src/HOL/Map.thy
author wenzelm
Mon Aug 31 21:01:21 2015 +0200 (2015-08-31)
changeset 61069 aefe89038dd2
parent 61032 b57df8eecad6
child 61799 4cf66f21b764
permissions -rw-r--r--
prefer symbols;
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     3
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     4
wenzelm@60838
     5
The datatype of "maps"; strongly resembles maps in VDM.
nipkow@3981
     6
*)
nipkow@3981
     7
wenzelm@60758
     8
section \<open>Maps\<close>
nipkow@13914
     9
nipkow@15131
    10
theory Map
nipkow@15140
    11
imports List
nipkow@15131
    12
begin
nipkow@3981
    13
wenzelm@61069
    14
type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0)
wenzelm@19656
    15
nipkow@19378
    16
abbreviation
wenzelm@60838
    17
  empty :: "'a \<rightharpoonup> 'b" where
wenzelm@60839
    18
  "empty \<equiv> \<lambda>x. None"
nipkow@19378
    19
wenzelm@19656
    20
definition
wenzelm@61069
    21
  map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)"  (infixl "\<circ>\<^sub>m" 55) where
wenzelm@61069
    22
  "f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
wenzelm@19656
    23
wenzelm@20800
    24
definition
wenzelm@60839
    25
  map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "++" 100) where
wenzelm@60839
    26
  "m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)"
wenzelm@20800
    27
wenzelm@21404
    28
definition
wenzelm@60839
    29
  restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "|`"  110) where
wenzelm@60839
    30
  "m|`A = (\<lambda>x. if x \<in> A then m x else None)"
nipkow@13910
    31
wenzelm@21210
    32
notation (latex output)
wenzelm@19656
    33
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
wenzelm@19656
    34
wenzelm@20800
    35
definition
wenzelm@60839
    36
  dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where
wenzelm@60839
    37
  "dom m = {a. m a \<noteq> None}"
wenzelm@20800
    38
wenzelm@21404
    39
definition
wenzelm@60839
    40
  ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where
wenzelm@60839
    41
  "ran m = {b. \<exists>a. m a = Some b}"
wenzelm@20800
    42
wenzelm@21404
    43
definition
wenzelm@60839
    44
  map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool"  (infix "\<subseteq>\<^sub>m" 50) where
wenzelm@60839
    45
  "(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)"
wenzelm@20800
    46
wenzelm@41229
    47
nonterminal maplets and maplet
nipkow@14180
    48
oheimb@5300
    49
syntax
wenzelm@60839
    50
  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /|->/ _")
wenzelm@60839
    51
  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[|->]/ _")
wenzelm@60839
    52
  ""         :: "maplet \<Rightarrow> maplets"             ("_")
wenzelm@60839
    53
  "_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _")
wenzelm@60839
    54
  "_MapUpd"  :: "['a \<rightharpoonup> 'b, maplets] \<Rightarrow> 'a \<rightharpoonup> 'b" ("_/'(_')" [900,0]900)
wenzelm@60839
    55
  "_Map"     :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b"            ("(1[_])")
nipkow@3981
    56
wenzelm@12114
    57
syntax (xsymbols)
wenzelm@60839
    58
  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /\<mapsto>/ _")
wenzelm@60839
    59
  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    60
oheimb@5300
    61
translations
wenzelm@60839
    62
  "_MapUpd m (_Maplets xy ms)"  \<rightleftharpoons> "_MapUpd (_MapUpd m xy) ms"
wenzelm@60839
    63
  "_MapUpd m (_maplet  x y)"    \<rightleftharpoons> "m(x := CONST Some y)"
wenzelm@60839
    64
  "_Map ms"                     \<rightleftharpoons> "_MapUpd (CONST empty) ms"
wenzelm@60839
    65
  "_Map (_Maplets ms1 ms2)"     \<leftharpoondown> "_MapUpd (_Map ms1) ms2"
wenzelm@60839
    66
  "_Maplets ms1 (_Maplets ms2 ms3)" \<leftharpoondown> "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    67
berghofe@5183
    68
primrec
haftmann@34941
    69
  map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where
haftmann@34941
    70
    "map_of [] = empty"
haftmann@34941
    71
  | "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"
oheimb@5300
    72
haftmann@34941
    73
definition
haftmann@34941
    74
  map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where
haftmann@34941
    75
  "map_upds m xs ys = m ++ map_of (rev (zip xs ys))"
haftmann@34941
    76
haftmann@34941
    77
translations
wenzelm@60839
    78
  "_MapUpd m (_maplets x y)" \<rightleftharpoons> "CONST map_upds m x y"
haftmann@25965
    79
wenzelm@60839
    80
lemma map_of_Cons_code [code]:
haftmann@25965
    81
  "map_of [] k = None"
haftmann@25965
    82
  "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
haftmann@25965
    83
  by simp_all
haftmann@25965
    84
wenzelm@20800
    85
wenzelm@60758
    86
subsection \<open>@{term [source] empty}\<close>
webertj@13908
    87
wenzelm@20800
    88
lemma empty_upd_none [simp]: "empty(x := None) = empty"
wenzelm@60839
    89
  by (rule ext) simp
webertj@13908
    90
webertj@13908
    91
wenzelm@60758
    92
subsection \<open>@{term [source] map_upd}\<close>
webertj@13908
    93
wenzelm@60839
    94
lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t"
wenzelm@60839
    95
  by (rule ext) simp
webertj@13908
    96
wenzelm@60839
    97
lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty"
wenzelm@20800
    98
proof
wenzelm@20800
    99
  assume "t(k \<mapsto> x) = empty"
wenzelm@20800
   100
  then have "(t(k \<mapsto> x)) k = None" by simp
wenzelm@20800
   101
  then show False by simp
wenzelm@20800
   102
qed
webertj@13908
   103
wenzelm@20800
   104
lemma map_upd_eqD1:
wenzelm@20800
   105
  assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
wenzelm@20800
   106
  shows "x = y"
wenzelm@20800
   107
proof -
wenzelm@41550
   108
  from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
wenzelm@20800
   109
  then show ?thesis by simp
wenzelm@20800
   110
qed
oheimb@14100
   111
wenzelm@20800
   112
lemma map_upd_Some_unfold:
wenzelm@60838
   113
  "((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
nipkow@24331
   114
by auto
oheimb@14100
   115
wenzelm@20800
   116
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@24331
   117
by auto
nipkow@15303
   118
wenzelm@60839
   119
lemma finite_range_updI: "finite (range f) \<Longrightarrow> finite (range (f(a\<mapsto>b)))"
nipkow@24331
   120
unfolding image_def
nipkow@24331
   121
apply (simp (no_asm_use) add:full_SetCompr_eq)
nipkow@24331
   122
apply (rule finite_subset)
nipkow@24331
   123
 prefer 2 apply assumption
nipkow@24331
   124
apply (auto)
nipkow@24331
   125
done
webertj@13908
   126
webertj@13908
   127
wenzelm@60758
   128
subsection \<open>@{term [source] map_of}\<close>
webertj@13908
   129
nipkow@15304
   130
lemma map_of_eq_None_iff:
nipkow@24331
   131
  "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@24331
   132
by (induct xys) simp_all
nipkow@15304
   133
wenzelm@20800
   134
lemma map_of_eq_Some_iff [simp]:
nipkow@24331
   135
  "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@24331
   136
apply (induct xys)
nipkow@24331
   137
 apply simp
nipkow@24331
   138
apply (auto simp: map_of_eq_None_iff [symmetric])
nipkow@24331
   139
done
nipkow@15304
   140
wenzelm@20800
   141
lemma Some_eq_map_of_iff [simp]:
nipkow@24331
   142
  "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
wenzelm@60839
   143
by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric])
nipkow@15304
   144
paulson@17724
   145
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
wenzelm@20800
   146
    \<Longrightarrow> map_of xys x = Some y"
nipkow@24331
   147
apply (induct xys)
nipkow@24331
   148
 apply simp
nipkow@24331
   149
apply force
nipkow@24331
   150
done
nipkow@15304
   151
wenzelm@20800
   152
lemma map_of_zip_is_None [simp]:
nipkow@24331
   153
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@24331
   154
by (induct rule: list_induct2) simp_all
nipkow@15110
   155
haftmann@26443
   156
lemma map_of_zip_is_Some:
haftmann@26443
   157
  assumes "length xs = length ys"
haftmann@26443
   158
  shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
haftmann@26443
   159
using assms by (induct rule: list_induct2) simp_all
haftmann@26443
   160
haftmann@26443
   161
lemma map_of_zip_upd:
haftmann@26443
   162
  fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
haftmann@26443
   163
  assumes "length ys = length xs"
haftmann@26443
   164
    and "length zs = length xs"
haftmann@26443
   165
    and "x \<notin> set xs"
haftmann@26443
   166
    and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
haftmann@26443
   167
  shows "map_of (zip xs ys) = map_of (zip xs zs)"
haftmann@26443
   168
proof
haftmann@26443
   169
  fix x' :: 'a
haftmann@26443
   170
  show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
haftmann@26443
   171
  proof (cases "x = x'")
haftmann@26443
   172
    case True
haftmann@26443
   173
    from assms True map_of_zip_is_None [of xs ys x']
haftmann@26443
   174
      have "map_of (zip xs ys) x' = None" by simp
haftmann@26443
   175
    moreover from assms True map_of_zip_is_None [of xs zs x']
haftmann@26443
   176
      have "map_of (zip xs zs) x' = None" by simp
haftmann@26443
   177
    ultimately show ?thesis by simp
haftmann@26443
   178
  next
haftmann@26443
   179
    case False from assms
haftmann@26443
   180
      have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
haftmann@26443
   181
    with False show ?thesis by simp
haftmann@26443
   182
  qed
haftmann@26443
   183
qed
haftmann@26443
   184
haftmann@26443
   185
lemma map_of_zip_inject:
haftmann@26443
   186
  assumes "length ys = length xs"
haftmann@26443
   187
    and "length zs = length xs"
haftmann@26443
   188
    and dist: "distinct xs"
haftmann@26443
   189
    and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
haftmann@26443
   190
  shows "ys = zs"
wenzelm@60839
   191
  using assms(1) assms(2)[symmetric]
wenzelm@60839
   192
  using dist map_of
wenzelm@60839
   193
proof (induct ys xs zs rule: list_induct3)
haftmann@26443
   194
  case Nil show ?case by simp
haftmann@26443
   195
next
haftmann@26443
   196
  case (Cons y ys x xs z zs)
wenzelm@60758
   197
  from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close>
haftmann@26443
   198
    have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
haftmann@26443
   199
  from Cons have "length ys = length xs" and "length zs = length xs"
haftmann@26443
   200
    and "x \<notin> set xs" by simp_all
haftmann@26443
   201
  then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
wenzelm@60758
   202
  with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp
haftmann@26443
   203
  moreover from map_of have "y = z" by (rule map_upd_eqD1)
haftmann@26443
   204
  ultimately show ?case by simp
haftmann@26443
   205
qed
haftmann@26443
   206
haftmann@33635
   207
lemma map_of_zip_map:
haftmann@33635
   208
  "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
nipkow@39302
   209
  by (induct xs) (simp_all add: fun_eq_iff)
haftmann@33635
   210
nipkow@15110
   211
lemma finite_range_map_of: "finite (range (map_of xys))"
nipkow@24331
   212
apply (induct xys)
nipkow@24331
   213
 apply (simp_all add: image_constant)
nipkow@24331
   214
apply (rule finite_subset)
nipkow@24331
   215
 prefer 2 apply assumption
nipkow@24331
   216
apply auto
nipkow@24331
   217
done
nipkow@15110
   218
wenzelm@20800
   219
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
wenzelm@60841
   220
  by (induct xs) (auto split: if_splits)
webertj@13908
   221
wenzelm@20800
   222
lemma map_of_mapk_SomeI:
wenzelm@60839
   223
  "inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow>
haftmann@61032
   224
   map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x"
wenzelm@60839
   225
by (induct t) (auto simp: inj_eq)
webertj@13908
   226
wenzelm@60839
   227
lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x"
nipkow@24331
   228
by (induct l) auto
webertj@13908
   229
wenzelm@20800
   230
lemma map_of_filter_in:
haftmann@61032
   231
  "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z"
nipkow@24331
   232
by (induct xs) auto
webertj@13908
   233
haftmann@35607
   234
lemma map_of_map:
blanchet@55466
   235
  "map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs"
wenzelm@60839
   236
  by (induct xs) (auto simp: fun_eq_iff)
haftmann@35607
   237
blanchet@55466
   238
lemma dom_map_option:
blanchet@55466
   239
  "dom (\<lambda>k. map_option (f k) (m k)) = dom m"
haftmann@35607
   240
  by (simp add: dom_def)
webertj@13908
   241
haftmann@56545
   242
lemma dom_map_option_comp [simp]:
haftmann@56545
   243
  "dom (map_option g \<circ> m) = dom m"
haftmann@56545
   244
  using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def)
haftmann@56545
   245
webertj@13908
   246
wenzelm@60758
   247
subsection \<open>@{const map_option} related\<close>
webertj@13908
   248
blanchet@55466
   249
lemma map_option_o_empty [simp]: "map_option f o empty = empty"
nipkow@24331
   250
by (rule ext) simp
webertj@13908
   251
blanchet@55466
   252
lemma map_option_o_map_upd [simp]:
wenzelm@60838
   253
  "map_option f o m(a\<mapsto>b) = (map_option f o m)(a\<mapsto>f b)"
nipkow@24331
   254
by (rule ext) simp
wenzelm@20800
   255
webertj@13908
   256
wenzelm@60758
   257
subsection \<open>@{term [source] map_comp} related\<close>
schirmer@17391
   258
wenzelm@20800
   259
lemma map_comp_empty [simp]:
nipkow@24331
   260
  "m \<circ>\<^sub>m empty = empty"
nipkow@24331
   261
  "empty \<circ>\<^sub>m m = empty"
wenzelm@60839
   262
by (auto simp: map_comp_def split: option.splits)
schirmer@17391
   263
wenzelm@20800
   264
lemma map_comp_simps [simp]:
nipkow@24331
   265
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
nipkow@24331
   266
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
wenzelm@60839
   267
by (auto simp: map_comp_def)
schirmer@17391
   268
schirmer@17391
   269
lemma map_comp_Some_iff:
nipkow@24331
   270
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
wenzelm@60839
   271
by (auto simp: map_comp_def split: option.splits)
schirmer@17391
   272
schirmer@17391
   273
lemma map_comp_None_iff:
nipkow@24331
   274
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
wenzelm@60839
   275
by (auto simp: map_comp_def split: option.splits)
webertj@13908
   276
wenzelm@20800
   277
wenzelm@60758
   278
subsection \<open>@{text "++"}\<close>
webertj@13908
   279
nipkow@14025
   280
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@24331
   281
by(simp add: map_add_def)
webertj@13908
   282
nipkow@14025
   283
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@24331
   284
by (rule ext) (simp add: map_add_def split: option.split)
webertj@13908
   285
nipkow@14025
   286
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@24331
   287
by (rule ext) (simp add: map_add_def split: option.split)
wenzelm@20800
   288
wenzelm@20800
   289
lemma map_add_Some_iff:
nipkow@24331
   290
  "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@24331
   291
by (simp add: map_add_def split: option.split)
nipkow@14025
   292
wenzelm@20800
   293
lemma map_add_SomeD [dest!]:
nipkow@24331
   294
  "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
nipkow@24331
   295
by (rule map_add_Some_iff [THEN iffD1])
webertj@13908
   296
wenzelm@60839
   297
lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx"
nipkow@24331
   298
by (subst map_add_Some_iff) fast
webertj@13908
   299
nipkow@14025
   300
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@24331
   301
by (simp add: map_add_def split: option.split)
webertj@13908
   302
wenzelm@60838
   303
lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)"
nipkow@24331
   304
by (rule ext) (simp add: map_add_def)
webertj@13908
   305
nipkow@14186
   306
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@24331
   307
by (simp add: map_upds_def)
nipkow@14186
   308
krauss@32236
   309
lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"
krauss@32236
   310
by (rule ext) (auto simp: map_add_def dom_def split: option.split)
krauss@32236
   311
wenzelm@20800
   312
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
nipkow@24331
   313
unfolding map_add_def
nipkow@24331
   314
apply (induct xs)
nipkow@24331
   315
 apply simp
nipkow@24331
   316
apply (rule ext)
nipkow@24331
   317
apply (simp split add: option.split)
nipkow@24331
   318
done
webertj@13908
   319
nipkow@14025
   320
lemma finite_range_map_of_map_add:
wenzelm@60839
   321
  "finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))"
nipkow@24331
   322
apply (induct l)
nipkow@24331
   323
 apply (auto simp del: fun_upd_apply)
nipkow@24331
   324
apply (erule finite_range_updI)
nipkow@24331
   325
done
webertj@13908
   326
wenzelm@20800
   327
lemma inj_on_map_add_dom [iff]:
nipkow@24331
   328
  "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@44890
   329
by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits)
wenzelm@20800
   330
haftmann@34979
   331
lemma map_upds_fold_map_upd:
haftmann@35552
   332
  "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"
haftmann@34979
   333
unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)
haftmann@34979
   334
  fix ks :: "'a list" and vs :: "'b list"
haftmann@34979
   335
  assume "length ks = length vs"
haftmann@35552
   336
  then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"
haftmann@35552
   337
    by(induct arbitrary: m rule: list_induct2) simp_all
haftmann@34979
   338
qed
haftmann@34979
   339
haftmann@34979
   340
lemma map_add_map_of_foldr:
haftmann@34979
   341
  "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
wenzelm@60839
   342
  by (induct ps) (auto simp: fun_eq_iff map_add_def)
haftmann@34979
   343
nipkow@15304
   344
wenzelm@60758
   345
subsection \<open>@{term [source] restrict_map}\<close>
oheimb@14100
   346
wenzelm@20800
   347
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
nipkow@24331
   348
by (simp add: restrict_map_def)
nipkow@14186
   349
haftmann@31380
   350
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
wenzelm@60839
   351
by (auto simp: restrict_map_def)
haftmann@31380
   352
wenzelm@20800
   353
lemma restrict_map_empty [simp]: "empty|`D = empty"
nipkow@24331
   354
by (simp add: restrict_map_def)
nipkow@14186
   355
nipkow@15693
   356
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
nipkow@24331
   357
by (simp add: restrict_map_def)
oheimb@14100
   358
nipkow@15693
   359
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
nipkow@24331
   360
by (simp add: restrict_map_def)
oheimb@14100
   361
nipkow@15693
   362
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
nipkow@24331
   363
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   364
nipkow@15693
   365
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
nipkow@24331
   366
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   367
nipkow@15693
   368
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
nipkow@24331
   369
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   370
nipkow@15693
   371
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
nipkow@24331
   372
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   373
wenzelm@20800
   374
lemma restrict_fun_upd [simp]:
nipkow@24331
   375
  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@39302
   376
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   377
wenzelm@20800
   378
lemma fun_upd_None_restrict [simp]:
wenzelm@60839
   379
  "(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)"
nipkow@39302
   380
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   381
wenzelm@20800
   382
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@39302
   383
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   384
wenzelm@20800
   385
lemma fun_upd_restrict_conv [simp]:
nipkow@24331
   386
  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@39302
   387
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   388
haftmann@35159
   389
lemma map_of_map_restrict:
haftmann@35159
   390
  "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"
nipkow@39302
   391
  by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)
haftmann@35159
   392
haftmann@35619
   393
lemma restrict_complement_singleton_eq:
haftmann@35619
   394
  "f |` (- {x}) = f(x := None)"
nipkow@39302
   395
  by (simp add: restrict_map_def fun_eq_iff)
haftmann@35619
   396
oheimb@14100
   397
wenzelm@60758
   398
subsection \<open>@{term [source] map_upds}\<close>
nipkow@14025
   399
wenzelm@60838
   400
lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m"
nipkow@24331
   401
by (simp add: map_upds_def)
nipkow@14025
   402
wenzelm@60838
   403
lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m"
nipkow@24331
   404
by (simp add:map_upds_def)
wenzelm@20800
   405
wenzelm@60838
   406
lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)"
nipkow@24331
   407
by (simp add:map_upds_def)
nipkow@14025
   408
wenzelm@60839
   409
lemma map_upds_append1 [simp]: "size xs < size ys \<Longrightarrow>
nipkow@24331
   410
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
wenzelm@60839
   411
apply(induct xs arbitrary: ys m)
nipkow@24331
   412
 apply (clarsimp simp add: neq_Nil_conv)
nipkow@24331
   413
apply (case_tac ys)
nipkow@24331
   414
 apply simp
nipkow@24331
   415
apply simp
nipkow@24331
   416
done
nipkow@14187
   417
wenzelm@20800
   418
lemma map_upds_list_update2_drop [simp]:
bulwahn@46588
   419
  "size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
nipkow@24331
   420
apply (induct xs arbitrary: m ys i)
nipkow@24331
   421
 apply simp
nipkow@24331
   422
apply (case_tac ys)
nipkow@24331
   423
 apply simp
nipkow@24331
   424
apply (simp split: nat.split)
nipkow@24331
   425
done
nipkow@14025
   426
wenzelm@20800
   427
lemma map_upd_upds_conv_if:
wenzelm@60838
   428
  "(f(x\<mapsto>y))(xs [\<mapsto>] ys) =
wenzelm@60839
   429
   (if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys)
wenzelm@60838
   430
                                    else (f(xs [\<mapsto>] ys))(x\<mapsto>y))"
nipkow@24331
   431
apply (induct xs arbitrary: x y ys f)
nipkow@24331
   432
 apply simp
nipkow@24331
   433
apply (case_tac ys)
nipkow@24331
   434
 apply (auto split: split_if simp: fun_upd_twist)
nipkow@24331
   435
done
nipkow@14025
   436
nipkow@14025
   437
lemma map_upds_twist [simp]:
wenzelm@60839
   438
  "a \<notin> set as \<Longrightarrow> m(a\<mapsto>b)(as[\<mapsto>]bs) = m(as[\<mapsto>]bs)(a\<mapsto>b)"
nipkow@44890
   439
using set_take_subset by (fastforce simp add: map_upd_upds_conv_if)
nipkow@14025
   440
wenzelm@20800
   441
lemma map_upds_apply_nontin [simp]:
wenzelm@60839
   442
  "x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x"
nipkow@24331
   443
apply (induct xs arbitrary: ys)
nipkow@24331
   444
 apply simp
nipkow@24331
   445
apply (case_tac ys)
nipkow@24331
   446
 apply (auto simp: map_upd_upds_conv_if)
nipkow@24331
   447
done
nipkow@14025
   448
wenzelm@20800
   449
lemma fun_upds_append_drop [simp]:
nipkow@24331
   450
  "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@24331
   451
apply (induct xs arbitrary: m ys)
nipkow@24331
   452
 apply simp
nipkow@24331
   453
apply (case_tac ys)
nipkow@24331
   454
 apply simp_all
nipkow@24331
   455
done
nipkow@14300
   456
wenzelm@20800
   457
lemma fun_upds_append2_drop [simp]:
nipkow@24331
   458
  "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@24331
   459
apply (induct xs arbitrary: m ys)
nipkow@24331
   460
 apply simp
nipkow@24331
   461
apply (case_tac ys)
nipkow@24331
   462
 apply simp_all
nipkow@24331
   463
done
nipkow@14300
   464
nipkow@14300
   465
wenzelm@20800
   466
lemma restrict_map_upds[simp]:
wenzelm@20800
   467
  "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
wenzelm@20800
   468
    \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
nipkow@24331
   469
apply (induct xs arbitrary: m ys)
nipkow@24331
   470
 apply simp
nipkow@24331
   471
apply (case_tac ys)
nipkow@24331
   472
 apply simp
nipkow@24331
   473
apply (simp add: Diff_insert [symmetric] insert_absorb)
nipkow@24331
   474
apply (simp add: map_upd_upds_conv_if)
nipkow@24331
   475
done
nipkow@14186
   476
nipkow@14186
   477
wenzelm@60758
   478
subsection \<open>@{term [source] dom}\<close>
webertj@13908
   479
nipkow@31080
   480
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
huffman@44921
   481
  by (auto simp: dom_def)
nipkow@31080
   482
wenzelm@60839
   483
lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m"
wenzelm@60839
   484
  by (simp add: dom_def)
oheimb@14100
   485
(* declare domI [intro]? *)
webertj@13908
   486
wenzelm@60839
   487
lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b"
wenzelm@60839
   488
  by (cases "m a") (auto simp add: dom_def)
webertj@13908
   489
wenzelm@60839
   490
lemma domIff [iff, simp del]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None"
wenzelm@60839
   491
  by (simp add: dom_def)
webertj@13908
   492
wenzelm@20800
   493
lemma dom_empty [simp]: "dom empty = {}"
wenzelm@60839
   494
  by (simp add: dom_def)
webertj@13908
   495
wenzelm@20800
   496
lemma dom_fun_upd [simp]:
wenzelm@60839
   497
  "dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))"
wenzelm@60839
   498
  by (auto simp: dom_def)
webertj@13908
   499
haftmann@34979
   500
lemma dom_if:
haftmann@34979
   501
  "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
haftmann@34979
   502
  by (auto split: if_splits)
nipkow@13937
   503
nipkow@15304
   504
lemma dom_map_of_conv_image_fst:
haftmann@34979
   505
  "dom (map_of xys) = fst ` set xys"
haftmann@34979
   506
  by (induct xys) (auto simp add: dom_if)
nipkow@15304
   507
wenzelm@60839
   508
lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs"
wenzelm@60839
   509
  by (induct rule: list_induct2) (auto simp: dom_if)
nipkow@15110
   510
webertj@13908
   511
lemma finite_dom_map_of: "finite (dom (map_of l))"
wenzelm@60839
   512
  by (induct l) (auto simp: dom_def insert_Collect [symmetric])
webertj@13908
   513
wenzelm@20800
   514
lemma dom_map_upds [simp]:
wenzelm@60839
   515
  "dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m"
nipkow@24331
   516
apply (induct xs arbitrary: m ys)
nipkow@24331
   517
 apply simp
nipkow@24331
   518
apply (case_tac ys)
nipkow@24331
   519
 apply auto
nipkow@24331
   520
done
nipkow@13910
   521
wenzelm@60839
   522
lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m"
wenzelm@60839
   523
  by (auto simp: dom_def)
nipkow@13910
   524
wenzelm@20800
   525
lemma dom_override_on [simp]:
wenzelm@60839
   526
  "dom (override_on f g A) =
wenzelm@60839
   527
    (dom f  - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}"
wenzelm@60839
   528
  by (auto simp: dom_def override_on_def)
webertj@13908
   529
wenzelm@60839
   530
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1"
wenzelm@60839
   531
  by (rule ext) (force simp: map_add_def dom_def split: option.split)
wenzelm@20800
   532
krauss@32236
   533
lemma map_add_dom_app_simps:
wenzelm@60839
   534
  "m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m"
wenzelm@60839
   535
  "m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m"
wenzelm@60839
   536
  "m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m"
wenzelm@60839
   537
  by (auto simp add: map_add_def split: option.split_asm)
krauss@32236
   538
haftmann@29622
   539
lemma dom_const [simp]:
haftmann@35159
   540
  "dom (\<lambda>x. Some (f x)) = UNIV"
haftmann@29622
   541
  by auto
haftmann@29622
   542
nipkow@22230
   543
(* Due to John Matthews - could be rephrased with dom *)
nipkow@22230
   544
lemma finite_map_freshness:
nipkow@22230
   545
  "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
nipkow@22230
   546
   \<exists>x. f x = None"
wenzelm@60839
   547
  by (bestsimp dest: ex_new_if_finite)
nipkow@14027
   548
haftmann@28790
   549
lemma dom_minus:
haftmann@28790
   550
  "f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
haftmann@28790
   551
  unfolding dom_def by simp
haftmann@28790
   552
haftmann@28790
   553
lemma insert_dom:
haftmann@28790
   554
  "f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
haftmann@28790
   555
  unfolding dom_def by auto
haftmann@28790
   556
haftmann@35607
   557
lemma map_of_map_keys:
haftmann@35607
   558
  "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"
haftmann@35607
   559
  by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)
haftmann@35607
   560
haftmann@39379
   561
lemma map_of_eqI:
haftmann@39379
   562
  assumes set_eq: "set (map fst xs) = set (map fst ys)"
haftmann@39379
   563
  assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
haftmann@39379
   564
  shows "map_of xs = map_of ys"
haftmann@39379
   565
proof (rule ext)
haftmann@39379
   566
  fix k show "map_of xs k = map_of ys k"
haftmann@39379
   567
  proof (cases "map_of xs k")
wenzelm@60839
   568
    case None
wenzelm@60839
   569
    then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
haftmann@39379
   570
    with set_eq have "k \<notin> set (map fst ys)" by simp
haftmann@39379
   571
    then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
haftmann@39379
   572
    with None show ?thesis by simp
haftmann@39379
   573
  next
wenzelm@60839
   574
    case (Some v)
wenzelm@60839
   575
    then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
haftmann@39379
   576
    with map_eq show ?thesis by auto
haftmann@39379
   577
  qed
haftmann@39379
   578
qed
haftmann@39379
   579
haftmann@39379
   580
lemma map_of_eq_dom:
haftmann@39379
   581
  assumes "map_of xs = map_of ys"
haftmann@39379
   582
  shows "fst ` set xs = fst ` set ys"
haftmann@39379
   583
proof -
haftmann@39379
   584
  from assms have "dom (map_of xs) = dom (map_of ys)" by simp
haftmann@39379
   585
  then show ?thesis by (simp add: dom_map_of_conv_image_fst)
haftmann@39379
   586
qed
haftmann@39379
   587
nipkow@53820
   588
lemma finite_set_of_finite_maps:
wenzelm@60839
   589
  assumes "finite A" "finite B"
wenzelm@60839
   590
  shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
nipkow@53820
   591
proof -
nipkow@53820
   592
  let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
nipkow@53820
   593
  have "?S = ?S'"
nipkow@53820
   594
  proof
wenzelm@60839
   595
    show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def)
nipkow@53820
   596
    show "?S' \<subseteq> ?S"
nipkow@53820
   597
    proof
nipkow@53820
   598
      fix m assume "m \<in> ?S'"
nipkow@53820
   599
      hence 1: "dom m = A" by force
wenzelm@60839
   600
      hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def)
nipkow@53820
   601
      from 1 2 show "m \<in> ?S" by blast
nipkow@53820
   602
    qed
nipkow@53820
   603
  qed
nipkow@53820
   604
  with assms show ?thesis by(simp add: finite_set_of_finite_funs)
nipkow@53820
   605
qed
haftmann@28790
   606
wenzelm@60839
   607
wenzelm@60758
   608
subsection \<open>@{term [source] ran}\<close>
oheimb@14100
   609
wenzelm@60839
   610
lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m"
wenzelm@60839
   611
  by (auto simp: ran_def)
oheimb@14100
   612
(* declare ranI [intro]? *)
webertj@13908
   613
wenzelm@20800
   614
lemma ran_empty [simp]: "ran empty = {}"
wenzelm@60839
   615
  by (auto simp: ran_def)
webertj@13908
   616
wenzelm@60839
   617
lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)"
wenzelm@60839
   618
  unfolding ran_def
nipkow@24331
   619
apply auto
wenzelm@60839
   620
apply (subgoal_tac "aa \<noteq> a")
nipkow@24331
   621
 apply auto
nipkow@24331
   622
done
wenzelm@20800
   623
wenzelm@60839
   624
lemma ran_distinct:
wenzelm@60839
   625
  assumes dist: "distinct (map fst al)"
haftmann@34979
   626
  shows "ran (map_of al) = snd ` set al"
wenzelm@60839
   627
  using assms
wenzelm@60839
   628
proof (induct al)
wenzelm@60839
   629
  case Nil
wenzelm@60839
   630
  then show ?case by simp
haftmann@34979
   631
next
haftmann@34979
   632
  case (Cons kv al)
haftmann@34979
   633
  then have "ran (map_of al) = snd ` set al" by simp
haftmann@34979
   634
  moreover from Cons.prems have "map_of al (fst kv) = None"
haftmann@34979
   635
    by (simp add: map_of_eq_None_iff)
haftmann@34979
   636
  ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp
haftmann@34979
   637
qed
haftmann@34979
   638
Andreas@60057
   639
lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m"
wenzelm@60839
   640
  by (auto simp add: ran_def)
wenzelm@60839
   641
nipkow@13910
   642
wenzelm@60758
   643
subsection \<open>@{text "map_le"}\<close>
nipkow@13910
   644
kleing@13912
   645
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
wenzelm@60839
   646
  by (simp add: map_le_def)
nipkow@13910
   647
paulson@17724
   648
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
wenzelm@60839
   649
  by (force simp add: map_le_def)
nipkow@14187
   650
nipkow@13910
   651
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
wenzelm@60839
   652
  by (fastforce simp add: map_le_def)
nipkow@13910
   653
paulson@17724
   654
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
wenzelm@60839
   655
  by (force simp add: map_le_def)
nipkow@14187
   656
wenzelm@20800
   657
lemma map_le_upds [simp]:
wenzelm@60839
   658
  "f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)"
nipkow@24331
   659
apply (induct as arbitrary: f g bs)
nipkow@24331
   660
 apply simp
nipkow@24331
   661
apply (case_tac bs)
nipkow@24331
   662
 apply auto
nipkow@24331
   663
done
webertj@13908
   664
webertj@14033
   665
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
wenzelm@60839
   666
  by (fastforce simp add: map_le_def dom_def)
webertj@14033
   667
webertj@14033
   668
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
wenzelm@60839
   669
  by (simp add: map_le_def)
webertj@14033
   670
nipkow@14187
   671
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
wenzelm@60839
   672
  by (auto simp add: map_le_def dom_def)
webertj@14033
   673
webertj@14033
   674
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
nipkow@24331
   675
unfolding map_le_def
nipkow@24331
   676
apply (rule ext)
nipkow@24331
   677
apply (case_tac "x \<in> dom f", simp)
nipkow@44890
   678
apply (case_tac "x \<in> dom g", simp, fastforce)
nipkow@24331
   679
done
webertj@14033
   680
wenzelm@60839
   681
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f"
wenzelm@60839
   682
  by (fastforce simp: map_le_def)
webertj@14033
   683
wenzelm@60839
   684
lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f"
wenzelm@60839
   685
  by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits)
nipkow@15304
   686
wenzelm@60839
   687
lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
wenzelm@60839
   688
  by (fastforce simp: map_le_def map_add_def dom_def)
nipkow@15303
   689
wenzelm@60839
   690
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h"
wenzelm@60839
   691
  by (auto simp: map_le_def map_add_def dom_def split: option.splits)
nipkow@15303
   692
nipkow@31080
   693
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
nipkow@31080
   694
proof(rule iffI)
nipkow@31080
   695
  assume "\<exists>v. f = [x \<mapsto> v]"
nipkow@31080
   696
  thus "dom f = {x}" by(auto split: split_if_asm)
nipkow@31080
   697
next
nipkow@31080
   698
  assume "dom f = {x}"
nipkow@31080
   699
  then obtain v where "f x = Some v" by auto
nipkow@31080
   700
  hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def)
wenzelm@60758
   701
  moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using \<open>dom f = {x}\<close> \<open>f x = Some v\<close>
nipkow@31080
   702
    by(auto simp add: map_le_def)
nipkow@31080
   703
  ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym)
nipkow@31080
   704
  thus "\<exists>v. f = [x \<mapsto> v]" by blast
nipkow@31080
   705
qed
nipkow@31080
   706
haftmann@35565
   707
wenzelm@60758
   708
subsection \<open>Various\<close>
haftmann@35565
   709
haftmann@35565
   710
lemma set_map_of_compr:
haftmann@35565
   711
  assumes distinct: "distinct (map fst xs)"
haftmann@35565
   712
  shows "set xs = {(k, v). map_of xs k = Some v}"
wenzelm@60839
   713
  using assms
wenzelm@60839
   714
proof (induct xs)
wenzelm@60839
   715
  case Nil
wenzelm@60839
   716
  then show ?case by simp
haftmann@35565
   717
next
haftmann@35565
   718
  case (Cons x xs)
haftmann@35565
   719
  obtain k v where "x = (k, v)" by (cases x) blast
haftmann@35565
   720
  with Cons.prems have "k \<notin> dom (map_of xs)"
haftmann@35565
   721
    by (simp add: dom_map_of_conv_image_fst)
haftmann@35565
   722
  then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
haftmann@35565
   723
    {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
haftmann@35565
   724
    by (auto split: if_splits)
haftmann@35565
   725
  from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
wenzelm@60758
   726
  with * \<open>x = (k, v)\<close> show ?case by simp
haftmann@35565
   727
qed
haftmann@35565
   728
haftmann@35565
   729
lemma map_of_inject_set:
haftmann@35565
   730
  assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"
haftmann@35565
   731
  shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")
haftmann@35565
   732
proof
haftmann@35565
   733
  assume ?lhs
wenzelm@60758
   734
  moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}"
haftmann@35565
   735
    by (rule set_map_of_compr)
wenzelm@60758
   736
  moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}"
haftmann@35565
   737
    by (rule set_map_of_compr)
haftmann@35565
   738
  ultimately show ?rhs by simp
haftmann@35565
   739
next
wenzelm@53374
   740
  assume ?rhs show ?lhs
wenzelm@53374
   741
  proof
haftmann@35565
   742
    fix k
wenzelm@60839
   743
    show "map_of xs k = map_of ys k"
wenzelm@60839
   744
    proof (cases "map_of xs k")
haftmann@35565
   745
      case None
wenzelm@60758
   746
      with \<open>?rhs\<close> have "map_of ys k = None"
haftmann@35565
   747
        by (simp add: map_of_eq_None_iff)
wenzelm@53374
   748
      with None show ?thesis by simp
haftmann@35565
   749
    next
haftmann@35565
   750
      case (Some v)
wenzelm@60758
   751
      with distinct \<open>?rhs\<close> have "map_of ys k = Some v"
haftmann@35565
   752
        by simp
wenzelm@53374
   753
      with Some show ?thesis by simp
haftmann@35565
   754
    qed
haftmann@35565
   755
  qed
haftmann@35565
   756
qed
haftmann@35565
   757
nipkow@3981
   758
end