm_dvd2_int: "(n::int) dvd lcm m n"
haftmann@34973
  1337
  using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def times.commute gcd_nat.commute)
huffman@31706
  1338
nipkow@31730
  1339
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1340
by(metis lcm_dvd1_nat dvd_trans)
nipkow@31729
  1341
nipkow@31730
  1342
lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1343
by(metis lcm_dvd2_nat dvd_trans)
nipkow@31729
  1344
nipkow@31730
  1345
lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1346
by(metis lcm_dvd1_int dvd_trans)
nipkow@31729
  1347
nipkow@31730
  1348
lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1349
by(metis lcm_dvd2_int dvd_trans)
nipkow@31729
  1350
nipkow@31952
  1351
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and>
huffman@31706
  1352
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1353
  by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat)
chaieb@27568
  1354
nipkow@31952
  1355
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and>
huffman@31706
  1356
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1357
  by (auto intro: dvd_antisym [transferred] lcm_least_int)
huffman@31706
  1358
haftmann@34973
  1359
interpretation lcm_nat!: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@34973
  1360
proof
haftmann@34973
  1361
  fix n m p :: nat
haftmann@34973
  1362
  show "lcm (lcm n m) p = lcm n (lcm m p)"
haftmann@34973
  1363
    by (rule lcm_unique_nat [THEN iffD1]) (metis dvd.order_trans lcm_unique_nat)
haftmann@34973
  1364
  show "lcm m n = lcm n m"
haftmann@34973
  1365
    by (simp add: lcm_nat_def gcd_commute_nat ring_simps)
haftmann@34973
  1366
qed
haftmann@34973
  1367
haftmann@34973
  1368
interpretation lcm_int!: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@34973
  1369
proof
haftmann@34973
  1370
  fix n m p :: int
haftmann@34973
  1371
  show "lcm (lcm n m) p = lcm n (lcm m p)"
haftmann@34973
  1372
    by (rule lcm_unique_int [THEN iffD1]) (metis dvd_trans lcm_unique_int)
haftmann@34973
  1373
  show "lcm m n = lcm n m"
haftmann@34973
  1374
    by (simp add: lcm_int_def lcm_nat.commute)
haftmann@34973
  1375
qed
haftmann@34973
  1376
haftmann@34973
  1377
lemmas lcm_assoc_nat = lcm_nat.assoc
haftmann@34973
  1378
lemmas lcm_commute_nat = lcm_nat.commute
haftmann@34973
  1379
lemmas lcm_left_commute_nat = lcm_nat.left_commute
haftmann@34973
  1380
lemmas lcm_assoc_int = lcm_int.assoc
haftmann@34973
  1381
lemmas lcm_commute_int = lcm_int.commute
haftmann@34973
  1382
lemmas lcm_left_commute_int = lcm_int.left_commute
haftmann@34973
  1383
haftmann@34973
  1384
lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat
haftmann@34973
  1385
lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int
haftmann@34973
  1386
nipkow@31798
  1387
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y"
huffman@31706
  1388
  apply (rule sym)
nipkow@31952
  1389
  apply (subst lcm_unique_nat [symmetric])
huffman@31706
  1390
  apply auto
huffman@31706
  1391
done
huffman@31706
  1392
nipkow@31798
  1393
lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y"
huffman@31706
  1394
  apply (rule sym)
nipkow@31952
  1395
  apply (subst lcm_unique_int [symmetric])
huffman@31706
  1396
  apply auto
huffman@31706
  1397
done
huffman@31706
  1398
nipkow@31798
  1399
lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y"
nipkow@31952
  1400
by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat)
huffman@31706
  1401
nipkow@31798
  1402
lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y"
nipkow@31952
  1403
by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int)
huffman@31706
  1404
nipkow@31992
  1405
lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m"
nipkow@31992
  1406
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1407
nipkow@31992
  1408
lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n"
nipkow@31992
  1409
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1410
nipkow@31992
  1411
lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m"
nipkow@31992
  1412
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int)
nipkow@31992
  1413
nipkow@31992
  1414
lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n"
nipkow@31992
  1415
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)
chaieb@27568
  1416
nipkow@31992
  1417
lemma fun_left_comm_idem_gcd_nat: "fun_left_comm_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1418
proof qed (auto simp add: gcd_ac_nat)
nipkow@31992
  1419
nipkow@31992
  1420
lemma fun_left_comm_idem_gcd_int: "fun_left_comm_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1421
proof qed (auto simp add: gcd_ac_int)
nipkow@31992
  1422
nipkow@31992
  1423
lemma fun_left_comm_idem_lcm_nat: "fun_left_comm_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1424
proof qed (auto simp add: lcm_ac_nat)
nipkow@31992
  1425
nipkow@31992
  1426
lemma fun_left_comm_idem_lcm_int: "fun_left_comm_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1427
proof qed (auto simp add: lcm_ac_int)
nipkow@31992
  1428
haftmann@23687
  1429
nipkow@31995
  1430
(* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *)
nipkow@31995
  1431
nipkow@31995
  1432
lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
nipkow@31995
  1433
by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat)
nipkow@31995
  1434
nipkow@31995
  1435
lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
nipkow@31995
  1436
by (metis lcm_0_int lcm_0_left_int lcm_pos_int zless_le)
nipkow@31995
  1437
nipkow@31995
  1438
lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1"
nipkow@31995
  1439
by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat)
nipkow@31995
  1440
nipkow@31995
  1441
lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)"
berghofe@31996
  1442
by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff)
nipkow@31995
  1443
haftmann@34030
  1444
nipkow@32112
  1445
subsubsection {* The complete divisibility lattice *}
nipkow@32112
  1446
nipkow@32112
  1447
nipkow@32112
  1448
interpretation gcd_semilattice_nat: lower_semilattice "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" gcd
nipkow@32112
  1449
proof
nipkow@32112
  1450
  case goal3 thus ?case by(metis gcd_unique_nat)
nipkow@32112
  1451
qed auto
nipkow@32112
  1452
nipkow@32112
  1453
interpretation lcm_semilattice_nat: upper_semilattice "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm
nipkow@32112
  1454
proof
nipkow@32112
  1455
  case goal3 thus ?case by(metis lcm_unique_nat)
nipkow@32112
  1456
qed auto
nipkow@32112
  1457
nipkow@32112
  1458
interpretation gcd_lcm_lattice_nat: lattice "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" gcd lcm ..
nipkow@32112
  1459
nipkow@32112
  1460
text{* Lifting gcd and lcm to finite (Gcd/Lcm) and infinite sets (GCD/LCM).
nipkow@32112
  1461
GCD is defined via LCM to facilitate the proof that we have a complete lattice.
nipkow@32112
  1462
Later on we show that GCD and Gcd coincide on finite sets.
nipkow@32112
  1463
*}
nipkow@32112
  1464
context gcd
nipkow@32112
  1465
begin
nipkow@32112
  1466
nipkow@32112
  1467
definition Gcd :: "'a set \<Rightarrow> 'a"
nipkow@32112
  1468
where "Gcd = fold gcd 0"
nipkow@32112
  1469
nipkow@32112
  1470
definition Lcm :: "'a set \<Rightarrow> 'a"
nipkow@32112
  1471
where "Lcm = fold lcm 1"
nipkow@32112
  1472
nipkow@32112
  1473
definition LCM :: "'a set \<Rightarrow> 'a" where
nipkow@32112
  1474
"LCM M = (if finite M then Lcm M else 0)"
nipkow@32112
  1475
nipkow@32112
  1476
definition GCD :: "'a set \<Rightarrow> 'a" where
nipkow@32112
  1477
"GCD M = LCM(INT m:M. {d. d dvd m})"
nipkow@32112
  1478
nipkow@32112
  1479
end
nipkow@32112
  1480
nipkow@32112
  1481
lemma Gcd_empty[simp]: "Gcd {} = 0"
nipkow@32112
  1482
by(simp add:Gcd_def)
nipkow@32112
  1483
nipkow@32112
  1484
lemma Lcm_empty[simp]: "Lcm {} = 1"
nipkow@32112
  1485
by(simp add:Lcm_def)
nipkow@32112
  1486
nipkow@32112
  1487
lemma GCD_empty_nat[simp]: "GCD {} = (0::nat)"
nipkow@32112
  1488
by(simp add:GCD_def LCM_def)
nipkow@32112
  1489
nipkow@32112
  1490
lemma LCM_eq_Lcm[simp]: "finite M \<Longrightarrow> LCM M = Lcm M"
nipkow@32112
  1491
by(simp add:LCM_def)
nipkow@32112
  1492
nipkow@32112
  1493
lemma Lcm_insert_nat [simp]:
nipkow@32112
  1494
  assumes "finite N"
nipkow@32112
  1495
  shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)"
nipkow@32112
  1496
proof -
nipkow@32112
  1497
  interpret fun_left_comm_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat"
nipkow@32112
  1498
    by (rule fun_left_comm_idem_lcm_nat)
nipkow@32112
  1499
  from assms show ?thesis by(simp add: Lcm_def)
nipkow@32112
  1500
qed
nipkow@32112
  1501
nipkow@32112
  1502
lemma Lcm_insert_int [simp]:
nipkow@32112
  1503
  assumes "finite N"
nipkow@32112
  1504
  shows "Lcm (insert (n::int) N) = lcm n (Lcm N)"
nipkow@32112
  1505
proof -
nipkow@32112
  1506
  interpret fun_left_comm_idem "lcm::int\<Rightarrow>int\<Rightarrow>int"
nipkow@32112
  1507
    by (rule fun_left_comm_idem_lcm_int)
nipkow@32112
  1508
  from assms show ?thesis by(simp add: Lcm_def)
nipkow@32112
  1509
qed
nipkow@32112
  1510
nipkow@32112
  1511
lemma Gcd_insert_nat [simp]:
nipkow@32112
  1512
  assumes "finite N"
nipkow@32112
  1513
  shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)"
nipkow@32112
  1514
proof -
nipkow@32112
  1515
  interpret fun_left_comm_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat"
nipkow@32112
  1516
    by (rule fun_left_comm_idem_gcd_nat)
nipkow@32112
  1517
  from assms show ?thesis by(simp add: Gcd_def)
nipkow@32112
  1518
qed
nipkow@32112
  1519
nipkow@32112
  1520
lemma Gcd_insert_int [simp]:
nipkow@32112
  1521
  assumes "finite N"
nipkow@32112
  1522
  shows "Gcd (insert (n::int) N) = gcd n (Gcd N)"
nipkow@32112
  1523
proof -
nipkow@32112
  1524
  interpret fun_left_comm_idem "gcd::int\<Rightarrow>int\<Rightarrow>int"
nipkow@32112
  1525
    by (rule fun_left_comm_idem_gcd_int)
nipkow@32112
  1526
  from assms show ?thesis by(simp add: Gcd_def)
nipkow@32112
  1527
qed
nipkow@32112
  1528
nipkow@32112
  1529
lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M"
nipkow@32112
  1530
by(induct rule:finite_ne_induct) auto
nipkow@32112
  1531
nipkow@32112
  1532
lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0"
nipkow@32112
  1533
by (metis Lcm0_iff empty_iff)
nipkow@32112
  1534
nipkow@32112
  1535
lemma Gcd_dvd_nat [simp]:
nipkow@32112
  1536
  assumes "finite M" and "(m::nat) \<in> M"
nipkow@32112
  1537
  shows "Gcd M dvd m"
nipkow@32112
  1538
proof -
nipkow@32112
  1539
  show ?thesis using gcd_semilattice_nat.fold_inf_le_inf[OF assms, of 0] by (simp add: Gcd_def)
nipkow@32112
  1540
qed
nipkow@32112
  1541
nipkow@32112
  1542
lemma dvd_Gcd_nat[simp]:
nipkow@32112
  1543
  assumes "finite M" and "ALL (m::nat) : M. n dvd m"
nipkow@32112
  1544
  shows "n dvd Gcd M"
nipkow@32112
  1545
proof -
nipkow@32112
  1546
  show ?thesis using gcd_semilattice_nat.inf_le_fold_inf[OF assms, of 0] by (simp add: Gcd_def)
nipkow@32112
  1547
qed
nipkow@32112
  1548
nipkow@32112
  1549
lemma dvd_Lcm_nat [simp]:
nipkow@32112
  1550
  assumes "finite M" and "(m::nat) \<in> M"
nipkow@32112
  1551
  shows "m dvd Lcm M"
nipkow@32112
  1552
proof -
nipkow@32112
  1553
  show ?thesis using lcm_semilattice_nat.sup_le_fold_sup[OF assms, of 1] by (simp add: Lcm_def)
nipkow@32112
  1554
qed
nipkow@32112
  1555
nipkow@32112
  1556
lemma Lcm_dvd_nat[simp]:
nipkow@32112
  1557
  assumes "finite M" and "ALL (m::nat) : M. m dvd n"
nipkow@32112
  1558
  shows "Lcm M dvd n"
nipkow@32112
  1559
proof -
nipkow@32112
  1560
  show ?thesis using lcm_semilattice_nat.fold_sup_le_sup[OF assms, of 1] by (simp add: Lcm_def)
nipkow@32112
  1561
qed
nipkow@32112
  1562
nipkow@32112
  1563
interpretation gcd_lcm_complete_lattice_nat:
haftmann@32879
  1564
  complete_lattice GCD LCM "op dvd" "%m n::nat. m dvd n & ~ n dvd m" gcd lcm 1 0
nipkow@32112
  1565
proof
nipkow@32112
  1566
  case goal1 show ?case by simp
nipkow@32112
  1567
next
nipkow@32112
  1568
  case goal2 show ?case by simp
nipkow@32112
  1569
next
nipkow@32112
  1570
  case goal5 thus ?case by (auto simp: LCM_def)
nipkow@32112
  1571
next
nipkow@32112
  1572
  case goal6 thus ?case
nipkow@32112
  1573
    by(auto simp: LCM_def)(metis finite_nat_set_iff_bounded_le gcd_proj2_if_dvd_nat gcd_le1_nat)
nipkow@32112
  1574
next
nipkow@32112
  1575
  case goal3 thus ?case by (auto simp: GCD_def LCM_def)(metis finite_INT finite_divisors_nat)
nipkow@32112
  1576
next
nipkow@32112
  1577
  case goal4 thus ?case by(auto simp: LCM_def GCD_def)
nipkow@32112
  1578
qed
nipkow@32112
  1579
nipkow@32112
  1580
text{* Alternative characterizations of Gcd and GCD: *}
nipkow@32112
  1581
nipkow@32112
  1582
lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})"
nipkow@32112
  1583
apply(rule antisym)
nipkow@32112
  1584
 apply(rule Max_ge)
nipkow@32112
  1585
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@32112
  1586
 apply simp
nipkow@32112
  1587
apply (rule Max_le_iff[THEN iffD2])
nipkow@32112
  1588
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@32112
  1589
 apply fastsimp
nipkow@32112
  1590
apply clarsimp
nipkow@32112
  1591
apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0)
nipkow@32112
  1592
done
nipkow@32112
  1593
nipkow@32112
  1594
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})"
nipkow@32112
  1595
apply(induct pred:finite)
nipkow@32112
  1596
 apply simp
nipkow@32112
  1597
apply(case_tac "x=0")
nipkow@32112
  1598
 apply simp
nipkow@32112
  1599
apply(subgoal_tac "insert x F - {0} = insert x (F - {0})")
nipkow@32112
  1600
 apply simp
nipkow@32112
  1601
apply blast
nipkow@32112
  1602
done
nipkow@32112
  1603
nipkow@32112
  1604
lemma Lcm_in_lcm_closed_set_nat:
nipkow@32112
  1605
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M"
nipkow@32112
  1606
apply(induct rule:finite_linorder_min_induct)
nipkow@32112
  1607
 apply simp
nipkow@32112
  1608
apply simp
nipkow@32112
  1609
apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A")
nipkow@32112
  1610
 apply simp
nipkow@32112
  1611
 apply(case_tac "A={}")
nipkow@32112
  1612
  apply simp
nipkow@32112
  1613
 apply simp
nipkow@32112
  1614
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)
nipkow@32112
  1615
done
nipkow@32112
  1616
nipkow@32112
  1617
lemma Lcm_eq_Max_nat:
nipkow@32112
  1618
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M"
nipkow@32112
  1619
apply(rule antisym)
nipkow@32112
  1620
 apply(rule Max_ge, assumption)
nipkow@32112
  1621
 apply(erule (2) Lcm_in_lcm_closed_set_nat)
nipkow@32112
  1622
apply clarsimp
nipkow@32112
  1623
apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv)
nipkow@32112
  1624
done
nipkow@32112
  1625
nipkow@32112
  1626
text{* Finally GCD is Gcd: *}
nipkow@32112
  1627
nipkow@32112
  1628
lemma GCD_eq_Gcd[simp]: assumes "finite(M::nat set)" shows "GCD M = Gcd M"
nipkow@32112
  1629
proof-
nipkow@32112
  1630
  have divisors_remove0_nat: "(\<Inter>m\<in>M. {d::nat. d dvd m}) = (\<Inter>m\<in>M-{0}. {d::nat. d dvd m})" by auto
nipkow@32112
  1631
  show ?thesis
nipkow@32112
  1632
  proof cases
nipkow@32112
  1633
    assume "M={}" thus ?thesis by simp
nipkow@32112
  1634
  next
nipkow@32112
  1635
    assume "M\<noteq>{}"
nipkow@32112
  1636
    show ?thesis
nipkow@32112
  1637
    proof cases
nipkow@32112
  1638
      assume "M={0}" thus ?thesis by(simp add:GCD_def LCM_def)
nipkow@32112
  1639
    next
nipkow@32112
  1640
      assume "M\<noteq>{0}"
nipkow@32112
  1641
      with `M\<noteq>{}` assms show ?thesis
wenzelm@32960
  1642
        apply(subst Gcd_remove0_nat[OF assms])
wenzelm@32960
  1643
        apply(simp add:GCD_def)
wenzelm@32960
  1644
        apply(subst divisors_remove0_nat)
wenzelm@32960
  1645
        apply(simp add:LCM_def)
wenzelm@32960
  1646
        apply rule
wenzelm@32960
  1647
         apply rule
wenzelm@32960
  1648
         apply(subst Gcd_eq_Max)
wenzelm@32960
  1649
            apply simp
wenzelm@32960
  1650
           apply blast
wenzelm@32960
  1651
          apply blast
wenzelm@32960
  1652
         apply(rule Lcm_eq_Max_nat)
wenzelm@32960
  1653
            apply simp
wenzelm@32960
  1654
           apply blast
wenzelm@32960
  1655
          apply fastsimp
wenzelm@32960
  1656
         apply clarsimp
wenzelm@32960
  1657
        apply(fastsimp intro: finite_divisors_nat intro!: finite_INT)
wenzelm@32960
  1658
        done
nipkow@32112
  1659
    qed
nipkow@32112
  1660
  qed
nipkow@32112
  1661
qed
nipkow@32112
  1662
nipkow@32112
  1663
lemma Lcm_set_nat [code_unfold]:
nipkow@32112
  1664
  "Lcm (set ns) = foldl lcm (1::nat) ns"
nipkow@32112
  1665
proof -
nipkow@32112
  1666
  interpret fun_left_comm_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule fun_left_comm_idem_lcm_nat)
nipkow@32112
  1667
  show ?thesis by(simp add: Lcm_def fold_set lcm_commute_nat)
nipkow@32112
  1668
qed
nipkow@32112
  1669
nipkow@32112
  1670
lemma Lcm_set_int [code_unfold]:
nipkow@32112
  1671
  "Lcm (set is) = foldl lcm (1::int) is"
nipkow@32112
  1672
proof -
nipkow@32112
  1673
  interpret fun_left_comm_idem "lcm::int\<Rightarrow>int\<Rightarrow>int" by (rule fun_left_comm_idem_lcm_int)
nipkow@32112
  1674
  show ?thesis by(simp add: Lcm_def fold_set lcm_commute_int)
nipkow@32112
  1675
qed
nipkow@32112
  1676
nipkow@32112
  1677
lemma Gcd_set_nat [code_unfold]:
nipkow@32112
  1678
  "Gcd (set ns) = foldl gcd (0::nat) ns"
nipkow@32112
  1679
proof -
nipkow@32112
  1680
  interpret fun_left_comm_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule fun_left_comm_idem_gcd_nat)
nipkow@32112
  1681
  show ?thesis by(simp add: Gcd_def fold_set gcd_commute_nat)
nipkow@32112
  1682
qed
nipkow@32112
  1683
nipkow@32112
  1684
lemma Gcd_set_int [code_unfold]:
nipkow@32112
  1685
  "Gcd (set ns) = foldl gcd (0::int) ns"
nipkow@32112
  1686
proof -
nipkow@32112
  1687
  interpret fun_left_comm_idem "gcd::int\<Rightarrow>int\<Rightarrow>int" by (rule fun_left_comm_idem_gcd_int)
nipkow@32112
  1688
  show ?thesis by(simp add: Gcd_def fold_set gcd_commute_int)
nipkow@32112
  1689
qed
nipkow@32112
  1690
nipkow@34222
  1691
nipkow@34222
  1692
lemma mult_inj_if_coprime_nat:
nipkow@34222
  1693
  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b)
nipkow@34222
  1694
   \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)"
nipkow@34222
  1695
apply(auto simp add:inj_on_def)
nipkow@34223
  1696
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat
nipkow@34223
  1697
             dvd.neq_le_trans dvd_triv_left)
nipkow@34223
  1698
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat
nipkow@34223
  1699
             dvd.neq_le_trans dvd_triv_right mult_commute)
nipkow@34222
  1700
done
nipkow@34222
  1701
nipkow@34222
  1702
text{* Nitpick: *}
nipkow@34222
  1703
blanchet@33197
  1704
lemma gcd_eq_nitpick_gcd [nitpick_def]: "gcd x y \<equiv> Nitpick.nat_gcd x y"
blanchet@33197
  1705
apply (rule eq_reflection)
blanchet@33197
  1706
apply (induct x y rule: nat_gcd.induct)
blanchet@33197
  1707
by (simp add: gcd_nat.simps Nitpick.nat_gcd.simps)
blanchet@33197
  1708
blanchet@33197
  1709
lemma lcm_eq_nitpick_lcm [nitpick_def]: "lcm x y \<equiv> Nitpick.nat_lcm x y"
blanchet@33197
  1710
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd)
blanchet@33197
  1711
wenzelm@21256
  1712
end