src/Pure/net.ML
author wenzelm
Tue Nov 28 00:35:21 2006 +0100 (2006-11-28)
changeset 21566 af2932baf068
parent 20080 1398063aa271
child 23178 07ba6b58b3d2
permissions -rw-r--r--
dest_term: strip_imp_concl;
wenzelm@12319
     1
(*  Title:      Pure/net.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@12319
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Discrimination nets: a data structure for indexing items
clasohm@0
     7
wenzelm@12319
     8
From the book
wenzelm@12319
     9
    E. Charniak, C. K. Riesbeck, D. V. McDermott.
clasohm@0
    10
    Artificial Intelligence Programming.
clasohm@0
    11
    (Lawrence Erlbaum Associates, 1980).  [Chapter 14]
nipkow@225
    12
wenzelm@12319
    13
match_term no longer treats abstractions as wildcards; instead they match
nipkow@228
    14
only wildcards in patterns.  Requires operands to be beta-eta-normal.
clasohm@0
    15
*)
clasohm@0
    16
wenzelm@12319
    17
signature NET =
wenzelm@16808
    18
sig
clasohm@0
    19
  type key
wenzelm@16808
    20
  val key_of_term: term -> key list
clasohm@0
    21
  type 'a net
clasohm@0
    22
  val empty: 'a net
wenzelm@16808
    23
  exception INSERT
wenzelm@16808
    24
  val insert: ('a * 'a -> bool) -> key list * 'a -> 'a net -> 'a net
wenzelm@16808
    25
  val insert_term: ('a * 'a -> bool) -> term * 'a -> 'a net -> 'a net
wenzelm@16808
    26
  exception DELETE
wenzelm@16808
    27
  val delete: ('b * 'a -> bool) -> key list * 'b -> 'a net -> 'a net
wenzelm@16808
    28
  val delete_term: ('b * 'a -> bool) -> term * 'b -> 'a net -> 'a net
wenzelm@16808
    29
  val lookup: 'a net -> key list -> 'a list
clasohm@0
    30
  val match_term: 'a net -> term -> 'a list
clasohm@0
    31
  val unify_term: 'a net -> term -> 'a list
wenzelm@16808
    32
  val entries: 'a net -> 'a list
wenzelm@16808
    33
  val subtract: ('b * 'a -> bool) -> 'a net -> 'b net -> 'b list
wenzelm@16808
    34
  val merge: ('a * 'a -> bool) -> 'a net * 'a net -> 'a net
wenzelm@20011
    35
  val content: 'a net -> 'a list
wenzelm@16808
    36
end;
clasohm@0
    37
wenzelm@16808
    38
structure Net: NET =
clasohm@0
    39
struct
clasohm@0
    40
clasohm@0
    41
datatype key = CombK | VarK | AtomK of string;
clasohm@0
    42
nipkow@228
    43
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms.
nipkow@225
    44
  Any term whose head is a Var is regarded entirely as a Var.
nipkow@228
    45
  Abstractions are also regarded as Vars;  this covers eta-conversion
nipkow@228
    46
    and "near" eta-conversions such as %x.?P(?f(x)).
clasohm@0
    47
*)
wenzelm@12319
    48
fun add_key_of_terms (t, cs) =
clasohm@0
    49
  let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs))
wenzelm@12319
    50
        | rands (Const(c,_), cs) = AtomK c :: cs
wenzelm@12319
    51
        | rands (Free(c,_),  cs) = AtomK c :: cs
wenzelm@20080
    52
        | rands (Bound i,  cs)   = AtomK (Name.bound i) :: cs
clasohm@0
    53
  in case (head_of t) of
nipkow@225
    54
      Var _ => VarK :: cs
nipkow@228
    55
    | Abs _ => VarK :: cs
nipkow@225
    56
    | _     => rands(t,cs)
clasohm@0
    57
  end;
clasohm@0
    58
nipkow@225
    59
(*convert a term to a list of keys*)
clasohm@0
    60
fun key_of_term t = add_key_of_terms (t, []);
clasohm@0
    61
clasohm@0
    62
clasohm@0
    63
(*Trees indexed by key lists: each arc is labelled by a key.
clasohm@0
    64
  Each node contains a list of items, and arcs to children.
clasohm@0
    65
  The empty key addresses the entire net.
clasohm@0
    66
  Lookup functions preserve order in items stored at same level.
clasohm@0
    67
*)
clasohm@0
    68
datatype 'a net = Leaf of 'a list
wenzelm@12319
    69
                | Net of {comb: 'a net,
wenzelm@12319
    70
                          var: 'a net,
wenzelm@16708
    71
                          atoms: 'a net Symtab.table};
clasohm@0
    72
clasohm@0
    73
val empty = Leaf[];
wenzelm@16708
    74
fun is_empty (Leaf []) = true | is_empty _ = false;
wenzelm@16708
    75
val emptynet = Net{comb=empty, var=empty, atoms=Symtab.empty};
clasohm@0
    76
clasohm@0
    77
clasohm@0
    78
(*** Insertion into a discrimination net ***)
clasohm@0
    79
wenzelm@12319
    80
exception INSERT;       (*duplicate item in the net*)
clasohm@0
    81
clasohm@0
    82
clasohm@0
    83
(*Adds item x to the list at the node addressed by the keys.
clasohm@0
    84
  Creates node if not already present.
wenzelm@12319
    85
  eq is the equality test for items.
clasohm@0
    86
  The empty list of keys generates a Leaf node, others a Net node.
clasohm@0
    87
*)
wenzelm@16808
    88
fun insert eq (keys,x) net =
wenzelm@12319
    89
  let fun ins1 ([], Leaf xs) =
wenzelm@16686
    90
            if member eq xs x then  raise INSERT  else Leaf(x::xs)
clasohm@0
    91
        | ins1 (keys, Leaf[]) = ins1 (keys, emptynet)   (*expand empty...*)
wenzelm@16708
    92
        | ins1 (CombK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    93
            Net{comb=ins1(keys,comb), var=var, atoms=atoms}
wenzelm@16708
    94
        | ins1 (VarK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    95
            Net{comb=comb, var=ins1(keys,var), atoms=atoms}
wenzelm@16708
    96
        | ins1 (AtomK a :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    97
            let
wenzelm@18939
    98
              val net' = the_default empty (Symtab.lookup atoms a);
wenzelm@17412
    99
              val atoms' = Symtab.update (a, ins1 (keys, net')) atoms;
wenzelm@16708
   100
            in  Net{comb=comb, var=var, atoms=atoms'}  end
clasohm@0
   101
  in  ins1 (keys,net)  end;
clasohm@0
   102
wenzelm@16808
   103
fun insert_safe eq entry net = insert eq entry net handle INSERT => net;
wenzelm@16808
   104
fun insert_term eq (t, x) = insert eq (key_of_term t, x);
wenzelm@16808
   105
clasohm@0
   106
clasohm@0
   107
(*** Deletion from a discrimination net ***)
clasohm@0
   108
wenzelm@12319
   109
exception DELETE;       (*missing item in the net*)
clasohm@0
   110
clasohm@0
   111
(*Create a new Net node if it would be nonempty*)
wenzelm@16708
   112
fun newnet (args as {comb,var,atoms}) =
wenzelm@16708
   113
  if is_empty comb andalso is_empty var andalso Symtab.is_empty atoms
wenzelm@16708
   114
  then empty else Net args;
clasohm@0
   115
clasohm@0
   116
(*Deletes item x from the list at the node addressed by the keys.
clasohm@0
   117
  Raises DELETE if absent.  Collapses the net if possible.
clasohm@0
   118
  eq is the equality test for items. *)
wenzelm@16808
   119
fun delete eq (keys, x) net =
clasohm@0
   120
  let fun del1 ([], Leaf xs) =
wenzelm@16686
   121
            if member eq xs x then Leaf (remove eq x xs)
clasohm@0
   122
            else raise DELETE
wenzelm@12319
   123
        | del1 (keys, Leaf[]) = raise DELETE
wenzelm@16708
   124
        | del1 (CombK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   125
            newnet{comb=del1(keys,comb), var=var, atoms=atoms}
wenzelm@16708
   126
        | del1 (VarK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   127
            newnet{comb=comb, var=del1(keys,var), atoms=atoms}
wenzelm@16708
   128
        | del1 (AtomK a :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   129
            let val atoms' =
wenzelm@17412
   130
              (case Symtab.lookup atoms a of
wenzelm@16708
   131
                NONE => raise DELETE
wenzelm@16708
   132
              | SOME net' =>
wenzelm@16708
   133
                  (case del1 (keys, net') of
wenzelm@16708
   134
                    Leaf [] => Symtab.delete a atoms
wenzelm@17412
   135
                  | net'' => Symtab.update (a, net'') atoms))
wenzelm@16708
   136
            in  newnet{comb=comb, var=var, atoms=atoms'}  end
clasohm@0
   137
  in  del1 (keys,net)  end;
clasohm@0
   138
wenzelm@16808
   139
fun delete_term eq (t, x) = delete eq (key_of_term t, x);
clasohm@0
   140
wenzelm@16677
   141
clasohm@0
   142
(*** Retrieval functions for discrimination nets ***)
clasohm@0
   143
wenzelm@16708
   144
exception ABSENT;
clasohm@0
   145
wenzelm@16708
   146
fun the_atom atoms a =
wenzelm@17412
   147
  (case Symtab.lookup atoms a of
wenzelm@16708
   148
    NONE => raise ABSENT
wenzelm@16708
   149
  | SOME net => net);
clasohm@0
   150
clasohm@0
   151
(*Return the list of items at the given node, [] if no such node*)
wenzelm@16808
   152
fun lookup (Leaf xs) [] = xs
wenzelm@16808
   153
  | lookup (Leaf _) (_ :: _) = []  (*non-empty keys and empty net*)
wenzelm@16808
   154
  | lookup (Net {comb, var, atoms}) (CombK :: keys) = lookup comb keys
wenzelm@16808
   155
  | lookup (Net {comb, var, atoms}) (VarK :: keys) = lookup var keys
wenzelm@16808
   156
  | lookup (Net {comb, var, atoms}) (AtomK a :: keys) =
wenzelm@16808
   157
      lookup (the_atom atoms a) keys handle ABSENT => [];
clasohm@0
   158
clasohm@0
   159
clasohm@0
   160
(*Skipping a term in a net.  Recursively skip 2 levels if a combination*)
clasohm@0
   161
fun net_skip (Leaf _, nets) = nets
wenzelm@16708
   162
  | net_skip (Net{comb,var,atoms}, nets) =
wenzelm@16708
   163
      foldr net_skip (Symtab.fold (cons o #2) atoms (var::nets)) (net_skip (comb,[]));
clasohm@0
   164
wenzelm@16808
   165
wenzelm@16808
   166
(** Matching and Unification **)
clasohm@0
   167
clasohm@0
   168
(*conses the linked net, if present, to nets*)
wenzelm@16708
   169
fun look1 (atoms, a) nets =
wenzelm@16708
   170
  the_atom atoms a :: nets handle ABSENT => nets;
clasohm@0
   171
wenzelm@12319
   172
(*Return the nodes accessible from the term (cons them before nets)
clasohm@0
   173
  "unif" signifies retrieval for unification rather than matching.
clasohm@0
   174
  Var in net matches any term.
wenzelm@12319
   175
  Abs or Var in object: if "unif", regarded as wildcard,
nipkow@225
   176
                                   else matches only a variable in net.
nipkow@225
   177
*)
clasohm@0
   178
fun matching unif t (net,nets) =
clasohm@0
   179
  let fun rands _ (Leaf _, nets) = nets
wenzelm@16708
   180
        | rands t (Net{comb,atoms,...}, nets) =
wenzelm@12319
   181
            case t of
skalberg@15574
   182
                f$t => foldr (matching unif t) nets (rands f (comb,[]))
wenzelm@16708
   183
              | Const(c,_) => look1 (atoms, c) nets
wenzelm@16708
   184
              | Free(c,_)  => look1 (atoms, c) nets
wenzelm@20080
   185
              | Bound i    => look1 (atoms, Name.bound i) nets
wenzelm@12319
   186
              | _          => nets
wenzelm@12319
   187
  in
clasohm@0
   188
     case net of
wenzelm@12319
   189
         Leaf _ => nets
clasohm@0
   190
       | Net{var,...} =>
wenzelm@12319
   191
             case head_of t of
wenzelm@12319
   192
                 Var _ => if unif then net_skip (net,nets)
wenzelm@12319
   193
                          else var::nets           (*only matches Var in net*)
paulson@2836
   194
  (*If "unif" then a var instantiation in the abstraction could allow
paulson@2836
   195
    an eta-reduction, so regard the abstraction as a wildcard.*)
wenzelm@12319
   196
               | Abs _ => if unif then net_skip (net,nets)
wenzelm@12319
   197
                          else var::nets           (*only a Var can match*)
wenzelm@12319
   198
               | _ => rands t (net, var::nets)  (*var could match also*)
clasohm@0
   199
  end;
clasohm@0
   200
wenzelm@19482
   201
fun extract_leaves l = maps (fn Leaf xs => xs) l;
clasohm@0
   202
nipkow@225
   203
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*)
wenzelm@12319
   204
fun match_term net t =
clasohm@0
   205
    extract_leaves (matching false t (net,[]));
clasohm@0
   206
clasohm@0
   207
(*return items whose key could unify with t*)
wenzelm@12319
   208
fun unify_term net t =
clasohm@0
   209
    extract_leaves (matching true t (net,[]));
clasohm@0
   210
wenzelm@3548
   211
wenzelm@16808
   212
(** operations on nets **)
wenzelm@16808
   213
wenzelm@16808
   214
(*subtraction: collect entries of second net that are NOT present in first net*)
wenzelm@16808
   215
fun subtract eq net1 net2 =
wenzelm@16808
   216
  let
wenzelm@16808
   217
    fun subtr (Net _) (Leaf ys) = append ys
wenzelm@16808
   218
      | subtr (Leaf xs) (Leaf ys) =
wenzelm@16808
   219
          fold_rev (fn y => if member eq xs y then I else cons y) ys
wenzelm@16808
   220
      | subtr (Leaf _) (net as Net _) = subtr emptynet net
wenzelm@16808
   221
      | subtr (Net {comb = comb1, var = var1, atoms = atoms1})
wenzelm@16808
   222
            (Net {comb = comb2, var = var2, atoms = atoms2}) =
wenzelm@16842
   223
          subtr comb1 comb2
wenzelm@16842
   224
          #> subtr var1 var2
wenzelm@16842
   225
          #> Symtab.fold (fn (a, net) =>
wenzelm@18939
   226
            subtr (the_default emptynet (Symtab.lookup atoms1 a)) net) atoms2
wenzelm@16808
   227
  in subtr net1 net2 [] end;
wenzelm@16808
   228
wenzelm@16808
   229
fun entries net = subtract (K false) empty net;
wenzelm@16808
   230
wenzelm@16808
   231
wenzelm@16808
   232
(* merge *)
wenzelm@3548
   233
wenzelm@3548
   234
fun cons_fst x (xs, y) = (x :: xs, y);
wenzelm@3548
   235
wenzelm@3548
   236
fun dest (Leaf xs) = map (pair []) xs
wenzelm@16708
   237
  | dest (Net {comb, var, atoms}) =
wenzelm@3560
   238
      map (cons_fst CombK) (dest comb) @
wenzelm@3560
   239
      map (cons_fst VarK) (dest var) @
wenzelm@19482
   240
      maps (fn (a, net) => map (cons_fst (AtomK a)) (dest net)) (Symtab.dest atoms);
wenzelm@3548
   241
wenzelm@16808
   242
fun merge eq (net1, net2) = fold (insert_safe eq) (dest net2) net1;
wenzelm@3548
   243
wenzelm@20011
   244
fun content net = map #2 (dest net);
wenzelm@20011
   245
clasohm@0
   246
end;