src/ZF/Ordinal.thy
author wenzelm
Thu Sep 02 00:48:07 2010 +0200 (2010-09-02)
changeset 38980 af73cf0dc31f
parent 35762 af3ff2ba4c54
child 46820 c656222c4dc1
permissions -rw-r--r--
turned show_question_marks into proper configuration option;
show_question_marks only affects regular type/term pretty printing, not raw Term.string_of_vname;
tuned;
clasohm@1478
     1
(*  Title:      ZF/Ordinal.thy
clasohm@1478
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@435
     3
    Copyright   1994  University of Cambridge
lcp@435
     4
*)
lcp@435
     5
paulson@13356
     6
header{*Transitive Sets and Ordinals*}
paulson@13356
     7
haftmann@16417
     8
theory Ordinal imports WF Bool equalities begin
paulson@13155
     9
wenzelm@24893
    10
definition
wenzelm@24893
    11
  Memrel        :: "i=>i"  where
paulson@13155
    12
    "Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
paulson@13155
    13
wenzelm@24893
    14
definition
wenzelm@24893
    15
  Transset  :: "i=>o"  where
paulson@13155
    16
    "Transset(i) == ALL x:i. x<=i"
paulson@13155
    17
wenzelm@24893
    18
definition
wenzelm@24893
    19
  Ord  :: "i=>o"  where
paulson@13155
    20
    "Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
paulson@13155
    21
wenzelm@24893
    22
definition
wenzelm@24893
    23
  lt        :: "[i,i] => o"  (infixl "<" 50)   (*less-than on ordinals*)  where
paulson@13155
    24
    "i<j         == i:j & Ord(j)"
paulson@13155
    25
wenzelm@24893
    26
definition
wenzelm@24893
    27
  Limit         :: "i=>o"  where
paulson@13155
    28
    "Limit(i)    == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"
wenzelm@2539
    29
wenzelm@22808
    30
abbreviation
wenzelm@22808
    31
  le  (infixl "le" 50) where
wenzelm@22808
    32
  "x le y == x < succ(y)"
lcp@435
    33
wenzelm@22808
    34
notation (xsymbols)
wenzelm@22808
    35
  le  (infixl "\<le>" 50)
lcp@435
    36
wenzelm@22808
    37
notation (HTML output)
wenzelm@22808
    38
  le  (infixl "\<le>" 50)
paulson@13155
    39
paulson@13155
    40
paulson@13356
    41
subsection{*Rules for Transset*}
paulson@13155
    42
paulson@13356
    43
subsubsection{*Three Neat Characterisations of Transset*}
paulson@13155
    44
paulson@13155
    45
lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)"
paulson@13155
    46
by (unfold Transset_def, blast)
paulson@13155
    47
paulson@13155
    48
lemma Transset_iff_Union_succ: "Transset(A) <-> Union(succ(A)) = A"
paulson@13155
    49
apply (unfold Transset_def)
paulson@13155
    50
apply (blast elim!: equalityE)
paulson@13155
    51
done
paulson@13155
    52
paulson@13155
    53
lemma Transset_iff_Union_subset: "Transset(A) <-> Union(A) <= A"
paulson@13155
    54
by (unfold Transset_def, blast)
paulson@13155
    55
paulson@13356
    56
subsubsection{*Consequences of Downwards Closure*}
paulson@13155
    57
paulson@13155
    58
lemma Transset_doubleton_D: 
paulson@13155
    59
    "[| Transset(C); {a,b}: C |] ==> a:C & b: C"
paulson@13155
    60
by (unfold Transset_def, blast)
paulson@13155
    61
paulson@13155
    62
lemma Transset_Pair_D:
paulson@13155
    63
    "[| Transset(C); <a,b>: C |] ==> a:C & b: C"
paulson@13155
    64
apply (simp add: Pair_def)
paulson@13155
    65
apply (blast dest: Transset_doubleton_D)
paulson@13155
    66
done
paulson@13155
    67
paulson@13155
    68
lemma Transset_includes_domain:
paulson@13155
    69
    "[| Transset(C); A*B <= C; b: B |] ==> A <= C"
paulson@13155
    70
by (blast dest: Transset_Pair_D)
paulson@13155
    71
paulson@13155
    72
lemma Transset_includes_range:
paulson@13155
    73
    "[| Transset(C); A*B <= C; a: A |] ==> B <= C"
paulson@13155
    74
by (blast dest: Transset_Pair_D)
paulson@13155
    75
paulson@13356
    76
subsubsection{*Closure Properties*}
paulson@13155
    77
paulson@13155
    78
lemma Transset_0: "Transset(0)"
paulson@13155
    79
by (unfold Transset_def, blast)
paulson@13155
    80
paulson@13155
    81
lemma Transset_Un: 
paulson@13155
    82
    "[| Transset(i);  Transset(j) |] ==> Transset(i Un j)"
paulson@13155
    83
by (unfold Transset_def, blast)
paulson@13155
    84
paulson@13155
    85
lemma Transset_Int: 
paulson@13155
    86
    "[| Transset(i);  Transset(j) |] ==> Transset(i Int j)"
paulson@13155
    87
by (unfold Transset_def, blast)
paulson@13155
    88
paulson@13155
    89
lemma Transset_succ: "Transset(i) ==> Transset(succ(i))"
paulson@13155
    90
by (unfold Transset_def, blast)
paulson@13155
    91
paulson@13155
    92
lemma Transset_Pow: "Transset(i) ==> Transset(Pow(i))"
paulson@13155
    93
by (unfold Transset_def, blast)
paulson@13155
    94
paulson@13155
    95
lemma Transset_Union: "Transset(A) ==> Transset(Union(A))"
paulson@13155
    96
by (unfold Transset_def, blast)
paulson@13155
    97
paulson@13155
    98
lemma Transset_Union_family: 
paulson@13155
    99
    "[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))"
paulson@13155
   100
by (unfold Transset_def, blast)
paulson@13155
   101
paulson@13155
   102
lemma Transset_Inter_family: 
paulson@13203
   103
    "[| !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))"
paulson@13203
   104
by (unfold Inter_def Transset_def, blast)
paulson@13203
   105
paulson@13203
   106
lemma Transset_UN:
paulson@13615
   107
     "(!!x. x \<in> A ==> Transset(B(x))) ==> Transset (\<Union>x\<in>A. B(x))"
paulson@13203
   108
by (rule Transset_Union_family, auto) 
paulson@13203
   109
paulson@13203
   110
lemma Transset_INT:
paulson@13615
   111
     "(!!x. x \<in> A ==> Transset(B(x))) ==> Transset (\<Inter>x\<in>A. B(x))"
paulson@13203
   112
by (rule Transset_Inter_family, auto) 
paulson@13203
   113
paulson@13155
   114
paulson@13356
   115
subsection{*Lemmas for Ordinals*}
paulson@13155
   116
paulson@13155
   117
lemma OrdI:
paulson@13155
   118
    "[| Transset(i);  !!x. x:i ==> Transset(x) |]  ==>  Ord(i)"
paulson@13155
   119
by (simp add: Ord_def) 
paulson@13155
   120
paulson@13155
   121
lemma Ord_is_Transset: "Ord(i) ==> Transset(i)"
paulson@13155
   122
by (simp add: Ord_def) 
paulson@13155
   123
paulson@13155
   124
lemma Ord_contains_Transset: 
paulson@13155
   125
    "[| Ord(i);  j:i |] ==> Transset(j) "
paulson@13155
   126
by (unfold Ord_def, blast)
paulson@13155
   127
paulson@13155
   128
paulson@13155
   129
lemma Ord_in_Ord: "[| Ord(i);  j:i |] ==> Ord(j)"
paulson@13155
   130
by (unfold Ord_def Transset_def, blast)
paulson@13155
   131
paulson@13243
   132
(*suitable for rewriting PROVIDED i has been fixed*)
paulson@13243
   133
lemma Ord_in_Ord': "[| j:i; Ord(i) |] ==> Ord(j)"
paulson@13243
   134
by (blast intro: Ord_in_Ord)
paulson@13243
   135
paulson@13155
   136
(* Ord(succ(j)) ==> Ord(j) *)
paulson@13155
   137
lemmas Ord_succD = Ord_in_Ord [OF _ succI1]
paulson@13155
   138
paulson@13155
   139
lemma Ord_subset_Ord: "[| Ord(i);  Transset(j);  j<=i |] ==> Ord(j)"
paulson@13155
   140
by (simp add: Ord_def Transset_def, blast)
paulson@13155
   141
paulson@13155
   142
lemma OrdmemD: "[| j:i;  Ord(i) |] ==> j<=i"
paulson@13155
   143
by (unfold Ord_def Transset_def, blast)
paulson@13155
   144
paulson@13155
   145
lemma Ord_trans: "[| i:j;  j:k;  Ord(k) |] ==> i:k"
paulson@13155
   146
by (blast dest: OrdmemD)
paulson@13155
   147
paulson@13155
   148
lemma Ord_succ_subsetI: "[| i:j;  Ord(j) |] ==> succ(i) <= j"
paulson@13155
   149
by (blast dest: OrdmemD)
paulson@13155
   150
paulson@13155
   151
paulson@13356
   152
subsection{*The Construction of Ordinals: 0, succ, Union*}
paulson@13155
   153
paulson@13155
   154
lemma Ord_0 [iff,TC]: "Ord(0)"
paulson@13155
   155
by (blast intro: OrdI Transset_0)
paulson@13155
   156
paulson@13155
   157
lemma Ord_succ [TC]: "Ord(i) ==> Ord(succ(i))"
paulson@13155
   158
by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset)
paulson@13155
   159
paulson@13155
   160
lemmas Ord_1 = Ord_0 [THEN Ord_succ]
paulson@13155
   161
paulson@13155
   162
lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)"
paulson@13155
   163
by (blast intro: Ord_succ dest!: Ord_succD)
paulson@13155
   164
paulson@13172
   165
lemma Ord_Un [intro,simp,TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Un j)"
paulson@13155
   166
apply (unfold Ord_def)
paulson@13155
   167
apply (blast intro!: Transset_Un)
paulson@13155
   168
done
paulson@13155
   169
paulson@13155
   170
lemma Ord_Int [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Int j)"
paulson@13155
   171
apply (unfold Ord_def)
paulson@13155
   172
apply (blast intro!: Transset_Int)
paulson@13155
   173
done
paulson@13155
   174
paulson@13155
   175
(*There is no set of all ordinals, for then it would contain itself*)
paulson@13155
   176
lemma ON_class: "~ (ALL i. i:X <-> Ord(i))"
paulson@13155
   177
apply (rule notI)
paulson@13784
   178
apply (frule_tac x = X in spec)
paulson@13155
   179
apply (safe elim!: mem_irrefl)
paulson@13155
   180
apply (erule swap, rule OrdI [OF _ Ord_is_Transset])
paulson@13155
   181
apply (simp add: Transset_def)
paulson@13155
   182
apply (blast intro: Ord_in_Ord)+
paulson@13155
   183
done
paulson@13155
   184
paulson@13356
   185
subsection{*< is 'less Than' for Ordinals*}
paulson@13155
   186
paulson@13155
   187
lemma ltI: "[| i:j;  Ord(j) |] ==> i<j"
paulson@13155
   188
by (unfold lt_def, blast)
paulson@13155
   189
paulson@13155
   190
lemma ltE:
paulson@13155
   191
    "[| i<j;  [| i:j;  Ord(i);  Ord(j) |] ==> P |] ==> P"
paulson@13155
   192
apply (unfold lt_def)
paulson@13155
   193
apply (blast intro: Ord_in_Ord)
paulson@13155
   194
done
paulson@13155
   195
paulson@13155
   196
lemma ltD: "i<j ==> i:j"
paulson@13155
   197
by (erule ltE, assumption)
paulson@13155
   198
paulson@13155
   199
lemma not_lt0 [simp]: "~ i<0"
paulson@13155
   200
by (unfold lt_def, blast)
paulson@13155
   201
paulson@13155
   202
lemma lt_Ord: "j<i ==> Ord(j)"
paulson@13155
   203
by (erule ltE, assumption)
paulson@13155
   204
paulson@13155
   205
lemma lt_Ord2: "j<i ==> Ord(i)"
paulson@13155
   206
by (erule ltE, assumption)
paulson@13155
   207
paulson@13155
   208
(* "ja le j ==> Ord(j)" *)
paulson@13155
   209
lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD]
paulson@13155
   210
paulson@13155
   211
(* i<0 ==> R *)
paulson@13155
   212
lemmas lt0E = not_lt0 [THEN notE, elim!]
paulson@13155
   213
paulson@13155
   214
lemma lt_trans: "[| i<j;  j<k |] ==> i<k"
paulson@13155
   215
by (blast intro!: ltI elim!: ltE intro: Ord_trans)
paulson@13155
   216
paulson@13155
   217
lemma lt_not_sym: "i<j ==> ~ (j<i)"
paulson@13155
   218
apply (unfold lt_def)
paulson@13155
   219
apply (blast elim: mem_asym)
paulson@13155
   220
done
paulson@13155
   221
paulson@13155
   222
(* [| i<j;  ~P ==> j<i |] ==> P *)
paulson@13155
   223
lemmas lt_asym = lt_not_sym [THEN swap]
paulson@13155
   224
paulson@13155
   225
lemma lt_irrefl [elim!]: "i<i ==> P"
paulson@13155
   226
by (blast intro: lt_asym)
paulson@13155
   227
paulson@13155
   228
lemma lt_not_refl: "~ i<i"
paulson@13155
   229
apply (rule notI)
paulson@13155
   230
apply (erule lt_irrefl)
paulson@13155
   231
done
paulson@13155
   232
paulson@13155
   233
paulson@13155
   234
(** le is less than or equals;  recall  i le j  abbrevs  i<succ(j) !! **)
paulson@13155
   235
paulson@13155
   236
lemma le_iff: "i le j <-> i<j | (i=j & Ord(j))"
paulson@13155
   237
by (unfold lt_def, blast)
paulson@13155
   238
paulson@13155
   239
(*Equivalently, i<j ==> i < succ(j)*)
paulson@13155
   240
lemma leI: "i<j ==> i le j"
paulson@13155
   241
by (simp (no_asm_simp) add: le_iff)
paulson@13155
   242
paulson@13155
   243
lemma le_eqI: "[| i=j;  Ord(j) |] ==> i le j"
paulson@13155
   244
by (simp (no_asm_simp) add: le_iff)
paulson@13155
   245
paulson@13155
   246
lemmas le_refl = refl [THEN le_eqI]
paulson@13155
   247
paulson@13155
   248
lemma le_refl_iff [iff]: "i le i <-> Ord(i)"
paulson@13155
   249
by (simp (no_asm_simp) add: lt_not_refl le_iff)
paulson@13155
   250
paulson@13155
   251
lemma leCI: "(~ (i=j & Ord(j)) ==> i<j) ==> i le j"
paulson@13155
   252
by (simp add: le_iff, blast)
paulson@13155
   253
paulson@13155
   254
lemma leE:
paulson@13155
   255
    "[| i le j;  i<j ==> P;  [| i=j;  Ord(j) |] ==> P |] ==> P"
paulson@13155
   256
by (simp add: le_iff, blast)
paulson@13155
   257
paulson@13155
   258
lemma le_anti_sym: "[| i le j;  j le i |] ==> i=j"
paulson@13155
   259
apply (simp add: le_iff)
paulson@13155
   260
apply (blast elim: lt_asym)
paulson@13155
   261
done
paulson@13155
   262
paulson@13155
   263
lemma le0_iff [simp]: "i le 0 <-> i=0"
paulson@13155
   264
by (blast elim!: leE)
paulson@13155
   265
paulson@13155
   266
lemmas le0D = le0_iff [THEN iffD1, dest!]
paulson@13155
   267
paulson@13356
   268
subsection{*Natural Deduction Rules for Memrel*}
paulson@13155
   269
paulson@13155
   270
(*The lemmas MemrelI/E give better speed than [iff] here*)
paulson@13155
   271
lemma Memrel_iff [simp]: "<a,b> : Memrel(A) <-> a:b & a:A & b:A"
paulson@13155
   272
by (unfold Memrel_def, blast)
paulson@13155
   273
paulson@13155
   274
lemma MemrelI [intro!]: "[| a: b;  a: A;  b: A |] ==> <a,b> : Memrel(A)"
paulson@13155
   275
by auto
paulson@13155
   276
paulson@13155
   277
lemma MemrelE [elim!]:
paulson@13155
   278
    "[| <a,b> : Memrel(A);   
paulson@13155
   279
        [| a: A;  b: A;  a:b |]  ==> P |]  
paulson@13155
   280
     ==> P"
paulson@13155
   281
by auto
paulson@13155
   282
paulson@13155
   283
lemma Memrel_type: "Memrel(A) <= A*A"
paulson@13155
   284
by (unfold Memrel_def, blast)
paulson@13155
   285
paulson@13155
   286
lemma Memrel_mono: "A<=B ==> Memrel(A) <= Memrel(B)"
paulson@13155
   287
by (unfold Memrel_def, blast)
paulson@13155
   288
paulson@13155
   289
lemma Memrel_0 [simp]: "Memrel(0) = 0"
paulson@13155
   290
by (unfold Memrel_def, blast)
paulson@13155
   291
paulson@13155
   292
lemma Memrel_1 [simp]: "Memrel(1) = 0"
paulson@13155
   293
by (unfold Memrel_def, blast)
paulson@13155
   294
paulson@13269
   295
lemma relation_Memrel: "relation(Memrel(A))"
paulson@14864
   296
by (simp add: relation_def Memrel_def)
paulson@13269
   297
paulson@13155
   298
(*The membership relation (as a set) is well-founded.
paulson@13155
   299
  Proof idea: show A<=B by applying the foundation axiom to A-B *)
paulson@13155
   300
lemma wf_Memrel: "wf(Memrel(A))"
paulson@13155
   301
apply (unfold wf_def)
paulson@13155
   302
apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast) 
paulson@13155
   303
done
paulson@13155
   304
paulson@13396
   305
text{*The premise @{term "Ord(i)"} does not suffice.*}
paulson@13155
   306
lemma trans_Memrel: 
paulson@13155
   307
    "Ord(i) ==> trans(Memrel(i))"
paulson@13155
   308
by (unfold Ord_def Transset_def trans_def, blast)
paulson@13155
   309
paulson@13396
   310
text{*However, the following premise is strong enough.*}
paulson@13396
   311
lemma Transset_trans_Memrel: 
paulson@13396
   312
    "\<forall>j\<in>i. Transset(j) ==> trans(Memrel(i))"
paulson@13396
   313
by (unfold Transset_def trans_def, blast)
paulson@13396
   314
paulson@13155
   315
(*If Transset(A) then Memrel(A) internalizes the membership relation below A*)
paulson@13155
   316
lemma Transset_Memrel_iff: 
paulson@13155
   317
    "Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A"
paulson@13155
   318
by (unfold Transset_def, blast)
paulson@13155
   319
paulson@13155
   320
paulson@13356
   321
subsection{*Transfinite Induction*}
paulson@13155
   322
paulson@13155
   323
(*Epsilon induction over a transitive set*)
paulson@13155
   324
lemma Transset_induct: 
paulson@13155
   325
    "[| i: k;  Transset(k);                           
paulson@13155
   326
        !!x.[| x: k;  ALL y:x. P(y) |] ==> P(x) |]
paulson@13155
   327
     ==>  P(i)"
paulson@13155
   328
apply (simp add: Transset_def) 
paulson@13269
   329
apply (erule wf_Memrel [THEN wf_induct2], blast+)
paulson@13155
   330
done
paulson@13155
   331
paulson@13155
   332
(*Induction over an ordinal*)
wenzelm@13534
   333
lemmas Ord_induct [consumes 2] = Transset_induct [OF _ Ord_is_Transset]
wenzelm@13534
   334
lemmas Ord_induct_rule = Ord_induct [rule_format, consumes 2]
paulson@13155
   335
paulson@13155
   336
(*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
paulson@13155
   337
wenzelm@13534
   338
lemma trans_induct [consumes 1]:
paulson@13155
   339
    "[| Ord(i);  
paulson@13155
   340
        !!x.[| Ord(x);  ALL y:x. P(y) |] ==> P(x) |]
paulson@13155
   341
     ==>  P(i)"
paulson@13155
   342
apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption)
paulson@13155
   343
apply (blast intro: Ord_succ [THEN Ord_in_Ord]) 
paulson@13155
   344
done
paulson@13155
   345
wenzelm@13534
   346
lemmas trans_induct_rule = trans_induct [rule_format, consumes 1]
wenzelm@13534
   347
paulson@13155
   348
paulson@13155
   349
(*** Fundamental properties of the epsilon ordering (< on ordinals) ***)
paulson@13155
   350
paulson@13155
   351
paulson@13356
   352
subsubsection{*Proving That < is a Linear Ordering on the Ordinals*}
paulson@13155
   353
paulson@13155
   354
lemma Ord_linear [rule_format]:
paulson@13155
   355
     "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)"
paulson@13155
   356
apply (erule trans_induct)
paulson@13155
   357
apply (rule impI [THEN allI])
paulson@13155
   358
apply (erule_tac i=j in trans_induct) 
paulson@13155
   359
apply (blast dest: Ord_trans) 
paulson@13155
   360
done
paulson@13155
   361
paulson@13155
   362
(*The trichotomy law for ordinals!*)
paulson@13155
   363
lemma Ord_linear_lt:
paulson@13155
   364
    "[| Ord(i);  Ord(j);  i<j ==> P;  i=j ==> P;  j<i ==> P |] ==> P"
paulson@13155
   365
apply (simp add: lt_def) 
paulson@13155
   366
apply (rule_tac i1=i and j1=j in Ord_linear [THEN disjE], blast+)
paulson@13155
   367
done
paulson@13155
   368
paulson@13155
   369
lemma Ord_linear2:
paulson@13155
   370
    "[| Ord(i);  Ord(j);  i<j ==> P;  j le i ==> P |]  ==> P"
paulson@13784
   371
apply (rule_tac i = i and j = j in Ord_linear_lt)
paulson@13155
   372
apply (blast intro: leI le_eqI sym ) +
paulson@13155
   373
done
paulson@13155
   374
paulson@13155
   375
lemma Ord_linear_le:
paulson@13155
   376
    "[| Ord(i);  Ord(j);  i le j ==> P;  j le i ==> P |]  ==> P"
paulson@13784
   377
apply (rule_tac i = i and j = j in Ord_linear_lt)
paulson@13155
   378
apply (blast intro: leI le_eqI ) +
paulson@13155
   379
done
paulson@13155
   380
paulson@13155
   381
lemma le_imp_not_lt: "j le i ==> ~ i<j"
paulson@13155
   382
by (blast elim!: leE elim: lt_asym)
paulson@13155
   383
paulson@13155
   384
lemma not_lt_imp_le: "[| ~ i<j;  Ord(i);  Ord(j) |] ==> j le i"
paulson@13784
   385
by (rule_tac i = i and j = j in Ord_linear2, auto)
paulson@13155
   386
paulson@13356
   387
subsubsection{*Some Rewrite Rules for <, le*}
paulson@13155
   388
paulson@13155
   389
lemma Ord_mem_iff_lt: "Ord(j) ==> i:j <-> i<j"
paulson@13155
   390
by (unfold lt_def, blast)
paulson@13155
   391
paulson@13155
   392
lemma not_lt_iff_le: "[| Ord(i);  Ord(j) |] ==> ~ i<j <-> j le i"
paulson@13155
   393
by (blast dest: le_imp_not_lt not_lt_imp_le)
wenzelm@2540
   394
paulson@13155
   395
lemma not_le_iff_lt: "[| Ord(i);  Ord(j) |] ==> ~ i le j <-> j<i"
paulson@13155
   396
by (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
paulson@13155
   397
paulson@13155
   398
(*This is identical to 0<succ(i) *)
paulson@13155
   399
lemma Ord_0_le: "Ord(i) ==> 0 le i"
paulson@13155
   400
by (erule not_lt_iff_le [THEN iffD1], auto)
paulson@13155
   401
paulson@13155
   402
lemma Ord_0_lt: "[| Ord(i);  i~=0 |] ==> 0<i"
paulson@13155
   403
apply (erule not_le_iff_lt [THEN iffD1])
paulson@13155
   404
apply (rule Ord_0, blast)
paulson@13155
   405
done
paulson@13155
   406
paulson@13155
   407
lemma Ord_0_lt_iff: "Ord(i) ==> i~=0 <-> 0<i"
paulson@13155
   408
by (blast intro: Ord_0_lt)
paulson@13155
   409
paulson@13155
   410
paulson@13356
   411
subsection{*Results about Less-Than or Equals*}
paulson@13155
   412
paulson@13155
   413
(** For ordinals, j<=i (subset) implies j le i (less-than or equals) **)
paulson@13155
   414
paulson@13155
   415
lemma zero_le_succ_iff [iff]: "0 le succ(x) <-> Ord(x)"
paulson@13155
   416
by (blast intro: Ord_0_le elim: ltE)
paulson@13155
   417
paulson@13155
   418
lemma subset_imp_le: "[| j<=i;  Ord(i);  Ord(j) |] ==> j le i"
paulson@13269
   419
apply (rule not_lt_iff_le [THEN iffD1], assumption+)
paulson@13155
   420
apply (blast elim: ltE mem_irrefl)
paulson@13155
   421
done
paulson@13155
   422
paulson@13155
   423
lemma le_imp_subset: "i le j ==> i<=j"
paulson@13155
   424
by (blast dest: OrdmemD elim: ltE leE)
paulson@13155
   425
paulson@13155
   426
lemma le_subset_iff: "j le i <-> j<=i & Ord(i) & Ord(j)"
paulson@13155
   427
by (blast dest: subset_imp_le le_imp_subset elim: ltE)
paulson@13155
   428
paulson@13155
   429
lemma le_succ_iff: "i le succ(j) <-> i le j | i=succ(j) & Ord(i)"
paulson@13155
   430
apply (simp (no_asm) add: le_iff)
paulson@13155
   431
apply blast
paulson@13155
   432
done
paulson@13155
   433
paulson@13155
   434
(*Just a variant of subset_imp_le*)
paulson@13155
   435
lemma all_lt_imp_le: "[| Ord(i);  Ord(j);  !!x. x<j ==> x<i |] ==> j le i"
paulson@13155
   436
by (blast intro: not_lt_imp_le dest: lt_irrefl)
paulson@13155
   437
paulson@13356
   438
subsubsection{*Transitivity Laws*}
paulson@13155
   439
paulson@13155
   440
lemma lt_trans1: "[| i le j;  j<k |] ==> i<k"
paulson@13155
   441
by (blast elim!: leE intro: lt_trans)
paulson@13155
   442
paulson@13155
   443
lemma lt_trans2: "[| i<j;  j le k |] ==> i<k"
paulson@13155
   444
by (blast elim!: leE intro: lt_trans)
paulson@13155
   445
paulson@13155
   446
lemma le_trans: "[| i le j;  j le k |] ==> i le k"
paulson@13155
   447
by (blast intro: lt_trans1)
paulson@13155
   448
paulson@13155
   449
lemma succ_leI: "i<j ==> succ(i) le j"
paulson@13155
   450
apply (rule not_lt_iff_le [THEN iffD1]) 
paulson@13155
   451
apply (blast elim: ltE leE lt_asym)+
paulson@13155
   452
done
paulson@13155
   453
paulson@13155
   454
(*Identical to  succ(i) < succ(j) ==> i<j  *)
paulson@13155
   455
lemma succ_leE: "succ(i) le j ==> i<j"
paulson@13155
   456
apply (rule not_le_iff_lt [THEN iffD1])
paulson@13155
   457
apply (blast elim: ltE leE lt_asym)+
paulson@13155
   458
done
paulson@13155
   459
paulson@13155
   460
lemma succ_le_iff [iff]: "succ(i) le j <-> i<j"
paulson@13155
   461
by (blast intro: succ_leI succ_leE)
paulson@13155
   462
paulson@13155
   463
lemma succ_le_imp_le: "succ(i) le succ(j) ==> i le j"
paulson@13155
   464
by (blast dest!: succ_leE)
paulson@13155
   465
paulson@13155
   466
lemma lt_subset_trans: "[| i <= j;  j<k;  Ord(i) |] ==> i<k"
paulson@13155
   467
apply (rule subset_imp_le [THEN lt_trans1]) 
paulson@13155
   468
apply (blast intro: elim: ltE) +
paulson@13155
   469
done
paulson@13155
   470
paulson@13172
   471
lemma lt_imp_0_lt: "j<i ==> 0<i"
paulson@13172
   472
by (blast intro: lt_trans1 Ord_0_le [OF lt_Ord]) 
paulson@13172
   473
paulson@13243
   474
lemma succ_lt_iff: "succ(i) < j <-> i<j & succ(i) \<noteq> j"
paulson@13162
   475
apply auto 
paulson@13162
   476
apply (blast intro: lt_trans le_refl dest: lt_Ord) 
paulson@13162
   477
apply (frule lt_Ord) 
paulson@13162
   478
apply (rule not_le_iff_lt [THEN iffD1]) 
paulson@13162
   479
  apply (blast intro: lt_Ord2)
paulson@13162
   480
 apply blast  
paulson@13162
   481
apply (simp add: lt_Ord lt_Ord2 le_iff) 
paulson@13162
   482
apply (blast dest: lt_asym) 
paulson@13162
   483
done
paulson@13162
   484
paulson@13243
   485
lemma Ord_succ_mem_iff: "Ord(j) ==> succ(i) \<in> succ(j) <-> i\<in>j"
paulson@13243
   486
apply (insert succ_le_iff [of i j]) 
paulson@13243
   487
apply (simp add: lt_def) 
paulson@13243
   488
done
paulson@13243
   489
paulson@13356
   490
subsubsection{*Union and Intersection*}
paulson@13155
   491
paulson@13155
   492
lemma Un_upper1_le: "[| Ord(i); Ord(j) |] ==> i le i Un j"
paulson@13155
   493
by (rule Un_upper1 [THEN subset_imp_le], auto)
paulson@13155
   494
paulson@13155
   495
lemma Un_upper2_le: "[| Ord(i); Ord(j) |] ==> j le i Un j"
paulson@13155
   496
by (rule Un_upper2 [THEN subset_imp_le], auto)
paulson@13155
   497
paulson@13155
   498
(*Replacing k by succ(k') yields the similar rule for le!*)
paulson@13155
   499
lemma Un_least_lt: "[| i<k;  j<k |] ==> i Un j < k"
paulson@13784
   500
apply (rule_tac i = i and j = j in Ord_linear_le)
paulson@13155
   501
apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord) 
paulson@13155
   502
done
paulson@13155
   503
paulson@13155
   504
lemma Un_least_lt_iff: "[| Ord(i); Ord(j) |] ==> i Un j < k  <->  i<k & j<k"
paulson@13155
   505
apply (safe intro!: Un_least_lt)
paulson@13155
   506
apply (rule_tac [2] Un_upper2_le [THEN lt_trans1])
paulson@13155
   507
apply (rule Un_upper1_le [THEN lt_trans1], auto) 
paulson@13155
   508
done
paulson@13155
   509
paulson@13155
   510
lemma Un_least_mem_iff:
paulson@13155
   511
    "[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k  <->  i:k & j:k"
paulson@13155
   512
apply (insert Un_least_lt_iff [of i j k]) 
paulson@13155
   513
apply (simp add: lt_def)
paulson@13155
   514
done
paulson@13155
   515
paulson@13155
   516
(*Replacing k by succ(k') yields the similar rule for le!*)
paulson@13155
   517
lemma Int_greatest_lt: "[| i<k;  j<k |] ==> i Int j < k"
paulson@13784
   518
apply (rule_tac i = i and j = j in Ord_linear_le)
paulson@13155
   519
apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord) 
paulson@13155
   520
done
paulson@13155
   521
paulson@13162
   522
lemma Ord_Un_if:
paulson@13162
   523
     "[| Ord(i); Ord(j) |] ==> i \<union> j = (if j<i then i else j)"
paulson@13162
   524
by (simp add: not_lt_iff_le le_imp_subset leI
paulson@13162
   525
              subset_Un_iff [symmetric]  subset_Un_iff2 [symmetric]) 
paulson@13162
   526
paulson@13162
   527
lemma succ_Un_distrib:
paulson@13162
   528
     "[| Ord(i); Ord(j) |] ==> succ(i \<union> j) = succ(i) \<union> succ(j)"
paulson@13162
   529
by (simp add: Ord_Un_if lt_Ord le_Ord2) 
paulson@13162
   530
paulson@13162
   531
lemma lt_Un_iff:
paulson@13162
   532
     "[| Ord(i); Ord(j) |] ==> k < i \<union> j <-> k < i | k < j";
paulson@13162
   533
apply (simp add: Ord_Un_if not_lt_iff_le) 
paulson@13162
   534
apply (blast intro: leI lt_trans2)+ 
paulson@13162
   535
done
paulson@13162
   536
paulson@13162
   537
lemma le_Un_iff:
paulson@13162
   538
     "[| Ord(i); Ord(j) |] ==> k \<le> i \<union> j <-> k \<le> i | k \<le> j";
paulson@13162
   539
by (simp add: succ_Un_distrib lt_Un_iff [symmetric]) 
paulson@13162
   540
paulson@13172
   541
lemma Un_upper1_lt: "[|k < i; Ord(j)|] ==> k < i Un j"
paulson@13172
   542
by (simp add: lt_Un_iff lt_Ord2) 
paulson@13172
   543
paulson@13172
   544
lemma Un_upper2_lt: "[|k < j; Ord(i)|] ==> k < i Un j"
paulson@13172
   545
by (simp add: lt_Un_iff lt_Ord2) 
paulson@13172
   546
paulson@13172
   547
(*See also Transset_iff_Union_succ*)
paulson@13172
   548
lemma Ord_Union_succ_eq: "Ord(i) ==> \<Union>(succ(i)) = i"
paulson@13172
   549
by (blast intro: Ord_trans)
paulson@13172
   550
paulson@13162
   551
paulson@13356
   552
subsection{*Results about Limits*}
paulson@13155
   553
paulson@13172
   554
lemma Ord_Union [intro,simp,TC]: "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))"
paulson@13155
   555
apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI])
paulson@13155
   556
apply (blast intro: Ord_contains_Transset)+
paulson@13155
   557
done
paulson@13155
   558
paulson@13172
   559
lemma Ord_UN [intro,simp,TC]:
paulson@13615
   560
     "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(\<Union>x\<in>A. B(x))"
paulson@13155
   561
by (rule Ord_Union, blast)
paulson@13155
   562
paulson@13203
   563
lemma Ord_Inter [intro,simp,TC]:
paulson@13203
   564
    "[| !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))" 
paulson@13203
   565
apply (rule Transset_Inter_family [THEN OrdI])
paulson@13203
   566
apply (blast intro: Ord_is_Transset) 
paulson@13203
   567
apply (simp add: Inter_def) 
paulson@13203
   568
apply (blast intro: Ord_contains_Transset) 
paulson@13203
   569
done
paulson@13203
   570
paulson@13203
   571
lemma Ord_INT [intro,simp,TC]:
paulson@13615
   572
    "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(\<Inter>x\<in>A. B(x))"
paulson@13203
   573
by (rule Ord_Inter, blast) 
paulson@13203
   574
paulson@13203
   575
paulson@13615
   576
(* No < version; consider (\<Union>i\<in>nat.i)=nat *)
paulson@13155
   577
lemma UN_least_le:
paulson@13615
   578
    "[| Ord(i);  !!x. x:A ==> b(x) le i |] ==> (\<Union>x\<in>A. b(x)) le i"
paulson@13155
   579
apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le])
paulson@13155
   580
apply (blast intro: Ord_UN elim: ltE)+
paulson@13155
   581
done
paulson@13155
   582
paulson@13155
   583
lemma UN_succ_least_lt:
paulson@13615
   584
    "[| j<i;  !!x. x:A ==> b(x)<j |] ==> (\<Union>x\<in>A. succ(b(x))) < i"
paulson@13155
   585
apply (rule ltE, assumption)
paulson@13155
   586
apply (rule UN_least_le [THEN lt_trans2])
paulson@13155
   587
apply (blast intro: succ_leI)+
paulson@13155
   588
done
paulson@13155
   589
paulson@13172
   590
lemma UN_upper_lt:
paulson@13172
   591
     "[| a\<in>A;  i < b(a);  Ord(\<Union>x\<in>A. b(x)) |] ==> i < (\<Union>x\<in>A. b(x))"
paulson@13172
   592
by (unfold lt_def, blast) 
paulson@13172
   593
paulson@13155
   594
lemma UN_upper_le:
paulson@13615
   595
     "[| a: A;  i le b(a);  Ord(\<Union>x\<in>A. b(x)) |] ==> i le (\<Union>x\<in>A. b(x))"
paulson@13155
   596
apply (frule ltD)
paulson@13155
   597
apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le])
paulson@13155
   598
apply (blast intro: lt_Ord UN_upper)+
paulson@13155
   599
done
paulson@13155
   600
paulson@13172
   601
lemma lt_Union_iff: "\<forall>i\<in>A. Ord(i) ==> (j < \<Union>(A)) <-> (\<exists>i\<in>A. j<i)"
paulson@13172
   602
by (auto simp: lt_def Ord_Union)
paulson@13172
   603
paulson@13172
   604
lemma Union_upper_le:
paulson@13172
   605
     "[| j: J;  i\<le>j;  Ord(\<Union>(J)) |] ==> i \<le> \<Union>J"
paulson@13172
   606
apply (subst Union_eq_UN)  
paulson@13172
   607
apply (rule UN_upper_le, auto)
paulson@13172
   608
done
paulson@13172
   609
paulson@13155
   610
lemma le_implies_UN_le_UN:
paulson@13615
   611
    "[| !!x. x:A ==> c(x) le d(x) |] ==> (\<Union>x\<in>A. c(x)) le (\<Union>x\<in>A. d(x))"
paulson@13155
   612
apply (rule UN_least_le)
paulson@13155
   613
apply (rule_tac [2] UN_upper_le)
paulson@13155
   614
apply (blast intro: Ord_UN le_Ord2)+ 
paulson@13155
   615
done
paulson@13155
   616
paulson@13615
   617
lemma Ord_equality: "Ord(i) ==> (\<Union>y\<in>i. succ(y)) = i"
paulson@13155
   618
by (blast intro: Ord_trans)
paulson@13155
   619
paulson@13155
   620
(*Holds for all transitive sets, not just ordinals*)
paulson@13155
   621
lemma Ord_Union_subset: "Ord(i) ==> Union(i) <= i"
paulson@13155
   622
by (blast intro: Ord_trans)
paulson@13155
   623
paulson@13155
   624
paulson@13356
   625
subsection{*Limit Ordinals -- General Properties*}
paulson@13155
   626
paulson@13155
   627
lemma Limit_Union_eq: "Limit(i) ==> Union(i) = i"
paulson@13155
   628
apply (unfold Limit_def)
paulson@13155
   629
apply (fast intro!: ltI elim!: ltE elim: Ord_trans)
paulson@13155
   630
done
paulson@13155
   631
paulson@13155
   632
lemma Limit_is_Ord: "Limit(i) ==> Ord(i)"
paulson@13155
   633
apply (unfold Limit_def)
paulson@13155
   634
apply (erule conjunct1)
paulson@13155
   635
done
paulson@13155
   636
paulson@13155
   637
lemma Limit_has_0: "Limit(i) ==> 0 < i"
paulson@13155
   638
apply (unfold Limit_def)
paulson@13155
   639
apply (erule conjunct2 [THEN conjunct1])
paulson@13155
   640
done
paulson@13155
   641
paulson@13544
   642
lemma Limit_nonzero: "Limit(i) ==> i ~= 0"
paulson@13544
   643
by (drule Limit_has_0, blast)
paulson@13544
   644
paulson@13155
   645
lemma Limit_has_succ: "[| Limit(i);  j<i |] ==> succ(j) < i"
paulson@13155
   646
by (unfold Limit_def, blast)
paulson@13155
   647
paulson@13544
   648
lemma Limit_succ_lt_iff [simp]: "Limit(i) ==> succ(j) < i <-> (j<i)"
paulson@13544
   649
apply (safe intro!: Limit_has_succ)
paulson@13544
   650
apply (frule lt_Ord)
paulson@13544
   651
apply (blast intro: lt_trans)   
paulson@13544
   652
done
paulson@13544
   653
paulson@13172
   654
lemma zero_not_Limit [iff]: "~ Limit(0)"
paulson@13172
   655
by (simp add: Limit_def)
paulson@13172
   656
paulson@13172
   657
lemma Limit_has_1: "Limit(i) ==> 1 < i"
paulson@13172
   658
by (blast intro: Limit_has_0 Limit_has_succ)
paulson@13172
   659
paulson@13172
   660
lemma increasing_LimitI: "[| 0<l; \<forall>x\<in>l. \<exists>y\<in>l. x<y |] ==> Limit(l)"
paulson@13544
   661
apply (unfold Limit_def, simp add: lt_Ord2, clarify)
paulson@13172
   662
apply (drule_tac i=y in ltD) 
paulson@13172
   663
apply (blast intro: lt_trans1 [OF _ ltI] lt_Ord2)
paulson@13172
   664
done
paulson@13172
   665
paulson@13155
   666
lemma non_succ_LimitI: 
paulson@13155
   667
    "[| 0<i;  ALL y. succ(y) ~= i |] ==> Limit(i)"
paulson@13155
   668
apply (unfold Limit_def)
paulson@13155
   669
apply (safe del: subsetI)
paulson@13155
   670
apply (rule_tac [2] not_le_iff_lt [THEN iffD1])
paulson@13155
   671
apply (simp_all add: lt_Ord lt_Ord2) 
paulson@13155
   672
apply (blast elim: leE lt_asym)
paulson@13155
   673
done
paulson@13155
   674
paulson@13155
   675
lemma succ_LimitE [elim!]: "Limit(succ(i)) ==> P"
paulson@13155
   676
apply (rule lt_irrefl)
paulson@13155
   677
apply (rule Limit_has_succ, assumption)
paulson@13155
   678
apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl])
paulson@13155
   679
done
paulson@13155
   680
paulson@13155
   681
lemma not_succ_Limit [simp]: "~ Limit(succ(i))"
paulson@13155
   682
by blast
paulson@13155
   683
paulson@13155
   684
lemma Limit_le_succD: "[| Limit(i);  i le succ(j) |] ==> i le j"
paulson@13155
   685
by (blast elim!: leE)
paulson@13155
   686
paulson@13172
   687
paulson@13356
   688
subsubsection{*Traditional 3-Way Case Analysis on Ordinals*}
paulson@13155
   689
paulson@13155
   690
lemma Ord_cases_disj: "Ord(i) ==> i=0 | (EX j. Ord(j) & i=succ(j)) | Limit(i)"
paulson@13155
   691
by (blast intro!: non_succ_LimitI Ord_0_lt)
paulson@13155
   692
paulson@13155
   693
lemma Ord_cases:
paulson@13155
   694
    "[| Ord(i);                  
paulson@13155
   695
        i=0                          ==> P;      
paulson@13155
   696
        !!j. [| Ord(j); i=succ(j) |] ==> P;      
paulson@13155
   697
        Limit(i)                     ==> P       
paulson@13155
   698
     |] ==> P"
paulson@13155
   699
by (drule Ord_cases_disj, blast)  
paulson@13155
   700
wenzelm@13534
   701
lemma trans_induct3 [case_names 0 succ limit, consumes 1]:
paulson@13155
   702
     "[| Ord(i);                 
paulson@13155
   703
         P(0);                   
paulson@13155
   704
         !!x. [| Ord(x);  P(x) |] ==> P(succ(x));        
paulson@13155
   705
         !!x. [| Limit(x);  ALL y:x. P(y) |] ==> P(x)    
paulson@13155
   706
      |] ==> P(i)"
paulson@13155
   707
apply (erule trans_induct)
paulson@13155
   708
apply (erule Ord_cases, blast+)
paulson@13155
   709
done
paulson@13155
   710
wenzelm@13534
   711
lemmas trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1]
wenzelm@13534
   712
paulson@13172
   713
text{*A set of ordinals is either empty, contains its own union, or its
paulson@13172
   714
union is a limit ordinal.*}
paulson@13172
   715
lemma Ord_set_cases:
paulson@13172
   716
   "\<forall>i\<in>I. Ord(i) ==> I=0 \<or> \<Union>(I) \<in> I \<or> (\<Union>(I) \<notin> I \<and> Limit(\<Union>(I)))"
paulson@13172
   717
apply (clarify elim!: not_emptyE) 
paulson@13172
   718
apply (cases "\<Union>(I)" rule: Ord_cases) 
paulson@13172
   719
   apply (blast intro: Ord_Union)
paulson@13172
   720
  apply (blast intro: subst_elem)
paulson@13172
   721
 apply auto 
paulson@13172
   722
apply (clarify elim!: equalityE succ_subsetE)
paulson@13172
   723
apply (simp add: Union_subset_iff)
paulson@13172
   724
apply (subgoal_tac "B = succ(j)", blast)
paulson@13172
   725
apply (rule le_anti_sym) 
paulson@13172
   726
 apply (simp add: le_subset_iff) 
paulson@13172
   727
apply (simp add: ltI)
paulson@13172
   728
done
paulson@13172
   729
paulson@13172
   730
text{*If the union of a set of ordinals is a successor, then it is
paulson@13172
   731
an element of that set.*}
paulson@13172
   732
lemma Ord_Union_eq_succD: "[|\<forall>x\<in>X. Ord(x);  \<Union>X = succ(j)|] ==> succ(j) \<in> X"
paulson@13172
   733
by (drule Ord_set_cases, auto)
paulson@13172
   734
paulson@13172
   735
lemma Limit_Union [rule_format]: "[| I \<noteq> 0;  \<forall>i\<in>I. Limit(i) |] ==> Limit(\<Union>I)"
paulson@13172
   736
apply (simp add: Limit_def lt_def)
paulson@13172
   737
apply (blast intro!: equalityI)
paulson@13172
   738
done
paulson@13172
   739
lcp@435
   740
end