hoelzl@36648
|
1 |
(* Title: HOL/Library/Convex.thy
|
hoelzl@36648
|
2 |
Author: Armin Heller, TU Muenchen
|
hoelzl@36648
|
3 |
Author: Johannes Hoelzl, TU Muenchen
|
hoelzl@36648
|
4 |
*)
|
hoelzl@36648
|
5 |
|
hoelzl@36648
|
6 |
header {* Convexity in real vector spaces *}
|
hoelzl@36648
|
7 |
|
hoelzl@36623
|
8 |
theory Convex
|
hoelzl@36623
|
9 |
imports Product_Vector
|
hoelzl@36623
|
10 |
begin
|
hoelzl@36623
|
11 |
|
hoelzl@36623
|
12 |
subsection {* Convexity. *}
|
hoelzl@36623
|
13 |
|
wenzelm@49609
|
14 |
definition convex :: "'a::real_vector set \<Rightarrow> bool"
|
wenzelm@49609
|
15 |
where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
|
hoelzl@36623
|
16 |
|
huffman@53676
|
17 |
lemma convexI:
|
huffman@53676
|
18 |
assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
|
huffman@53676
|
19 |
shows "convex s"
|
huffman@53676
|
20 |
using assms unfolding convex_def by fast
|
huffman@53676
|
21 |
|
huffman@53676
|
22 |
lemma convexD:
|
huffman@53676
|
23 |
assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1"
|
huffman@53676
|
24 |
shows "u *\<^sub>R x + v *\<^sub>R y \<in> s"
|
huffman@53676
|
25 |
using assms unfolding convex_def by fast
|
huffman@53676
|
26 |
|
hoelzl@36623
|
27 |
lemma convex_alt:
|
hoelzl@36623
|
28 |
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
|
hoelzl@36623
|
29 |
(is "_ \<longleftrightarrow> ?alt")
|
hoelzl@36623
|
30 |
proof
|
hoelzl@36623
|
31 |
assume alt[rule_format]: ?alt
|
hoelzl@36623
|
32 |
{ fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s"
|
wenzelm@49609
|
33 |
assume "0 \<le> u" "0 \<le> v"
|
wenzelm@49609
|
34 |
moreover assume "u + v = 1" then have "u = 1 - v" by auto
|
hoelzl@36623
|
35 |
ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto }
|
wenzelm@49609
|
36 |
then show "convex s" unfolding convex_def by auto
|
hoelzl@36623
|
37 |
qed (auto simp: convex_def)
|
hoelzl@36623
|
38 |
|
hoelzl@36623
|
39 |
lemma mem_convex:
|
hoelzl@36623
|
40 |
assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
|
hoelzl@36623
|
41 |
shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
|
hoelzl@36623
|
42 |
using assms unfolding convex_alt by auto
|
hoelzl@36623
|
43 |
|
hoelzl@36623
|
44 |
lemma convex_empty[intro]: "convex {}"
|
hoelzl@36623
|
45 |
unfolding convex_def by simp
|
hoelzl@36623
|
46 |
|
hoelzl@36623
|
47 |
lemma convex_singleton[intro]: "convex {a}"
|
hoelzl@36623
|
48 |
unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
|
hoelzl@36623
|
49 |
|
hoelzl@36623
|
50 |
lemma convex_UNIV[intro]: "convex UNIV"
|
hoelzl@36623
|
51 |
unfolding convex_def by auto
|
hoelzl@36623
|
52 |
|
hoelzl@36623
|
53 |
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"
|
hoelzl@36623
|
54 |
unfolding convex_def by auto
|
hoelzl@36623
|
55 |
|
hoelzl@36623
|
56 |
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
|
hoelzl@36623
|
57 |
unfolding convex_def by auto
|
hoelzl@36623
|
58 |
|
huffman@53596
|
59 |
lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)"
|
huffman@53596
|
60 |
unfolding convex_def by auto
|
huffman@53596
|
61 |
|
huffman@53596
|
62 |
lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)"
|
huffman@53596
|
63 |
unfolding convex_def by auto
|
huffman@53596
|
64 |
|
hoelzl@36623
|
65 |
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
|
hoelzl@36623
|
66 |
unfolding convex_def
|
huffman@44142
|
67 |
by (auto simp: inner_add intro!: convex_bound_le)
|
hoelzl@36623
|
68 |
|
hoelzl@36623
|
69 |
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
|
hoelzl@36623
|
70 |
proof -
|
wenzelm@49609
|
71 |
have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
|
hoelzl@36623
|
72 |
show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
|
hoelzl@36623
|
73 |
qed
|
hoelzl@36623
|
74 |
|
hoelzl@36623
|
75 |
lemma convex_hyperplane: "convex {x. inner a x = b}"
|
wenzelm@49609
|
76 |
proof -
|
wenzelm@49609
|
77 |
have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
|
hoelzl@36623
|
78 |
show ?thesis using convex_halfspace_le convex_halfspace_ge
|
hoelzl@36623
|
79 |
by (auto intro!: convex_Int simp: *)
|
hoelzl@36623
|
80 |
qed
|
hoelzl@36623
|
81 |
|
hoelzl@36623
|
82 |
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
|
hoelzl@36623
|
83 |
unfolding convex_def
|
hoelzl@36623
|
84 |
by (auto simp: convex_bound_lt inner_add)
|
hoelzl@36623
|
85 |
|
hoelzl@36623
|
86 |
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
|
hoelzl@36623
|
87 |
using convex_halfspace_lt[of "-a" "-b"] by auto
|
hoelzl@36623
|
88 |
|
hoelzl@36623
|
89 |
lemma convex_real_interval:
|
hoelzl@36623
|
90 |
fixes a b :: "real"
|
hoelzl@36623
|
91 |
shows "convex {a..}" and "convex {..b}"
|
wenzelm@49609
|
92 |
and "convex {a<..}" and "convex {..<b}"
|
wenzelm@49609
|
93 |
and "convex {a..b}" and "convex {a<..b}"
|
wenzelm@49609
|
94 |
and "convex {a..<b}" and "convex {a<..<b}"
|
hoelzl@36623
|
95 |
proof -
|
hoelzl@36623
|
96 |
have "{a..} = {x. a \<le> inner 1 x}" by auto
|
wenzelm@49609
|
97 |
then show 1: "convex {a..}" by (simp only: convex_halfspace_ge)
|
hoelzl@36623
|
98 |
have "{..b} = {x. inner 1 x \<le> b}" by auto
|
wenzelm@49609
|
99 |
then show 2: "convex {..b}" by (simp only: convex_halfspace_le)
|
hoelzl@36623
|
100 |
have "{a<..} = {x. a < inner 1 x}" by auto
|
wenzelm@49609
|
101 |
then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
|
hoelzl@36623
|
102 |
have "{..<b} = {x. inner 1 x < b}" by auto
|
wenzelm@49609
|
103 |
then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
|
hoelzl@36623
|
104 |
have "{a..b} = {a..} \<inter> {..b}" by auto
|
wenzelm@49609
|
105 |
then show "convex {a..b}" by (simp only: convex_Int 1 2)
|
hoelzl@36623
|
106 |
have "{a<..b} = {a<..} \<inter> {..b}" by auto
|
wenzelm@49609
|
107 |
then show "convex {a<..b}" by (simp only: convex_Int 3 2)
|
hoelzl@36623
|
108 |
have "{a..<b} = {a..} \<inter> {..<b}" by auto
|
wenzelm@49609
|
109 |
then show "convex {a..<b}" by (simp only: convex_Int 1 4)
|
hoelzl@36623
|
110 |
have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
|
wenzelm@49609
|
111 |
then show "convex {a<..<b}" by (simp only: convex_Int 3 4)
|
hoelzl@36623
|
112 |
qed
|
hoelzl@36623
|
113 |
|
hoelzl@36623
|
114 |
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
|
hoelzl@36623
|
115 |
|
hoelzl@36623
|
116 |
lemma convex_setsum:
|
hoelzl@36623
|
117 |
fixes C :: "'a::real_vector set"
|
hoelzl@36623
|
118 |
assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1"
|
wenzelm@49609
|
119 |
assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
|
hoelzl@36623
|
120 |
shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C"
|
huffman@55909
|
121 |
using assms(1,3,4,5)
|
huffman@55909
|
122 |
proof (induct arbitrary: a set: finite)
|
wenzelm@49609
|
123 |
case empty
|
huffman@55909
|
124 |
then show ?case by simp
|
hoelzl@36623
|
125 |
next
|
huffman@55909
|
126 |
case (insert i s) note IH = this(3)
|
huffman@55909
|
127 |
have "a i + setsum a s = 1" and "0 \<le> a i" and "\<forall>j\<in>s. 0 \<le> a j" and "y i \<in> C" and "\<forall>j\<in>s. y j \<in> C"
|
huffman@55909
|
128 |
using insert.hyps(1,2) insert.prems by simp_all
|
huffman@55909
|
129 |
then have "0 \<le> setsum a s" by (simp add: setsum_nonneg)
|
huffman@55909
|
130 |
have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C"
|
huffman@55909
|
131 |
proof (cases)
|
huffman@55909
|
132 |
assume z: "setsum a s = 0"
|
huffman@55909
|
133 |
with `a i + setsum a s = 1` have "a i = 1" by simp
|
huffman@55909
|
134 |
from setsum_nonneg_0 [OF `finite s` _ z] `\<forall>j\<in>s. 0 \<le> a j` have "\<forall>j\<in>s. a j = 0" by simp
|
huffman@55909
|
135 |
show ?thesis using `a i = 1` and `\<forall>j\<in>s. a j = 0` and `y i \<in> C` by simp
|
huffman@55909
|
136 |
next
|
huffman@55909
|
137 |
assume nz: "setsum a s \<noteq> 0"
|
huffman@55909
|
138 |
with `0 \<le> setsum a s` have "0 < setsum a s" by simp
|
huffman@55909
|
139 |
then have "(\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C"
|
huffman@55909
|
140 |
using `\<forall>j\<in>s. 0 \<le> a j` and `\<forall>j\<in>s. y j \<in> C`
|
huffman@55909
|
141 |
by (simp add: IH divide_nonneg_pos setsum_divide_distrib [symmetric])
|
huffman@55909
|
142 |
from `convex C` and `y i \<in> C` and this and `0 \<le> a i`
|
huffman@55909
|
143 |
and `0 \<le> setsum a s` and `a i + setsum a s = 1`
|
huffman@55909
|
144 |
have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C"
|
huffman@55909
|
145 |
by (rule convexD)
|
huffman@55909
|
146 |
then show ?thesis by (simp add: scaleR_setsum_right nz)
|
huffman@55909
|
147 |
qed
|
huffman@55909
|
148 |
then show ?case using `finite s` and `i \<notin> s` by simp
|
hoelzl@36623
|
149 |
qed
|
hoelzl@36623
|
150 |
|
hoelzl@36623
|
151 |
lemma convex:
|
wenzelm@49609
|
152 |
"convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
|
wenzelm@49609
|
153 |
\<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
|
hoelzl@36623
|
154 |
proof safe
|
wenzelm@49609
|
155 |
fix k :: nat
|
wenzelm@49609
|
156 |
fix u :: "nat \<Rightarrow> real"
|
wenzelm@49609
|
157 |
fix x
|
hoelzl@36623
|
158 |
assume "convex s"
|
hoelzl@36623
|
159 |
"\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s"
|
hoelzl@36623
|
160 |
"setsum u {1..k} = 1"
|
hoelzl@36623
|
161 |
from this convex_setsum[of "{1 .. k}" s]
|
hoelzl@36623
|
162 |
show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s" by auto
|
hoelzl@36623
|
163 |
next
|
hoelzl@36623
|
164 |
assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
|
hoelzl@36623
|
165 |
\<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s"
|
wenzelm@49609
|
166 |
{ fix \<mu> :: real
|
wenzelm@49609
|
167 |
fix x y :: 'a
|
wenzelm@49609
|
168 |
assume xy: "x \<in> s" "y \<in> s"
|
wenzelm@49609
|
169 |
assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
|
wenzelm@49609
|
170 |
let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>"
|
wenzelm@49609
|
171 |
let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y"
|
hoelzl@36623
|
172 |
have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto
|
wenzelm@49609
|
173 |
then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
|
wenzelm@49609
|
174 |
then have "setsum ?u {1 .. 2} = 1"
|
hoelzl@36623
|
175 |
using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
|
hoelzl@36623
|
176 |
by auto
|
wenzelm@49609
|
177 |
with asm[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
|
hoelzl@36623
|
178 |
using mu xy by auto
|
hoelzl@36623
|
179 |
have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
|
hoelzl@36623
|
180 |
using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto
|
hoelzl@36623
|
181 |
from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this]
|
hoelzl@36623
|
182 |
have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto
|
wenzelm@49609
|
183 |
then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute)
|
wenzelm@49609
|
184 |
}
|
wenzelm@49609
|
185 |
then show "convex s" unfolding convex_alt by auto
|
hoelzl@36623
|
186 |
qed
|
hoelzl@36623
|
187 |
|
hoelzl@36623
|
188 |
|
hoelzl@36623
|
189 |
lemma convex_explicit:
|
hoelzl@36623
|
190 |
fixes s :: "'a::real_vector set"
|
hoelzl@36623
|
191 |
shows "convex s \<longleftrightarrow>
|
wenzelm@49609
|
192 |
(\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
|
hoelzl@36623
|
193 |
proof safe
|
wenzelm@49609
|
194 |
fix t
|
wenzelm@49609
|
195 |
fix u :: "'a \<Rightarrow> real"
|
hoelzl@36623
|
196 |
assume "convex s" "finite t"
|
hoelzl@36623
|
197 |
"t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1"
|
wenzelm@49609
|
198 |
then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
|
hoelzl@36623
|
199 |
using convex_setsum[of t s u "\<lambda> x. x"] by auto
|
hoelzl@36623
|
200 |
next
|
hoelzl@36623
|
201 |
assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x)
|
hoelzl@36623
|
202 |
\<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
|
hoelzl@36623
|
203 |
show "convex s"
|
hoelzl@36623
|
204 |
unfolding convex_alt
|
hoelzl@36623
|
205 |
proof safe
|
wenzelm@49609
|
206 |
fix x y
|
wenzelm@49609
|
207 |
fix \<mu> :: real
|
hoelzl@36623
|
208 |
assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1"
|
hoelzl@36623
|
209 |
{ assume "x \<noteq> y"
|
wenzelm@49609
|
210 |
then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
|
hoelzl@36623
|
211 |
using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
|
hoelzl@36623
|
212 |
asm by auto }
|
hoelzl@36623
|
213 |
moreover
|
hoelzl@36623
|
214 |
{ assume "x = y"
|
wenzelm@49609
|
215 |
then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
|
hoelzl@36623
|
216 |
using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
|
hoelzl@36623
|
217 |
asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) }
|
hoelzl@36623
|
218 |
ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast
|
hoelzl@36623
|
219 |
qed
|
hoelzl@36623
|
220 |
qed
|
hoelzl@36623
|
221 |
|
wenzelm@49609
|
222 |
lemma convex_finite:
|
wenzelm@49609
|
223 |
assumes "finite s"
|
hoelzl@36623
|
224 |
shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
|
hoelzl@36623
|
225 |
\<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
|
hoelzl@36623
|
226 |
unfolding convex_explicit
|
wenzelm@49609
|
227 |
proof safe
|
wenzelm@49609
|
228 |
fix t u
|
wenzelm@49609
|
229 |
assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"
|
hoelzl@36623
|
230 |
and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
|
wenzelm@49609
|
231 |
have *: "s \<inter> t = t" using as(2) by auto
|
wenzelm@49609
|
232 |
have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)"
|
wenzelm@49609
|
233 |
by simp
|
hoelzl@36623
|
234 |
show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
|
hoelzl@36623
|
235 |
using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as *
|
hoelzl@36623
|
236 |
by (auto simp: assms setsum_cases if_distrib if_distrib_arg)
|
hoelzl@36623
|
237 |
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
|
hoelzl@36623
|
238 |
|
huffman@55909
|
239 |
subsection {* Functions that are convex on a set *}
|
huffman@55909
|
240 |
|
wenzelm@49609
|
241 |
definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
|
wenzelm@49609
|
242 |
where "convex_on s f \<longleftrightarrow>
|
wenzelm@49609
|
243 |
(\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
|
hoelzl@36623
|
244 |
|
hoelzl@36623
|
245 |
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
|
hoelzl@36623
|
246 |
unfolding convex_on_def by auto
|
hoelzl@36623
|
247 |
|
huffman@53620
|
248 |
lemma convex_on_add [intro]:
|
hoelzl@36623
|
249 |
assumes "convex_on s f" "convex_on s g"
|
hoelzl@36623
|
250 |
shows "convex_on s (\<lambda>x. f x + g x)"
|
wenzelm@49609
|
251 |
proof -
|
wenzelm@49609
|
252 |
{ fix x y
|
wenzelm@49609
|
253 |
assume "x\<in>s" "y\<in>s"
|
wenzelm@49609
|
254 |
moreover
|
wenzelm@49609
|
255 |
fix u v :: real
|
wenzelm@49609
|
256 |
assume "0 \<le> u" "0 \<le> v" "u + v = 1"
|
wenzelm@49609
|
257 |
ultimately
|
wenzelm@49609
|
258 |
have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
|
wenzelm@49609
|
259 |
using assms unfolding convex_on_def by (auto simp add: add_mono)
|
wenzelm@49609
|
260 |
then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)"
|
wenzelm@49609
|
261 |
by (simp add: field_simps)
|
wenzelm@49609
|
262 |
}
|
wenzelm@49609
|
263 |
then show ?thesis unfolding convex_on_def by auto
|
hoelzl@36623
|
264 |
qed
|
hoelzl@36623
|
265 |
|
huffman@53620
|
266 |
lemma convex_on_cmul [intro]:
|
hoelzl@36623
|
267 |
assumes "0 \<le> (c::real)" "convex_on s f"
|
hoelzl@36623
|
268 |
shows "convex_on s (\<lambda>x. c * f x)"
|
hoelzl@36623
|
269 |
proof-
|
wenzelm@49609
|
270 |
have *: "\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
|
wenzelm@49609
|
271 |
by (simp add: field_simps)
|
wenzelm@49609
|
272 |
show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
|
wenzelm@49609
|
273 |
unfolding convex_on_def and * by auto
|
hoelzl@36623
|
274 |
qed
|
hoelzl@36623
|
275 |
|
hoelzl@36623
|
276 |
lemma convex_lower:
|
hoelzl@36623
|
277 |
assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"
|
hoelzl@36623
|
278 |
shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
|
hoelzl@36623
|
279 |
proof-
|
hoelzl@36623
|
280 |
let ?m = "max (f x) (f y)"
|
hoelzl@36623
|
281 |
have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)"
|
haftmann@38642
|
282 |
using assms(4,5) by (auto simp add: mult_left_mono add_mono)
|
wenzelm@49609
|
283 |
also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[symmetric] by auto
|
hoelzl@36623
|
284 |
finally show ?thesis
|
nipkow@44890
|
285 |
using assms unfolding convex_on_def by fastforce
|
hoelzl@36623
|
286 |
qed
|
hoelzl@36623
|
287 |
|
huffman@53620
|
288 |
lemma convex_on_dist [intro]:
|
hoelzl@36623
|
289 |
fixes s :: "'a::real_normed_vector set"
|
hoelzl@36623
|
290 |
shows "convex_on s (\<lambda>x. dist a x)"
|
wenzelm@49609
|
291 |
proof (auto simp add: convex_on_def dist_norm)
|
wenzelm@49609
|
292 |
fix x y
|
wenzelm@49609
|
293 |
assume "x\<in>s" "y\<in>s"
|
wenzelm@49609
|
294 |
fix u v :: real
|
wenzelm@49609
|
295 |
assume "0 \<le> u" "0 \<le> v" "u + v = 1"
|
wenzelm@49609
|
296 |
have "a = u *\<^sub>R a + v *\<^sub>R a"
|
wenzelm@49609
|
297 |
unfolding scaleR_left_distrib[symmetric] and `u+v=1` by simp
|
wenzelm@49609
|
298 |
then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
|
hoelzl@36623
|
299 |
by (auto simp add: algebra_simps)
|
hoelzl@36623
|
300 |
show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
|
hoelzl@36623
|
301 |
unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
|
hoelzl@36623
|
302 |
using `0 \<le> u` `0 \<le> v` by auto
|
hoelzl@36623
|
303 |
qed
|
hoelzl@36623
|
304 |
|
wenzelm@49609
|
305 |
|
hoelzl@36623
|
306 |
subsection {* Arithmetic operations on sets preserve convexity. *}
|
wenzelm@49609
|
307 |
|
huffman@53620
|
308 |
lemma convex_linear_image:
|
huffman@53620
|
309 |
assumes "linear f" and "convex s" shows "convex (f ` s)"
|
huffman@53620
|
310 |
proof -
|
huffman@53620
|
311 |
interpret f: linear f by fact
|
huffman@53620
|
312 |
from `convex s` show "convex (f ` s)"
|
huffman@53620
|
313 |
by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric])
|
hoelzl@36623
|
314 |
qed
|
hoelzl@36623
|
315 |
|
huffman@53620
|
316 |
lemma convex_linear_vimage:
|
huffman@53620
|
317 |
assumes "linear f" and "convex s" shows "convex (f -` s)"
|
huffman@53620
|
318 |
proof -
|
huffman@53620
|
319 |
interpret f: linear f by fact
|
huffman@53620
|
320 |
from `convex s` show "convex (f -` s)"
|
huffman@53620
|
321 |
by (simp add: convex_def f.add f.scaleR)
|
huffman@53620
|
322 |
qed
|
huffman@53620
|
323 |
|
huffman@53620
|
324 |
lemma convex_scaling:
|
huffman@53620
|
325 |
assumes "convex s" shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)"
|
huffman@53620
|
326 |
proof -
|
huffman@53620
|
327 |
have "linear (\<lambda>x. c *\<^sub>R x)" by (simp add: linearI scaleR_add_right)
|
huffman@53620
|
328 |
then show ?thesis using `convex s` by (rule convex_linear_image)
|
huffman@53620
|
329 |
qed
|
huffman@53620
|
330 |
|
huffman@53620
|
331 |
lemma convex_negations:
|
huffman@53620
|
332 |
assumes "convex s" shows "convex ((\<lambda>x. - x) ` s)"
|
huffman@53620
|
333 |
proof -
|
huffman@53620
|
334 |
have "linear (\<lambda>x. - x)" by (simp add: linearI)
|
huffman@53620
|
335 |
then show ?thesis using `convex s` by (rule convex_linear_image)
|
hoelzl@36623
|
336 |
qed
|
hoelzl@36623
|
337 |
|
hoelzl@36623
|
338 |
lemma convex_sums:
|
huffman@53620
|
339 |
assumes "convex s" and "convex t"
|
hoelzl@36623
|
340 |
shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
|
huffman@53620
|
341 |
proof -
|
huffman@53620
|
342 |
have "linear (\<lambda>(x, y). x + y)"
|
huffman@53620
|
343 |
by (auto intro: linearI simp add: scaleR_add_right)
|
huffman@53620
|
344 |
with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))"
|
huffman@53620
|
345 |
by (intro convex_linear_image convex_Times)
|
huffman@53620
|
346 |
also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
|
huffman@53620
|
347 |
by auto
|
huffman@53620
|
348 |
finally show ?thesis .
|
hoelzl@36623
|
349 |
qed
|
hoelzl@36623
|
350 |
|
hoelzl@36623
|
351 |
lemma convex_differences:
|
hoelzl@36623
|
352 |
assumes "convex s" "convex t"
|
hoelzl@36623
|
353 |
shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
|
hoelzl@36623
|
354 |
proof -
|
hoelzl@36623
|
355 |
have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
|
haftmann@54230
|
356 |
by (auto simp add: diff_conv_add_uminus simp del: add_uminus_conv_diff)
|
wenzelm@49609
|
357 |
then show ?thesis
|
wenzelm@49609
|
358 |
using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
|
hoelzl@36623
|
359 |
qed
|
hoelzl@36623
|
360 |
|
wenzelm@49609
|
361 |
lemma convex_translation:
|
wenzelm@49609
|
362 |
assumes "convex s"
|
wenzelm@49609
|
363 |
shows "convex ((\<lambda>x. a + x) ` s)"
|
wenzelm@49609
|
364 |
proof -
|
wenzelm@49609
|
365 |
have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
|
wenzelm@49609
|
366 |
then show ?thesis
|
wenzelm@49609
|
367 |
using convex_sums[OF convex_singleton[of a] assms] by auto
|
wenzelm@49609
|
368 |
qed
|
hoelzl@36623
|
369 |
|
wenzelm@49609
|
370 |
lemma convex_affinity:
|
wenzelm@49609
|
371 |
assumes "convex s"
|
wenzelm@49609
|
372 |
shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
|
wenzelm@49609
|
373 |
proof -
|
wenzelm@49609
|
374 |
have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
|
wenzelm@49609
|
375 |
then show ?thesis
|
wenzelm@49609
|
376 |
using convex_translation[OF convex_scaling[OF assms], of a c] by auto
|
wenzelm@49609
|
377 |
qed
|
hoelzl@36623
|
378 |
|
wenzelm@49609
|
379 |
lemma pos_is_convex: "convex {0 :: real <..}"
|
wenzelm@49609
|
380 |
unfolding convex_alt
|
hoelzl@36623
|
381 |
proof safe
|
hoelzl@36623
|
382 |
fix y x \<mu> :: real
|
hoelzl@36623
|
383 |
assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1"
|
hoelzl@36623
|
384 |
{ assume "\<mu> = 0"
|
wenzelm@49609
|
385 |
then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp
|
wenzelm@49609
|
386 |
then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
|
hoelzl@36623
|
387 |
moreover
|
hoelzl@36623
|
388 |
{ assume "\<mu> = 1"
|
wenzelm@49609
|
389 |
then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
|
hoelzl@36623
|
390 |
moreover
|
hoelzl@36623
|
391 |
{ assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
|
wenzelm@49609
|
392 |
then have "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto
|
wenzelm@49609
|
393 |
then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms
|
huffman@36778
|
394 |
by (auto simp add: add_pos_pos mult_pos_pos) }
|
nipkow@44890
|
395 |
ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastforce
|
hoelzl@36623
|
396 |
qed
|
hoelzl@36623
|
397 |
|
hoelzl@36623
|
398 |
lemma convex_on_setsum:
|
hoelzl@36623
|
399 |
fixes a :: "'a \<Rightarrow> real"
|
wenzelm@49609
|
400 |
and y :: "'a \<Rightarrow> 'b::real_vector"
|
wenzelm@49609
|
401 |
and f :: "'b \<Rightarrow> real"
|
hoelzl@36623
|
402 |
assumes "finite s" "s \<noteq> {}"
|
wenzelm@49609
|
403 |
and "convex_on C f"
|
wenzelm@49609
|
404 |
and "convex C"
|
wenzelm@49609
|
405 |
and "(\<Sum> i \<in> s. a i) = 1"
|
wenzelm@49609
|
406 |
and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
|
wenzelm@49609
|
407 |
and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
|
hoelzl@36623
|
408 |
shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))"
|
wenzelm@49609
|
409 |
using assms
|
wenzelm@49609
|
410 |
proof (induct s arbitrary: a rule: finite_ne_induct)
|
hoelzl@36623
|
411 |
case (singleton i)
|
wenzelm@49609
|
412 |
then have ai: "a i = 1" by auto
|
wenzelm@49609
|
413 |
then show ?case by auto
|
hoelzl@36623
|
414 |
next
|
hoelzl@36623
|
415 |
case (insert i s) note asms = this
|
wenzelm@49609
|
416 |
then have "convex_on C f" by simp
|
hoelzl@36623
|
417 |
from this[unfolded convex_on_def, rule_format]
|
wenzelm@49609
|
418 |
have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1
|
wenzelm@49609
|
419 |
\<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
|
hoelzl@36623
|
420 |
by simp
|
hoelzl@36623
|
421 |
{ assume "a i = 1"
|
wenzelm@49609
|
422 |
then have "(\<Sum> j \<in> s. a j) = 0"
|
hoelzl@36623
|
423 |
using asms by auto
|
wenzelm@49609
|
424 |
then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
|
nipkow@44890
|
425 |
using setsum_nonneg_0[where 'b=real] asms by fastforce
|
wenzelm@49609
|
426 |
then have ?case using asms by auto }
|
hoelzl@36623
|
427 |
moreover
|
hoelzl@36623
|
428 |
{ assume asm: "a i \<noteq> 1"
|
hoelzl@36623
|
429 |
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto
|
hoelzl@36623
|
430 |
have fis: "finite (insert i s)" using asms by auto
|
wenzelm@49609
|
431 |
then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp
|
wenzelm@49609
|
432 |
then have "a i < 1" using asm by auto
|
wenzelm@49609
|
433 |
then have i0: "1 - a i > 0" by auto
|
wenzelm@49609
|
434 |
let ?a = "\<lambda>j. a j / (1 - a i)"
|
hoelzl@36623
|
435 |
{ fix j assume "j \<in> s"
|
wenzelm@49609
|
436 |
then have "?a j \<ge> 0"
|
hoelzl@36623
|
437 |
using i0 asms divide_nonneg_pos
|
wenzelm@49609
|
438 |
by fastforce }
|
wenzelm@49609
|
439 |
note a_nonneg = this
|
hoelzl@36623
|
440 |
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto
|
wenzelm@49609
|
441 |
then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
|
wenzelm@49609
|
442 |
then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
|
wenzelm@49609
|
443 |
then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
|
hoelzl@36623
|
444 |
have "convex C" using asms by auto
|
wenzelm@49609
|
445 |
then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
|
hoelzl@36623
|
446 |
using asms convex_setsum[OF `finite s`
|
hoelzl@36623
|
447 |
`convex C` a1 a_nonneg] by auto
|
hoelzl@36623
|
448 |
have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))"
|
hoelzl@36623
|
449 |
using a_nonneg a1 asms by blast
|
hoelzl@36623
|
450 |
have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
|
hoelzl@36623
|
451 |
using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms
|
hoelzl@36623
|
452 |
by (auto simp only:add_commute)
|
hoelzl@36623
|
453 |
also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
|
hoelzl@36623
|
454 |
using i0 by auto
|
hoelzl@36623
|
455 |
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"
|
wenzelm@49609
|
456 |
using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric]
|
wenzelm@49609
|
457 |
by (auto simp:algebra_simps)
|
hoelzl@36623
|
458 |
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"
|
huffman@36778
|
459 |
by (auto simp: divide_inverse)
|
hoelzl@36623
|
460 |
also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)"
|
hoelzl@36623
|
461 |
using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1]
|
hoelzl@36623
|
462 |
by (auto simp add:add_commute)
|
hoelzl@36623
|
463 |
also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)"
|
hoelzl@36623
|
464 |
using add_right_mono[OF mult_left_mono[of _ _ "1 - a i",
|
hoelzl@36623
|
465 |
OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp
|
hoelzl@36623
|
466 |
also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)"
|
huffman@44282
|
467 |
unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto
|
hoelzl@36623
|
468 |
also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto
|
hoelzl@36623
|
469 |
also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto
|
hoelzl@36623
|
470 |
finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))"
|
hoelzl@36623
|
471 |
by simp }
|
hoelzl@36623
|
472 |
ultimately show ?case by auto
|
hoelzl@36623
|
473 |
qed
|
hoelzl@36623
|
474 |
|
hoelzl@36623
|
475 |
lemma convex_on_alt:
|
hoelzl@36623
|
476 |
fixes C :: "'a::real_vector set"
|
hoelzl@36623
|
477 |
assumes "convex C"
|
hoelzl@36623
|
478 |
shows "convex_on C f =
|
hoelzl@36623
|
479 |
(\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1
|
hoelzl@36623
|
480 |
\<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"
|
hoelzl@36623
|
481 |
proof safe
|
wenzelm@49609
|
482 |
fix x y
|
wenzelm@49609
|
483 |
fix \<mu> :: real
|
hoelzl@36623
|
484 |
assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1"
|
hoelzl@36623
|
485 |
from this[unfolded convex_on_def, rule_format]
|
wenzelm@49609
|
486 |
have "\<And>u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto
|
hoelzl@36623
|
487 |
from this[of "\<mu>" "1 - \<mu>", simplified] asms
|
wenzelm@49609
|
488 |
show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto
|
hoelzl@36623
|
489 |
next
|
hoelzl@36623
|
490 |
assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
|
wenzelm@49609
|
491 |
{ fix x y
|
wenzelm@49609
|
492 |
fix u v :: real
|
hoelzl@36623
|
493 |
assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1"
|
wenzelm@49609
|
494 |
then have[simp]: "1 - u = v" by auto
|
hoelzl@36623
|
495 |
from asm[rule_format, of x y u]
|
wenzelm@49609
|
496 |
have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto
|
wenzelm@49609
|
497 |
}
|
wenzelm@49609
|
498 |
then show "convex_on C f" unfolding convex_on_def by auto
|
hoelzl@36623
|
499 |
qed
|
hoelzl@36623
|
500 |
|
hoelzl@43337
|
501 |
lemma convex_on_diff:
|
hoelzl@43337
|
502 |
fixes f :: "real \<Rightarrow> real"
|
hoelzl@43337
|
503 |
assumes f: "convex_on I f" and I: "x\<in>I" "y\<in>I" and t: "x < t" "t < y"
|
wenzelm@49609
|
504 |
shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
|
wenzelm@49609
|
505 |
"(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
|
hoelzl@43337
|
506 |
proof -
|
hoelzl@43337
|
507 |
def a \<equiv> "(t - y) / (x - y)"
|
hoelzl@43337
|
508 |
with t have "0 \<le> a" "0 \<le> 1 - a" by (auto simp: field_simps)
|
hoelzl@43337
|
509 |
with f `x \<in> I` `y \<in> I` have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y"
|
hoelzl@43337
|
510 |
by (auto simp: convex_on_def)
|
hoelzl@43337
|
511 |
have "a * x + (1 - a) * y = a * (x - y) + y" by (simp add: field_simps)
|
hoelzl@43337
|
512 |
also have "\<dots> = t" unfolding a_def using `x < t` `t < y` by simp
|
hoelzl@43337
|
513 |
finally have "f t \<le> a * f x + (1 - a) * f y" using cvx by simp
|
hoelzl@43337
|
514 |
also have "\<dots> = a * (f x - f y) + f y" by (simp add: field_simps)
|
hoelzl@43337
|
515 |
finally have "f t - f y \<le> a * (f x - f y)" by simp
|
hoelzl@43337
|
516 |
with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
|
huffman@44142
|
517 |
by (simp add: le_divide_eq divide_le_eq field_simps a_def)
|
hoelzl@43337
|
518 |
with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
|
huffman@44142
|
519 |
by (simp add: le_divide_eq divide_le_eq field_simps)
|
hoelzl@43337
|
520 |
qed
|
hoelzl@36623
|
521 |
|
hoelzl@36623
|
522 |
lemma pos_convex_function:
|
hoelzl@36623
|
523 |
fixes f :: "real \<Rightarrow> real"
|
hoelzl@36623
|
524 |
assumes "convex C"
|
wenzelm@49609
|
525 |
and leq: "\<And>x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x"
|
hoelzl@36623
|
526 |
shows "convex_on C f"
|
wenzelm@49609
|
527 |
unfolding convex_on_alt[OF assms(1)]
|
wenzelm@49609
|
528 |
using assms
|
hoelzl@36623
|
529 |
proof safe
|
hoelzl@36623
|
530 |
fix x y \<mu> :: real
|
hoelzl@36623
|
531 |
let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
|
hoelzl@36623
|
532 |
assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1"
|
wenzelm@49609
|
533 |
then have "1 - \<mu> \<ge> 0" by auto
|
wenzelm@49609
|
534 |
then have xpos: "?x \<in> C" using asm unfolding convex_alt by fastforce
|
hoelzl@36623
|
535 |
have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x)
|
hoelzl@36623
|
536 |
\<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"
|
haftmann@38642
|
537 |
using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`]
|
haftmann@38642
|
538 |
mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto
|
wenzelm@49609
|
539 |
then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"
|
wenzelm@49609
|
540 |
by (auto simp add: field_simps)
|
wenzelm@49609
|
541 |
then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
|
hoelzl@36623
|
542 |
using convex_on_alt by auto
|
hoelzl@36623
|
543 |
qed
|
hoelzl@36623
|
544 |
|
hoelzl@36623
|
545 |
lemma atMostAtLeast_subset_convex:
|
hoelzl@36623
|
546 |
fixes C :: "real set"
|
hoelzl@36623
|
547 |
assumes "convex C"
|
wenzelm@49609
|
548 |
and "x \<in> C" "y \<in> C" "x < y"
|
hoelzl@36623
|
549 |
shows "{x .. y} \<subseteq> C"
|
hoelzl@36623
|
550 |
proof safe
|
hoelzl@36623
|
551 |
fix z assume zasm: "z \<in> {x .. y}"
|
hoelzl@36623
|
552 |
{ assume asm: "x < z" "z < y"
|
wenzelm@49609
|
553 |
let ?\<mu> = "(y - z) / (y - x)"
|
wenzelm@49609
|
554 |
have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add: field_simps)
|
wenzelm@49609
|
555 |
then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"
|
wenzelm@49609
|
556 |
using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>]
|
wenzelm@49609
|
557 |
by (simp add: algebra_simps)
|
hoelzl@36623
|
558 |
have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
|
wenzelm@49609
|
559 |
by (auto simp add: field_simps)
|
hoelzl@36623
|
560 |
also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
|
wenzelm@49609
|
561 |
using assms unfolding add_divide_distrib by (auto simp: field_simps)
|
hoelzl@36623
|
562 |
also have "\<dots> = z"
|
wenzelm@49609
|
563 |
using assms by (auto simp: field_simps)
|
hoelzl@36623
|
564 |
finally have "z \<in> C"
|
wenzelm@49609
|
565 |
using comb by auto }
|
wenzelm@49609
|
566 |
note less = this
|
hoelzl@36623
|
567 |
show "z \<in> C" using zasm less assms
|
hoelzl@36623
|
568 |
unfolding atLeastAtMost_iff le_less by auto
|
hoelzl@36623
|
569 |
qed
|
hoelzl@36623
|
570 |
|
hoelzl@36623
|
571 |
lemma f''_imp_f':
|
hoelzl@36623
|
572 |
fixes f :: "real \<Rightarrow> real"
|
hoelzl@36623
|
573 |
assumes "convex C"
|
wenzelm@49609
|
574 |
and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
|
wenzelm@49609
|
575 |
and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
|
wenzelm@49609
|
576 |
and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
|
wenzelm@49609
|
577 |
and "x \<in> C" "y \<in> C"
|
hoelzl@36623
|
578 |
shows "f' x * (y - x) \<le> f y - f x"
|
wenzelm@49609
|
579 |
using assms
|
hoelzl@36623
|
580 |
proof -
|
wenzelm@49609
|
581 |
{ fix x y :: real
|
wenzelm@49609
|
582 |
assume asm: "x \<in> C" "y \<in> C" "y > x"
|
wenzelm@49609
|
583 |
then have ge: "y - x > 0" "y - x \<ge> 0" by auto
|
hoelzl@36623
|
584 |
from asm have le: "x - y < 0" "x - y \<le> 0" by auto
|
hoelzl@36623
|
585 |
then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
|
hoelzl@36623
|
586 |
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`],
|
hoelzl@36623
|
587 |
THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
|
hoelzl@36623
|
588 |
by auto
|
wenzelm@49609
|
589 |
then have "z1 \<in> C" using atMostAtLeast_subset_convex
|
nipkow@44890
|
590 |
`convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce
|
hoelzl@36623
|
591 |
from z1 have z1': "f x - f y = (x - y) * f' z1"
|
hoelzl@36623
|
592 |
by (simp add:field_simps)
|
hoelzl@36623
|
593 |
obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"
|
hoelzl@36623
|
594 |
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`],
|
hoelzl@36623
|
595 |
THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
|
hoelzl@36623
|
596 |
by auto
|
hoelzl@36623
|
597 |
obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"
|
hoelzl@36623
|
598 |
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`],
|
hoelzl@36623
|
599 |
THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
|
hoelzl@36623
|
600 |
by auto
|
hoelzl@36623
|
601 |
have "f' y - (f x - f y) / (x - y) = f' y - f' z1"
|
hoelzl@36623
|
602 |
using asm z1' by auto
|
hoelzl@36623
|
603 |
also have "\<dots> = (y - z1) * f'' z3" using z3 by auto
|
hoelzl@36623
|
604 |
finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp
|
hoelzl@36623
|
605 |
have A': "y - z1 \<ge> 0" using z1 by auto
|
hoelzl@36623
|
606 |
have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex
|
nipkow@44890
|
607 |
`convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce
|
wenzelm@49609
|
608 |
then have B': "f'' z3 \<ge> 0" using assms by auto
|
nipkow@56536
|
609 |
from A' B' have "(y - z1) * f'' z3 \<ge> 0" by auto
|
hoelzl@36623
|
610 |
from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto
|
hoelzl@36623
|
611 |
from mult_right_mono_neg[OF this le(2)]
|
hoelzl@36623
|
612 |
have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)"
|
huffman@36778
|
613 |
by (simp add: algebra_simps)
|
wenzelm@49609
|
614 |
then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto
|
wenzelm@49609
|
615 |
then have res: "f' y * (x - y) \<le> f x - f y" by auto
|
hoelzl@36623
|
616 |
have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"
|
hoelzl@36623
|
617 |
using asm z1 by auto
|
hoelzl@36623
|
618 |
also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto
|
hoelzl@36623
|
619 |
finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp
|
hoelzl@36623
|
620 |
have A: "z1 - x \<ge> 0" using z1 by auto
|
hoelzl@36623
|
621 |
have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex
|
nipkow@44890
|
622 |
`convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce
|
wenzelm@49609
|
623 |
then have B: "f'' z2 \<ge> 0" using assms by auto
|
nipkow@56536
|
624 |
from A B have "(z1 - x) * f'' z2 \<ge> 0" by auto
|
hoelzl@36623
|
625 |
from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto
|
hoelzl@36623
|
626 |
from mult_right_mono[OF this ge(2)]
|
hoelzl@36623
|
627 |
have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)"
|
huffman@36778
|
628 |
by (simp add: algebra_simps)
|
wenzelm@49609
|
629 |
then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto
|
wenzelm@49609
|
630 |
then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
|
hoelzl@36623
|
631 |
using res by auto } note less_imp = this
|
wenzelm@49609
|
632 |
{ fix x y :: real
|
wenzelm@49609
|
633 |
assume "x \<in> C" "y \<in> C" "x \<noteq> y"
|
wenzelm@49609
|
634 |
then have"f y - f x \<ge> f' x * (y - x)"
|
hoelzl@36623
|
635 |
unfolding neq_iff using less_imp by auto } note neq_imp = this
|
hoelzl@36623
|
636 |
moreover
|
wenzelm@49609
|
637 |
{ fix x y :: real
|
wenzelm@49609
|
638 |
assume asm: "x \<in> C" "y \<in> C" "x = y"
|
wenzelm@49609
|
639 |
then have "f y - f x \<ge> f' x * (y - x)" by auto }
|
hoelzl@36623
|
640 |
ultimately show ?thesis using assms by blast
|
hoelzl@36623
|
641 |
qed
|
hoelzl@36623
|
642 |
|
hoelzl@36623
|
643 |
lemma f''_ge0_imp_convex:
|
hoelzl@36623
|
644 |
fixes f :: "real \<Rightarrow> real"
|
hoelzl@36623
|
645 |
assumes conv: "convex C"
|
wenzelm@49609
|
646 |
and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
|
wenzelm@49609
|
647 |
and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
|
wenzelm@49609
|
648 |
and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
|
hoelzl@36623
|
649 |
shows "convex_on C f"
|
nipkow@44890
|
650 |
using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastforce
|
hoelzl@36623
|
651 |
|
hoelzl@36623
|
652 |
lemma minus_log_convex:
|
hoelzl@36623
|
653 |
fixes b :: real
|
hoelzl@36623
|
654 |
assumes "b > 1"
|
hoelzl@36623
|
655 |
shows "convex_on {0 <..} (\<lambda> x. - log b x)"
|
hoelzl@36623
|
656 |
proof -
|
wenzelm@49609
|
657 |
have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto
|
wenzelm@49609
|
658 |
then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"
|
hoelzl@56479
|
659 |
by (auto simp: DERIV_minus)
|
wenzelm@49609
|
660 |
have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
|
hoelzl@36623
|
661 |
using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
|
hoelzl@36623
|
662 |
from this[THEN DERIV_cmult, of _ "- 1 / ln b"]
|
wenzelm@49609
|
663 |
have "\<And>z :: real. z > 0 \<Longrightarrow>
|
wenzelm@49609
|
664 |
DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
|
hoelzl@36623
|
665 |
by auto
|
wenzelm@49609
|
666 |
then have f''0: "\<And>z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
|
hoelzl@56479
|
667 |
unfolding inverse_eq_divide by (auto simp add: mult_assoc)
|
wenzelm@49609
|
668 |
have f''_ge0: "\<And>z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"
|
wenzelm@49609
|
669 |
using `b > 1` by (auto intro!:less_imp_le simp add: divide_pos_pos[of 1] mult_pos_pos)
|
hoelzl@36623
|
670 |
from f''_ge0_imp_convex[OF pos_is_convex,
|
hoelzl@36623
|
671 |
unfolded greaterThan_iff, OF f' f''0 f''_ge0]
|
hoelzl@36623
|
672 |
show ?thesis by auto
|
hoelzl@36623
|
673 |
qed
|
hoelzl@36623
|
674 |
|
hoelzl@36623
|
675 |
end
|