src/HOL/Relation.thy
author haftmann
Sun Jan 01 11:28:45 2012 +0100 (2012-01-01)
changeset 46127 af3b95160b59
parent 45967 76cf71ed15c7
child 46372 6fa9cdb8b850
permissions -rw-r--r--
cleanup of code declarations
wenzelm@10358
     1
(*  Title:      HOL/Relation.thy
paulson@1983
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1983
     3
    Copyright   1996  University of Cambridge
nipkow@1128
     4
*)
nipkow@1128
     5
berghofe@12905
     6
header {* Relations *}
berghofe@12905
     7
nipkow@15131
     8
theory Relation
haftmann@32850
     9
imports Datatype Finite_Set
nipkow@15131
    10
begin
paulson@5978
    11
wenzelm@12913
    12
subsection {* Definitions *}
wenzelm@12913
    13
wenzelm@19656
    14
definition
wenzelm@21404
    15
  converse :: "('a * 'b) set => ('b * 'a) set"
wenzelm@21404
    16
    ("(_^-1)" [1000] 999) where
haftmann@45137
    17
  "r^-1 = {(y, x). (x, y) : r}"
paulson@7912
    18
wenzelm@21210
    19
notation (xsymbols)
wenzelm@19656
    20
  converse  ("(_\<inverse>)" [1000] 999)
wenzelm@19656
    21
wenzelm@19656
    22
definition
krauss@32235
    23
  rel_comp  :: "[('a * 'b) set, ('b * 'c) set] => ('a * 'c) set"
wenzelm@21404
    24
    (infixr "O" 75) where
haftmann@45137
    25
  "r O s = {(x,z). EX y. (x, y) : r & (y, z) : s}"
wenzelm@12913
    26
wenzelm@21404
    27
definition
wenzelm@21404
    28
  Image :: "[('a * 'b) set, 'a set] => 'b set"
wenzelm@21404
    29
    (infixl "``" 90) where
haftmann@45137
    30
  "r `` s = {y. EX x:s. (x,y):r}"
paulson@7912
    31
wenzelm@21404
    32
definition
wenzelm@21404
    33
  Id :: "('a * 'a) set" where -- {* the identity relation *}
haftmann@45137
    34
  "Id = {p. EX x. p = (x,x)}"
paulson@7912
    35
wenzelm@21404
    36
definition
nipkow@30198
    37
  Id_on  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
haftmann@45137
    38
  "Id_on A = (\<Union>x\<in>A. {(x,x)})"
wenzelm@12913
    39
wenzelm@21404
    40
definition
wenzelm@21404
    41
  Domain :: "('a * 'b) set => 'a set" where
haftmann@45137
    42
  "Domain r = {x. EX y. (x,y):r}"
paulson@5978
    43
wenzelm@21404
    44
definition
wenzelm@21404
    45
  Range  :: "('a * 'b) set => 'b set" where
haftmann@45137
    46
  "Range r = Domain(r^-1)"
paulson@5978
    47
wenzelm@21404
    48
definition
wenzelm@21404
    49
  Field :: "('a * 'a) set => 'a set" where
haftmann@45137
    50
  "Field r = Domain r \<union> Range r"
paulson@10786
    51
wenzelm@21404
    52
definition
nipkow@30198
    53
  refl_on :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
haftmann@45137
    54
  "refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
paulson@6806
    55
nipkow@26297
    56
abbreviation
nipkow@30198
    57
  refl :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
haftmann@45137
    58
  "refl \<equiv> refl_on UNIV"
nipkow@26297
    59
wenzelm@21404
    60
definition
wenzelm@21404
    61
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
haftmann@45137
    62
  "sym r \<longleftrightarrow> (ALL x y. (x,y): r --> (y,x): r)"
paulson@6806
    63
wenzelm@21404
    64
definition
wenzelm@21404
    65
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
haftmann@45137
    66
  "antisym r \<longleftrightarrow> (ALL x y. (x,y):r --> (y,x):r --> x=y)"
paulson@6806
    67
wenzelm@21404
    68
definition
wenzelm@21404
    69
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
haftmann@45137
    70
  "trans r \<longleftrightarrow> (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
paulson@5978
    71
wenzelm@21404
    72
definition
haftmann@45137
    73
  irrefl :: "('a * 'a) set => bool" where
haftmann@45137
    74
  "irrefl r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r)"
nipkow@29859
    75
nipkow@29859
    76
definition
haftmann@45137
    77
  total_on :: "'a set => ('a * 'a) set => bool" where
haftmann@45137
    78
  "total_on A r \<longleftrightarrow> (\<forall>x\<in>A.\<forall>y\<in>A. x\<noteq>y \<longrightarrow> (x,y)\<in>r \<or> (y,x)\<in>r)"
nipkow@29859
    79
nipkow@29859
    80
abbreviation "total \<equiv> total_on UNIV"
nipkow@29859
    81
nipkow@29859
    82
definition
wenzelm@21404
    83
  single_valued :: "('a * 'b) set => bool" where
haftmann@45137
    84
  "single_valued r \<longleftrightarrow> (ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z))"
berghofe@7014
    85
wenzelm@21404
    86
definition
wenzelm@21404
    87
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
haftmann@45137
    88
  "inv_image r f = {(x, y). (f x, f y) : r}"
oheimb@11136
    89
berghofe@12905
    90
wenzelm@12913
    91
subsection {* The identity relation *}
berghofe@12905
    92
berghofe@12905
    93
lemma IdI [intro]: "(a, a) : Id"
nipkow@26271
    94
by (simp add: Id_def)
berghofe@12905
    95
berghofe@12905
    96
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
nipkow@26271
    97
by (unfold Id_def) (iprover elim: CollectE)
berghofe@12905
    98
berghofe@12905
    99
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
nipkow@26271
   100
by (unfold Id_def) blast
berghofe@12905
   101
nipkow@30198
   102
lemma refl_Id: "refl Id"
nipkow@30198
   103
by (simp add: refl_on_def)
berghofe@12905
   104
berghofe@12905
   105
lemma antisym_Id: "antisym Id"
berghofe@12905
   106
  -- {* A strange result, since @{text Id} is also symmetric. *}
nipkow@26271
   107
by (simp add: antisym_def)
berghofe@12905
   108
huffman@19228
   109
lemma sym_Id: "sym Id"
nipkow@26271
   110
by (simp add: sym_def)
huffman@19228
   111
berghofe@12905
   112
lemma trans_Id: "trans Id"
nipkow@26271
   113
by (simp add: trans_def)
berghofe@12905
   114
berghofe@12905
   115
wenzelm@12913
   116
subsection {* Diagonal: identity over a set *}
berghofe@12905
   117
nipkow@30198
   118
lemma Id_on_empty [simp]: "Id_on {} = {}"
nipkow@30198
   119
by (simp add: Id_on_def) 
paulson@13812
   120
nipkow@30198
   121
lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A"
nipkow@30198
   122
by (simp add: Id_on_def)
berghofe@12905
   123
blanchet@35828
   124
lemma Id_onI [intro!,no_atp]: "a : A ==> (a, a) : Id_on A"
nipkow@30198
   125
by (rule Id_on_eqI) (rule refl)
berghofe@12905
   126
nipkow@30198
   127
lemma Id_onE [elim!]:
nipkow@30198
   128
  "c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
wenzelm@12913
   129
  -- {* The general elimination rule. *}
nipkow@30198
   130
by (unfold Id_on_def) (iprover elim!: UN_E singletonE)
berghofe@12905
   131
nipkow@30198
   132
lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)"
nipkow@26271
   133
by blast
berghofe@12905
   134
haftmann@45967
   135
lemma Id_on_def' [nitpick_unfold]:
haftmann@44278
   136
  "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
haftmann@44278
   137
by auto
bulwahn@40923
   138
nipkow@30198
   139
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A"
nipkow@26271
   140
by blast
berghofe@12905
   141
berghofe@12905
   142
berghofe@12905
   143
subsection {* Composition of two relations *}
berghofe@12905
   144
wenzelm@12913
   145
lemma rel_compI [intro]:
krauss@32235
   146
  "(a, b) : r ==> (b, c) : s ==> (a, c) : r O s"
nipkow@26271
   147
by (unfold rel_comp_def) blast
berghofe@12905
   148
wenzelm@12913
   149
lemma rel_compE [elim!]: "xz : r O s ==>
krauss@32235
   150
  (!!x y z. xz = (x, z) ==> (x, y) : r ==> (y, z) : s  ==> P) ==> P"
nipkow@26271
   151
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
berghofe@12905
   152
berghofe@12905
   153
lemma rel_compEpair:
krauss@32235
   154
  "(a, c) : r O s ==> (!!y. (a, y) : r ==> (y, c) : s ==> P) ==> P"
nipkow@26271
   155
by (iprover elim: rel_compE Pair_inject ssubst)
berghofe@12905
   156
berghofe@12905
   157
lemma R_O_Id [simp]: "R O Id = R"
nipkow@26271
   158
by fast
berghofe@12905
   159
berghofe@12905
   160
lemma Id_O_R [simp]: "Id O R = R"
nipkow@26271
   161
by fast
berghofe@12905
   162
krauss@23185
   163
lemma rel_comp_empty1[simp]: "{} O R = {}"
nipkow@26271
   164
by blast
krauss@23185
   165
krauss@23185
   166
lemma rel_comp_empty2[simp]: "R O {} = {}"
nipkow@26271
   167
by blast
krauss@23185
   168
berghofe@12905
   169
lemma O_assoc: "(R O S) O T = R O (S O T)"
nipkow@26271
   170
by blast
berghofe@12905
   171
wenzelm@12913
   172
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
nipkow@26271
   173
by (unfold trans_def) blast
berghofe@12905
   174
wenzelm@12913
   175
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
nipkow@26271
   176
by blast
berghofe@12905
   177
berghofe@12905
   178
lemma rel_comp_subset_Sigma:
krauss@32235
   179
    "r \<subseteq> A \<times> B ==> s \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
nipkow@26271
   180
by blast
berghofe@12905
   181
krauss@28008
   182
lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)" 
krauss@28008
   183
by auto
krauss@28008
   184
krauss@28008
   185
lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)"
krauss@28008
   186
by auto
krauss@28008
   187
krauss@36772
   188
lemma rel_comp_UNION_distrib: "s O UNION I r = UNION I (%i. s O r i)"
krauss@36772
   189
by auto
krauss@36772
   190
krauss@36772
   191
lemma rel_comp_UNION_distrib2: "UNION I r O s = UNION I (%i. r i O s)"
krauss@36772
   192
by auto
krauss@36772
   193
wenzelm@12913
   194
wenzelm@12913
   195
subsection {* Reflexivity *}
wenzelm@12913
   196
nipkow@30198
   197
lemma refl_onI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r"
nipkow@30198
   198
by (unfold refl_on_def) (iprover intro!: ballI)
berghofe@12905
   199
nipkow@30198
   200
lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r"
nipkow@30198
   201
by (unfold refl_on_def) blast
berghofe@12905
   202
nipkow@30198
   203
lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A"
nipkow@30198
   204
by (unfold refl_on_def) blast
huffman@19228
   205
nipkow@30198
   206
lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A"
nipkow@30198
   207
by (unfold refl_on_def) blast
huffman@19228
   208
nipkow@30198
   209
lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)"
nipkow@30198
   210
by (unfold refl_on_def) blast
huffman@19228
   211
nipkow@30198
   212
lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)"
nipkow@30198
   213
by (unfold refl_on_def) blast
huffman@19228
   214
nipkow@30198
   215
lemma refl_on_INTER:
nipkow@30198
   216
  "ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)"
nipkow@30198
   217
by (unfold refl_on_def) fast
huffman@19228
   218
nipkow@30198
   219
lemma refl_on_UNION:
nipkow@30198
   220
  "ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)"
nipkow@30198
   221
by (unfold refl_on_def) blast
huffman@19228
   222
nipkow@30198
   223
lemma refl_on_empty[simp]: "refl_on {} {}"
nipkow@30198
   224
by(simp add:refl_on_def)
nipkow@26297
   225
nipkow@30198
   226
lemma refl_on_Id_on: "refl_on A (Id_on A)"
nipkow@30198
   227
by (rule refl_onI [OF Id_on_subset_Times Id_onI])
huffman@19228
   228
blanchet@41792
   229
lemma refl_on_def' [nitpick_unfold, code]:
bulwahn@41056
   230
  "refl_on A r = ((\<forall>(x, y) \<in> r. x : A \<and> y : A) \<and> (\<forall>x \<in> A. (x, x) : r))"
bulwahn@41056
   231
by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)
wenzelm@12913
   232
wenzelm@12913
   233
subsection {* Antisymmetry *}
berghofe@12905
   234
berghofe@12905
   235
lemma antisymI:
berghofe@12905
   236
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
nipkow@26271
   237
by (unfold antisym_def) iprover
berghofe@12905
   238
berghofe@12905
   239
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
nipkow@26271
   240
by (unfold antisym_def) iprover
berghofe@12905
   241
huffman@19228
   242
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
nipkow@26271
   243
by (unfold antisym_def) blast
wenzelm@12913
   244
huffman@19228
   245
lemma antisym_empty [simp]: "antisym {}"
nipkow@26271
   246
by (unfold antisym_def) blast
huffman@19228
   247
nipkow@30198
   248
lemma antisym_Id_on [simp]: "antisym (Id_on A)"
nipkow@26271
   249
by (unfold antisym_def) blast
huffman@19228
   250
huffman@19228
   251
huffman@19228
   252
subsection {* Symmetry *}
huffman@19228
   253
huffman@19228
   254
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
nipkow@26271
   255
by (unfold sym_def) iprover
paulson@15177
   256
paulson@15177
   257
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
nipkow@26271
   258
by (unfold sym_def, blast)
berghofe@12905
   259
huffman@19228
   260
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
nipkow@26271
   261
by (fast intro: symI dest: symD)
huffman@19228
   262
huffman@19228
   263
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
nipkow@26271
   264
by (fast intro: symI dest: symD)
huffman@19228
   265
huffman@19228
   266
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
nipkow@26271
   267
by (fast intro: symI dest: symD)
huffman@19228
   268
huffman@19228
   269
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
nipkow@26271
   270
by (fast intro: symI dest: symD)
huffman@19228
   271
nipkow@30198
   272
lemma sym_Id_on [simp]: "sym (Id_on A)"
nipkow@26271
   273
by (rule symI) clarify
huffman@19228
   274
huffman@19228
   275
huffman@19228
   276
subsection {* Transitivity *}
huffman@19228
   277
haftmann@46127
   278
lemma trans_join [code]:
haftmann@45012
   279
  "trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)"
haftmann@45012
   280
  by (auto simp add: trans_def)
haftmann@45012
   281
berghofe@12905
   282
lemma transI:
berghofe@12905
   283
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
nipkow@26271
   284
by (unfold trans_def) iprover
berghofe@12905
   285
berghofe@12905
   286
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
nipkow@26271
   287
by (unfold trans_def) iprover
berghofe@12905
   288
huffman@19228
   289
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
nipkow@26271
   290
by (fast intro: transI elim: transD)
huffman@19228
   291
huffman@19228
   292
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
nipkow@26271
   293
by (fast intro: transI elim: transD)
huffman@19228
   294
nipkow@30198
   295
lemma trans_Id_on [simp]: "trans (Id_on A)"
nipkow@26271
   296
by (fast intro: transI elim: transD)
huffman@19228
   297
nipkow@29859
   298
lemma trans_diff_Id: " trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r-Id)"
nipkow@29859
   299
unfolding antisym_def trans_def by blast
nipkow@29859
   300
nipkow@29859
   301
subsection {* Irreflexivity *}
nipkow@29859
   302
haftmann@46127
   303
lemma irrefl_distinct [code]:
haftmann@45012
   304
  "irrefl r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<noteq> y)"
haftmann@45012
   305
  by (auto simp add: irrefl_def)
haftmann@45012
   306
nipkow@29859
   307
lemma irrefl_diff_Id[simp]: "irrefl(r-Id)"
nipkow@29859
   308
by(simp add:irrefl_def)
nipkow@29859
   309
haftmann@45139
   310
nipkow@29859
   311
subsection {* Totality *}
nipkow@29859
   312
nipkow@29859
   313
lemma total_on_empty[simp]: "total_on {} r"
nipkow@29859
   314
by(simp add:total_on_def)
nipkow@29859
   315
nipkow@29859
   316
lemma total_on_diff_Id[simp]: "total_on A (r-Id) = total_on A r"
nipkow@29859
   317
by(simp add: total_on_def)
berghofe@12905
   318
wenzelm@12913
   319
subsection {* Converse *}
wenzelm@12913
   320
wenzelm@12913
   321
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
nipkow@26271
   322
by (simp add: converse_def)
berghofe@12905
   323
nipkow@13343
   324
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
nipkow@26271
   325
by (simp add: converse_def)
berghofe@12905
   326
nipkow@13343
   327
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
nipkow@26271
   328
by (simp add: converse_def)
berghofe@12905
   329
berghofe@12905
   330
lemma converseE [elim!]:
berghofe@12905
   331
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
wenzelm@12913
   332
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
nipkow@26271
   333
by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
berghofe@12905
   334
berghofe@12905
   335
lemma converse_converse [simp]: "(r^-1)^-1 = r"
nipkow@26271
   336
by (unfold converse_def) blast
berghofe@12905
   337
berghofe@12905
   338
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
nipkow@26271
   339
by blast
berghofe@12905
   340
huffman@19228
   341
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
nipkow@26271
   342
by blast
huffman@19228
   343
huffman@19228
   344
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
nipkow@26271
   345
by blast
huffman@19228
   346
huffman@19228
   347
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
nipkow@26271
   348
by fast
huffman@19228
   349
huffman@19228
   350
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
nipkow@26271
   351
by blast
huffman@19228
   352
berghofe@12905
   353
lemma converse_Id [simp]: "Id^-1 = Id"
nipkow@26271
   354
by blast
berghofe@12905
   355
nipkow@30198
   356
lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A"
nipkow@26271
   357
by blast
berghofe@12905
   358
nipkow@30198
   359
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r"
nipkow@30198
   360
by (unfold refl_on_def) auto
berghofe@12905
   361
huffman@19228
   362
lemma sym_converse [simp]: "sym (converse r) = sym r"
nipkow@26271
   363
by (unfold sym_def) blast
huffman@19228
   364
huffman@19228
   365
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
nipkow@26271
   366
by (unfold antisym_def) blast
berghofe@12905
   367
huffman@19228
   368
lemma trans_converse [simp]: "trans (converse r) = trans r"
nipkow@26271
   369
by (unfold trans_def) blast
berghofe@12905
   370
huffman@19228
   371
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
nipkow@26271
   372
by (unfold sym_def) fast
huffman@19228
   373
huffman@19228
   374
lemma sym_Un_converse: "sym (r \<union> r^-1)"
nipkow@26271
   375
by (unfold sym_def) blast
huffman@19228
   376
huffman@19228
   377
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
nipkow@26271
   378
by (unfold sym_def) blast
huffman@19228
   379
nipkow@29859
   380
lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r"
nipkow@29859
   381
by (auto simp: total_on_def)
nipkow@29859
   382
wenzelm@12913
   383
berghofe@12905
   384
subsection {* Domain *}
berghofe@12905
   385
blanchet@35828
   386
declare Domain_def [no_atp]
paulson@24286
   387
berghofe@12905
   388
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
nipkow@26271
   389
by (unfold Domain_def) blast
berghofe@12905
   390
berghofe@12905
   391
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
nipkow@26271
   392
by (iprover intro!: iffD2 [OF Domain_iff])
berghofe@12905
   393
berghofe@12905
   394
lemma DomainE [elim!]:
berghofe@12905
   395
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
nipkow@26271
   396
by (iprover dest!: iffD1 [OF Domain_iff])
berghofe@12905
   397
haftmann@46127
   398
lemma Domain_fst [code]:
haftmann@45012
   399
  "Domain r = fst ` r"
haftmann@45012
   400
  by (auto simp add: image_def Bex_def)
haftmann@45012
   401
berghofe@12905
   402
lemma Domain_empty [simp]: "Domain {} = {}"
nipkow@26271
   403
by blast
berghofe@12905
   404
paulson@32876
   405
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
paulson@32876
   406
  by auto
paulson@32876
   407
berghofe@12905
   408
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
nipkow@26271
   409
by blast
berghofe@12905
   410
berghofe@12905
   411
lemma Domain_Id [simp]: "Domain Id = UNIV"
nipkow@26271
   412
by blast
berghofe@12905
   413
nipkow@30198
   414
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A"
nipkow@26271
   415
by blast
berghofe@12905
   416
paulson@13830
   417
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
nipkow@26271
   418
by blast
berghofe@12905
   419
paulson@13830
   420
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
nipkow@26271
   421
by blast
berghofe@12905
   422
wenzelm@12913
   423
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
nipkow@26271
   424
by blast
berghofe@12905
   425
paulson@13830
   426
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
nipkow@26271
   427
by blast
nipkow@26271
   428
nipkow@26271
   429
lemma Domain_converse[simp]: "Domain(r^-1) = Range r"
nipkow@26271
   430
by(auto simp:Range_def)
berghofe@12905
   431
wenzelm@12913
   432
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
nipkow@26271
   433
by blast
berghofe@12905
   434
krauss@36729
   435
lemma fst_eq_Domain: "fst ` R = Domain R"
huffman@44921
   436
  by force
paulson@22172
   437
haftmann@29609
   438
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
haftmann@29609
   439
by auto
haftmann@29609
   440
haftmann@29609
   441
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
haftmann@29609
   442
by auto
haftmann@29609
   443
berghofe@12905
   444
berghofe@12905
   445
subsection {* Range *}
berghofe@12905
   446
berghofe@12905
   447
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
nipkow@26271
   448
by (simp add: Domain_def Range_def)
berghofe@12905
   449
berghofe@12905
   450
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
nipkow@26271
   451
by (unfold Range_def) (iprover intro!: converseI DomainI)
berghofe@12905
   452
berghofe@12905
   453
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
nipkow@26271
   454
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
berghofe@12905
   455
haftmann@46127
   456
lemma Range_snd [code]:
haftmann@45012
   457
  "Range r = snd ` r"
haftmann@45012
   458
  by (auto simp add: image_def Bex_def)
haftmann@45012
   459
berghofe@12905
   460
lemma Range_empty [simp]: "Range {} = {}"
nipkow@26271
   461
by blast
berghofe@12905
   462
paulson@32876
   463
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
paulson@32876
   464
  by auto
paulson@32876
   465
berghofe@12905
   466
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
nipkow@26271
   467
by blast
berghofe@12905
   468
berghofe@12905
   469
lemma Range_Id [simp]: "Range Id = UNIV"
nipkow@26271
   470
by blast
berghofe@12905
   471
nipkow@30198
   472
lemma Range_Id_on [simp]: "Range (Id_on A) = A"
nipkow@26271
   473
by auto
berghofe@12905
   474
paulson@13830
   475
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
nipkow@26271
   476
by blast
berghofe@12905
   477
paulson@13830
   478
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
nipkow@26271
   479
by blast
berghofe@12905
   480
wenzelm@12913
   481
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
nipkow@26271
   482
by blast
berghofe@12905
   483
paulson@13830
   484
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
nipkow@26271
   485
by blast
nipkow@26271
   486
nipkow@26271
   487
lemma Range_converse[simp]: "Range(r^-1) = Domain r"
nipkow@26271
   488
by blast
berghofe@12905
   489
krauss@36729
   490
lemma snd_eq_Range: "snd ` R = Range R"
huffman@44921
   491
  by force
nipkow@26271
   492
nipkow@26271
   493
nipkow@26271
   494
subsection {* Field *}
nipkow@26271
   495
nipkow@26271
   496
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"
nipkow@26271
   497
by(auto simp:Field_def Domain_def Range_def)
nipkow@26271
   498
nipkow@26271
   499
lemma Field_empty[simp]: "Field {} = {}"
nipkow@26271
   500
by(auto simp:Field_def)
nipkow@26271
   501
nipkow@26271
   502
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r"
nipkow@26271
   503
by(auto simp:Field_def)
nipkow@26271
   504
nipkow@26271
   505
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s"
nipkow@26271
   506
by(auto simp:Field_def)
nipkow@26271
   507
nipkow@26271
   508
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)"
nipkow@26271
   509
by(auto simp:Field_def)
nipkow@26271
   510
nipkow@26271
   511
lemma Field_converse[simp]: "Field(r^-1) = Field r"
nipkow@26271
   512
by(auto simp:Field_def)
paulson@22172
   513
berghofe@12905
   514
berghofe@12905
   515
subsection {* Image of a set under a relation *}
berghofe@12905
   516
blanchet@35828
   517
declare Image_def [no_atp]
paulson@24286
   518
wenzelm@12913
   519
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
nipkow@26271
   520
by (simp add: Image_def)
berghofe@12905
   521
wenzelm@12913
   522
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
nipkow@26271
   523
by (simp add: Image_def)
berghofe@12905
   524
wenzelm@12913
   525
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
nipkow@26271
   526
by (rule Image_iff [THEN trans]) simp
berghofe@12905
   527
blanchet@35828
   528
lemma ImageI [intro,no_atp]: "(a, b) : r ==> a : A ==> b : r``A"
nipkow@26271
   529
by (unfold Image_def) blast
berghofe@12905
   530
berghofe@12905
   531
lemma ImageE [elim!]:
wenzelm@12913
   532
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
nipkow@26271
   533
by (unfold Image_def) (iprover elim!: CollectE bexE)
berghofe@12905
   534
berghofe@12905
   535
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
berghofe@12905
   536
  -- {* This version's more effective when we already have the required @{text a} *}
nipkow@26271
   537
by blast
berghofe@12905
   538
berghofe@12905
   539
lemma Image_empty [simp]: "R``{} = {}"
nipkow@26271
   540
by blast
berghofe@12905
   541
berghofe@12905
   542
lemma Image_Id [simp]: "Id `` A = A"
nipkow@26271
   543
by blast
berghofe@12905
   544
nipkow@30198
   545
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B"
nipkow@26271
   546
by blast
paulson@13830
   547
paulson@13830
   548
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
nipkow@26271
   549
by blast
berghofe@12905
   550
paulson@13830
   551
lemma Image_Int_eq:
paulson@13830
   552
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
nipkow@26271
   553
by (simp add: single_valued_def, blast) 
berghofe@12905
   554
paulson@13830
   555
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
nipkow@26271
   556
by blast
berghofe@12905
   557
paulson@13812
   558
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
nipkow@26271
   559
by blast
paulson@13812
   560
wenzelm@12913
   561
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
nipkow@26271
   562
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
berghofe@12905
   563
paulson@13830
   564
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
berghofe@12905
   565
  -- {* NOT suitable for rewriting *}
nipkow@26271
   566
by blast
berghofe@12905
   567
wenzelm@12913
   568
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
nipkow@26271
   569
by blast
berghofe@12905
   570
paulson@13830
   571
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
nipkow@26271
   572
by blast
paulson@13830
   573
paulson@13830
   574
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
nipkow@26271
   575
by blast
berghofe@12905
   576
paulson@13830
   577
text{*Converse inclusion requires some assumptions*}
paulson@13830
   578
lemma Image_INT_eq:
paulson@13830
   579
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
paulson@13830
   580
apply (rule equalityI)
paulson@13830
   581
 apply (rule Image_INT_subset) 
paulson@13830
   582
apply  (simp add: single_valued_def, blast)
paulson@13830
   583
done
berghofe@12905
   584
wenzelm@12913
   585
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
nipkow@26271
   586
by blast
berghofe@12905
   587
berghofe@12905
   588
wenzelm@12913
   589
subsection {* Single valued relations *}
wenzelm@12913
   590
wenzelm@12913
   591
lemma single_valuedI:
berghofe@12905
   592
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
nipkow@26271
   593
by (unfold single_valued_def)
berghofe@12905
   594
berghofe@12905
   595
lemma single_valuedD:
berghofe@12905
   596
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
nipkow@26271
   597
by (simp add: single_valued_def)
berghofe@12905
   598
huffman@19228
   599
lemma single_valued_rel_comp:
huffman@19228
   600
  "single_valued r ==> single_valued s ==> single_valued (r O s)"
nipkow@26271
   601
by (unfold single_valued_def) blast
huffman@19228
   602
huffman@19228
   603
lemma single_valued_subset:
huffman@19228
   604
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
nipkow@26271
   605
by (unfold single_valued_def) blast
huffman@19228
   606
huffman@19228
   607
lemma single_valued_Id [simp]: "single_valued Id"
nipkow@26271
   608
by (unfold single_valued_def) blast
huffman@19228
   609
nipkow@30198
   610
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)"
nipkow@26271
   611
by (unfold single_valued_def) blast
huffman@19228
   612
berghofe@12905
   613
berghofe@12905
   614
subsection {* Graphs given by @{text Collect} *}
berghofe@12905
   615
berghofe@12905
   616
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
nipkow@26271
   617
by auto
berghofe@12905
   618
berghofe@12905
   619
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
nipkow@26271
   620
by auto
berghofe@12905
   621
berghofe@12905
   622
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
nipkow@26271
   623
by auto
berghofe@12905
   624
berghofe@12905
   625
wenzelm@12913
   626
subsection {* Inverse image *}
berghofe@12905
   627
huffman@19228
   628
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
nipkow@26271
   629
by (unfold sym_def inv_image_def) blast
huffman@19228
   630
wenzelm@12913
   631
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
berghofe@12905
   632
  apply (unfold trans_def inv_image_def)
berghofe@12905
   633
  apply (simp (no_asm))
berghofe@12905
   634
  apply blast
berghofe@12905
   635
  done
berghofe@12905
   636
krauss@32463
   637
lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"
krauss@32463
   638
  by (auto simp:inv_image_def)
krauss@32463
   639
krauss@33218
   640
lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f"
krauss@33218
   641
unfolding inv_image_def converse_def by auto
krauss@33218
   642
haftmann@23709
   643
haftmann@29609
   644
subsection {* Finiteness *}
haftmann@29609
   645
haftmann@29609
   646
lemma finite_converse [iff]: "finite (r^-1) = finite r"
haftmann@29609
   647
  apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")
haftmann@29609
   648
   apply simp
haftmann@29609
   649
   apply (rule iffI)
haftmann@29609
   650
    apply (erule finite_imageD [unfolded inj_on_def])
haftmann@29609
   651
    apply (simp split add: split_split)
haftmann@29609
   652
   apply (erule finite_imageI)
haftmann@29609
   653
  apply (simp add: converse_def image_def, auto)
haftmann@29609
   654
  apply (rule bexI)
haftmann@29609
   655
   prefer 2 apply assumption
haftmann@29609
   656
  apply simp
haftmann@29609
   657
  done
haftmann@29609
   658
paulson@32876
   659
lemma finite_Domain: "finite r ==> finite (Domain r)"
paulson@32876
   660
  by (induct set: finite) (auto simp add: Domain_insert)
paulson@32876
   661
paulson@32876
   662
lemma finite_Range: "finite r ==> finite (Range r)"
paulson@32876
   663
  by (induct set: finite) (auto simp add: Range_insert)
haftmann@29609
   664
haftmann@29609
   665
lemma finite_Field: "finite r ==> finite (Field r)"
haftmann@29609
   666
  -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
haftmann@29609
   667
  apply (induct set: finite)
haftmann@29609
   668
   apply (auto simp add: Field_def Domain_insert Range_insert)
haftmann@29609
   669
  done
haftmann@29609
   670
haftmann@29609
   671
krauss@36728
   672
subsection {* Miscellaneous *}
krauss@36728
   673
krauss@36728
   674
text {* Version of @{thm[source] lfp_induct} for binary relations *}
haftmann@23709
   675
haftmann@23709
   676
lemmas lfp_induct2 = 
haftmann@23709
   677
  lfp_induct_set [of "(a, b)", split_format (complete)]
haftmann@23709
   678
krauss@36728
   679
text {* Version of @{thm[source] subsetI} for binary relations *}
krauss@36728
   680
krauss@36728
   681
lemma subrelI: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s"
krauss@36728
   682
by auto
krauss@36728
   683
nipkow@1128
   684
end