wenzelm@32960
|
1 |
(* Title: ZF/Univ.thy
|
clasohm@1478
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
3 |
Copyright 1992 University of Cambridge
|
clasohm@0
|
4 |
|
wenzelm@32960
|
5 |
Standard notation for Vset(i) is V(i), but users might want V for a
|
wenzelm@32960
|
6 |
variable.
|
lcp@516
|
7 |
|
lcp@516
|
8 |
NOTE: univ(A) could be a translation; would simplify many proofs!
|
wenzelm@6093
|
9 |
But Ind_Syntax.univ refers to the constant "Univ.univ"
|
clasohm@0
|
10 |
*)
|
clasohm@0
|
11 |
|
paulson@13356
|
12 |
header{*The Cumulative Hierarchy and a Small Universe for Recursive Types*}
|
paulson@13356
|
13 |
|
haftmann@16417
|
14 |
theory Univ imports Epsilon Cardinal begin
|
wenzelm@3923
|
15 |
|
wenzelm@24893
|
16 |
definition
|
wenzelm@24893
|
17 |
Vfrom :: "[i,i]=>i" where
|
paulson@13220
|
18 |
"Vfrom(A,i) == transrec(i, %x f. A Un (\<Union>y\<in>x. Pow(f`y)))"
|
clasohm@0
|
19 |
|
wenzelm@24892
|
20 |
abbreviation
|
wenzelm@24892
|
21 |
Vset :: "i=>i" where
|
wenzelm@24892
|
22 |
"Vset(x) == Vfrom(0,x)"
|
clasohm@0
|
23 |
|
wenzelm@3923
|
24 |
|
wenzelm@24893
|
25 |
definition
|
wenzelm@24893
|
26 |
Vrec :: "[i, [i,i]=>i] =>i" where
|
paulson@13163
|
27 |
"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).
|
wenzelm@32960
|
28 |
H(z, lam w:Vset(x). g`rank(w)`w)) ` a"
|
paulson@13163
|
29 |
|
wenzelm@24893
|
30 |
definition
|
wenzelm@24893
|
31 |
Vrecursor :: "[[i,i]=>i, i] =>i" where
|
paulson@13163
|
32 |
"Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)).
|
wenzelm@32960
|
33 |
H(lam w:Vset(x). g`rank(w)`w, z)) ` a"
|
paulson@13163
|
34 |
|
wenzelm@24893
|
35 |
definition
|
wenzelm@24893
|
36 |
univ :: "i=>i" where
|
paulson@13163
|
37 |
"univ(A) == Vfrom(A,nat)"
|
paulson@13163
|
38 |
|
paulson@13163
|
39 |
|
paulson@13356
|
40 |
subsection{*Immediate Consequences of the Definition of @{term "Vfrom(A,i)"}*}
|
paulson@13356
|
41 |
|
paulson@13163
|
42 |
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
|
paulson@13220
|
43 |
lemma Vfrom: "Vfrom(A,i) = A Un (\<Union>j\<in>i. Pow(Vfrom(A,j)))"
|
paulson@13269
|
44 |
by (subst Vfrom_def [THEN def_transrec], simp)
|
paulson@13163
|
45 |
|
paulson@13163
|
46 |
subsubsection{* Monotonicity *}
|
paulson@13163
|
47 |
|
paulson@13163
|
48 |
lemma Vfrom_mono [rule_format]:
|
paulson@13220
|
49 |
"A<=B ==> \<forall>j. i<=j --> Vfrom(A,i) <= Vfrom(B,j)"
|
paulson@13163
|
50 |
apply (rule_tac a=i in eps_induct)
|
paulson@13163
|
51 |
apply (rule impI [THEN allI])
|
paulson@15481
|
52 |
apply (subst Vfrom [of A])
|
paulson@15481
|
53 |
apply (subst Vfrom [of B])
|
paulson@13163
|
54 |
apply (erule Un_mono)
|
paulson@13163
|
55 |
apply (erule UN_mono, blast)
|
paulson@13163
|
56 |
done
|
paulson@13163
|
57 |
|
paulson@13220
|
58 |
lemma VfromI: "[| a \<in> Vfrom(A,j); j<i |] ==> a \<in> Vfrom(A,i)"
|
paulson@13203
|
59 |
by (blast dest: Vfrom_mono [OF subset_refl le_imp_subset [OF leI]])
|
paulson@13203
|
60 |
|
paulson@13163
|
61 |
|
paulson@13163
|
62 |
subsubsection{* A fundamental equality: Vfrom does not require ordinals! *}
|
paulson@13163
|
63 |
|
paulson@15481
|
64 |
|
paulson@15481
|
65 |
|
paulson@13163
|
66 |
lemma Vfrom_rank_subset1: "Vfrom(A,x) <= Vfrom(A,rank(x))"
|
paulson@15481
|
67 |
proof (induct x rule: eps_induct)
|
paulson@15481
|
68 |
fix x
|
paulson@15481
|
69 |
assume "\<forall>y\<in>x. Vfrom(A,y) \<subseteq> Vfrom(A,rank(y))"
|
paulson@15481
|
70 |
thus "Vfrom(A, x) \<subseteq> Vfrom(A, rank(x))"
|
paulson@15481
|
71 |
by (simp add: Vfrom [of _ x] Vfrom [of _ "rank(x)"],
|
paulson@15481
|
72 |
blast intro!: rank_lt [THEN ltD])
|
paulson@15481
|
73 |
qed
|
paulson@13163
|
74 |
|
paulson@13163
|
75 |
lemma Vfrom_rank_subset2: "Vfrom(A,rank(x)) <= Vfrom(A,x)"
|
paulson@13163
|
76 |
apply (rule_tac a=x in eps_induct)
|
paulson@13163
|
77 |
apply (subst Vfrom)
|
paulson@15481
|
78 |
apply (subst Vfrom, rule subset_refl [THEN Un_mono])
|
paulson@13163
|
79 |
apply (rule UN_least)
|
wenzelm@13288
|
80 |
txt{*expand @{text "rank(x1) = (\<Union>y\<in>x1. succ(rank(y)))"} in assumptions*}
|
paulson@13163
|
81 |
apply (erule rank [THEN equalityD1, THEN subsetD, THEN UN_E])
|
paulson@13163
|
82 |
apply (rule subset_trans)
|
paulson@13163
|
83 |
apply (erule_tac [2] UN_upper)
|
paulson@13163
|
84 |
apply (rule subset_refl [THEN Vfrom_mono, THEN subset_trans, THEN Pow_mono])
|
paulson@13163
|
85 |
apply (erule ltI [THEN le_imp_subset])
|
paulson@13163
|
86 |
apply (rule Ord_rank [THEN Ord_succ])
|
paulson@13163
|
87 |
apply (erule bspec, assumption)
|
paulson@13163
|
88 |
done
|
paulson@13163
|
89 |
|
paulson@13163
|
90 |
lemma Vfrom_rank_eq: "Vfrom(A,rank(x)) = Vfrom(A,x)"
|
paulson@13163
|
91 |
apply (rule equalityI)
|
paulson@13163
|
92 |
apply (rule Vfrom_rank_subset2)
|
paulson@13163
|
93 |
apply (rule Vfrom_rank_subset1)
|
paulson@13163
|
94 |
done
|
paulson@13163
|
95 |
|
paulson@13163
|
96 |
|
paulson@13356
|
97 |
subsection{* Basic Closure Properties *}
|
paulson@13163
|
98 |
|
paulson@13220
|
99 |
lemma zero_in_Vfrom: "y:x ==> 0 \<in> Vfrom(A,x)"
|
paulson@13163
|
100 |
by (subst Vfrom, blast)
|
paulson@13163
|
101 |
|
paulson@13163
|
102 |
lemma i_subset_Vfrom: "i <= Vfrom(A,i)"
|
paulson@13163
|
103 |
apply (rule_tac a=i in eps_induct)
|
paulson@13163
|
104 |
apply (subst Vfrom, blast)
|
paulson@13163
|
105 |
done
|
paulson@13163
|
106 |
|
paulson@13163
|
107 |
lemma A_subset_Vfrom: "A <= Vfrom(A,i)"
|
paulson@13163
|
108 |
apply (subst Vfrom)
|
paulson@13163
|
109 |
apply (rule Un_upper1)
|
paulson@13163
|
110 |
done
|
paulson@13163
|
111 |
|
paulson@13163
|
112 |
lemmas A_into_Vfrom = A_subset_Vfrom [THEN subsetD]
|
paulson@13163
|
113 |
|
paulson@13220
|
114 |
lemma subset_mem_Vfrom: "a <= Vfrom(A,i) ==> a \<in> Vfrom(A,succ(i))"
|
paulson@13163
|
115 |
by (subst Vfrom, blast)
|
paulson@13163
|
116 |
|
paulson@13163
|
117 |
subsubsection{* Finite sets and ordered pairs *}
|
paulson@13163
|
118 |
|
paulson@13220
|
119 |
lemma singleton_in_Vfrom: "a \<in> Vfrom(A,i) ==> {a} \<in> Vfrom(A,succ(i))"
|
paulson@13163
|
120 |
by (rule subset_mem_Vfrom, safe)
|
paulson@13163
|
121 |
|
paulson@13163
|
122 |
lemma doubleton_in_Vfrom:
|
paulson@13220
|
123 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i) |] ==> {a,b} \<in> Vfrom(A,succ(i))"
|
paulson@13163
|
124 |
by (rule subset_mem_Vfrom, safe)
|
paulson@13163
|
125 |
|
paulson@13163
|
126 |
lemma Pair_in_Vfrom:
|
paulson@13220
|
127 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i) |] ==> <a,b> \<in> Vfrom(A,succ(succ(i)))"
|
paulson@13163
|
128 |
apply (unfold Pair_def)
|
paulson@13163
|
129 |
apply (blast intro: doubleton_in_Vfrom)
|
paulson@13163
|
130 |
done
|
paulson@13163
|
131 |
|
paulson@13220
|
132 |
lemma succ_in_Vfrom: "a <= Vfrom(A,i) ==> succ(a) \<in> Vfrom(A,succ(succ(i)))"
|
paulson@13163
|
133 |
apply (intro subset_mem_Vfrom succ_subsetI, assumption)
|
paulson@13163
|
134 |
apply (erule subset_trans)
|
paulson@13163
|
135 |
apply (rule Vfrom_mono [OF subset_refl subset_succI])
|
paulson@13163
|
136 |
done
|
paulson@13163
|
137 |
|
paulson@13356
|
138 |
subsection{* 0, Successor and Limit Equations for @{term Vfrom} *}
|
paulson@13163
|
139 |
|
paulson@13163
|
140 |
lemma Vfrom_0: "Vfrom(A,0) = A"
|
paulson@13163
|
141 |
by (subst Vfrom, blast)
|
paulson@13163
|
142 |
|
paulson@13163
|
143 |
lemma Vfrom_succ_lemma: "Ord(i) ==> Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))"
|
paulson@13163
|
144 |
apply (rule Vfrom [THEN trans])
|
paulson@13163
|
145 |
apply (rule equalityI [THEN subst_context,
|
paulson@13163
|
146 |
OF _ succI1 [THEN RepFunI, THEN Union_upper]])
|
paulson@13163
|
147 |
apply (rule UN_least)
|
paulson@13163
|
148 |
apply (rule subset_refl [THEN Vfrom_mono, THEN Pow_mono])
|
paulson@13163
|
149 |
apply (erule ltI [THEN le_imp_subset])
|
paulson@13163
|
150 |
apply (erule Ord_succ)
|
paulson@13163
|
151 |
done
|
paulson@13163
|
152 |
|
paulson@13163
|
153 |
lemma Vfrom_succ: "Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))"
|
paulson@13163
|
154 |
apply (rule_tac x1 = "succ (i)" in Vfrom_rank_eq [THEN subst])
|
paulson@13784
|
155 |
apply (rule_tac x1 = i in Vfrom_rank_eq [THEN subst])
|
paulson@13163
|
156 |
apply (subst rank_succ)
|
paulson@13163
|
157 |
apply (rule Ord_rank [THEN Vfrom_succ_lemma])
|
paulson@13163
|
158 |
done
|
paulson@13163
|
159 |
|
paulson@13163
|
160 |
(*The premise distinguishes this from Vfrom(A,0); allowing X=0 forces
|
paulson@13220
|
161 |
the conclusion to be Vfrom(A,Union(X)) = A Un (\<Union>y\<in>X. Vfrom(A,y)) *)
|
paulson@13220
|
162 |
lemma Vfrom_Union: "y:X ==> Vfrom(A,Union(X)) = (\<Union>y\<in>X. Vfrom(A,y))"
|
paulson@13163
|
163 |
apply (subst Vfrom)
|
paulson@13163
|
164 |
apply (rule equalityI)
|
paulson@13163
|
165 |
txt{*first inclusion*}
|
paulson@13163
|
166 |
apply (rule Un_least)
|
paulson@13163
|
167 |
apply (rule A_subset_Vfrom [THEN subset_trans])
|
paulson@13163
|
168 |
apply (rule UN_upper, assumption)
|
paulson@13163
|
169 |
apply (rule UN_least)
|
paulson@13163
|
170 |
apply (erule UnionE)
|
paulson@13163
|
171 |
apply (rule subset_trans)
|
paulson@13163
|
172 |
apply (erule_tac [2] UN_upper,
|
paulson@13163
|
173 |
subst Vfrom, erule subset_trans [OF UN_upper Un_upper2])
|
paulson@13163
|
174 |
txt{*opposite inclusion*}
|
paulson@13163
|
175 |
apply (rule UN_least)
|
paulson@13163
|
176 |
apply (subst Vfrom, blast)
|
paulson@13163
|
177 |
done
|
paulson@13163
|
178 |
|
paulson@13356
|
179 |
subsection{* @{term Vfrom} applied to Limit Ordinals *}
|
paulson@13163
|
180 |
|
paulson@13163
|
181 |
(*NB. limit ordinals are non-empty:
|
paulson@13220
|
182 |
Vfrom(A,0) = A = A Un (\<Union>y\<in>0. Vfrom(A,y)) *)
|
paulson@13163
|
183 |
lemma Limit_Vfrom_eq:
|
paulson@13220
|
184 |
"Limit(i) ==> Vfrom(A,i) = (\<Union>y\<in>i. Vfrom(A,y))"
|
paulson@13163
|
185 |
apply (rule Limit_has_0 [THEN ltD, THEN Vfrom_Union, THEN subst], assumption)
|
paulson@13163
|
186 |
apply (simp add: Limit_Union_eq)
|
paulson@13163
|
187 |
done
|
paulson@13163
|
188 |
|
paulson@13163
|
189 |
lemma Limit_VfromE:
|
paulson@13220
|
190 |
"[| a \<in> Vfrom(A,i); ~R ==> Limit(i);
|
paulson@13220
|
191 |
!!x. [| x<i; a \<in> Vfrom(A,x) |] ==> R
|
paulson@13163
|
192 |
|] ==> R"
|
paulson@13163
|
193 |
apply (rule classical)
|
paulson@13163
|
194 |
apply (rule Limit_Vfrom_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
|
paulson@13203
|
195 |
prefer 2 apply assumption
|
paulson@13203
|
196 |
apply blast
|
paulson@13203
|
197 |
apply (blast intro: ltI Limit_is_Ord)
|
paulson@13163
|
198 |
done
|
paulson@13163
|
199 |
|
paulson@13163
|
200 |
lemma singleton_in_VLimit:
|
paulson@13220
|
201 |
"[| a \<in> Vfrom(A,i); Limit(i) |] ==> {a} \<in> Vfrom(A,i)"
|
paulson@13163
|
202 |
apply (erule Limit_VfromE, assumption)
|
paulson@13203
|
203 |
apply (erule singleton_in_Vfrom [THEN VfromI])
|
paulson@13163
|
204 |
apply (blast intro: Limit_has_succ)
|
paulson@13163
|
205 |
done
|
paulson@13163
|
206 |
|
paulson@13163
|
207 |
lemmas Vfrom_UnI1 =
|
paulson@13163
|
208 |
Un_upper1 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard]
|
paulson@13163
|
209 |
lemmas Vfrom_UnI2 =
|
paulson@13163
|
210 |
Un_upper2 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard]
|
paulson@13163
|
211 |
|
paulson@13163
|
212 |
text{*Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)*}
|
paulson@13163
|
213 |
lemma doubleton_in_VLimit:
|
paulson@13220
|
214 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i) |] ==> {a,b} \<in> Vfrom(A,i)"
|
paulson@13163
|
215 |
apply (erule Limit_VfromE, assumption)
|
paulson@13163
|
216 |
apply (erule Limit_VfromE, assumption)
|
paulson@13203
|
217 |
apply (blast intro: VfromI [OF doubleton_in_Vfrom]
|
paulson@13163
|
218 |
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)
|
paulson@13163
|
219 |
done
|
paulson@13163
|
220 |
|
paulson@13163
|
221 |
lemma Pair_in_VLimit:
|
paulson@13220
|
222 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i) |] ==> <a,b> \<in> Vfrom(A,i)"
|
paulson@13163
|
223 |
txt{*Infer that a, b occur at ordinals x,xa < i.*}
|
paulson@13163
|
224 |
apply (erule Limit_VfromE, assumption)
|
paulson@13163
|
225 |
apply (erule Limit_VfromE, assumption)
|
paulson@13163
|
226 |
txt{*Infer that succ(succ(x Un xa)) < i *}
|
paulson@13203
|
227 |
apply (blast intro: VfromI [OF Pair_in_Vfrom]
|
paulson@13203
|
228 |
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)
|
paulson@13163
|
229 |
done
|
paulson@13163
|
230 |
|
paulson@13163
|
231 |
lemma product_VLimit: "Limit(i) ==> Vfrom(A,i) * Vfrom(A,i) <= Vfrom(A,i)"
|
paulson@13163
|
232 |
by (blast intro: Pair_in_VLimit)
|
paulson@13163
|
233 |
|
paulson@13163
|
234 |
lemmas Sigma_subset_VLimit =
|
paulson@13163
|
235 |
subset_trans [OF Sigma_mono product_VLimit]
|
paulson@13163
|
236 |
|
paulson@13163
|
237 |
lemmas nat_subset_VLimit =
|
paulson@13163
|
238 |
subset_trans [OF nat_le_Limit [THEN le_imp_subset] i_subset_Vfrom]
|
paulson@13163
|
239 |
|
paulson@13220
|
240 |
lemma nat_into_VLimit: "[| n: nat; Limit(i) |] ==> n \<in> Vfrom(A,i)"
|
paulson@13163
|
241 |
by (blast intro: nat_subset_VLimit [THEN subsetD])
|
paulson@13163
|
242 |
|
paulson@13356
|
243 |
subsubsection{* Closure under Disjoint Union *}
|
paulson@13163
|
244 |
|
paulson@13163
|
245 |
lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard]
|
paulson@13163
|
246 |
|
paulson@13220
|
247 |
lemma one_in_VLimit: "Limit(i) ==> 1 \<in> Vfrom(A,i)"
|
paulson@13163
|
248 |
by (blast intro: nat_into_VLimit)
|
paulson@13163
|
249 |
|
paulson@13163
|
250 |
lemma Inl_in_VLimit:
|
paulson@13220
|
251 |
"[| a \<in> Vfrom(A,i); Limit(i) |] ==> Inl(a) \<in> Vfrom(A,i)"
|
paulson@13163
|
252 |
apply (unfold Inl_def)
|
paulson@13163
|
253 |
apply (blast intro: zero_in_VLimit Pair_in_VLimit)
|
paulson@13163
|
254 |
done
|
paulson@13163
|
255 |
|
paulson@13163
|
256 |
lemma Inr_in_VLimit:
|
paulson@13220
|
257 |
"[| b \<in> Vfrom(A,i); Limit(i) |] ==> Inr(b) \<in> Vfrom(A,i)"
|
paulson@13163
|
258 |
apply (unfold Inr_def)
|
paulson@13163
|
259 |
apply (blast intro: one_in_VLimit Pair_in_VLimit)
|
paulson@13163
|
260 |
done
|
paulson@13163
|
261 |
|
paulson@13163
|
262 |
lemma sum_VLimit: "Limit(i) ==> Vfrom(C,i)+Vfrom(C,i) <= Vfrom(C,i)"
|
paulson@13163
|
263 |
by (blast intro!: Inl_in_VLimit Inr_in_VLimit)
|
paulson@13163
|
264 |
|
paulson@13163
|
265 |
lemmas sum_subset_VLimit = subset_trans [OF sum_mono sum_VLimit]
|
paulson@13163
|
266 |
|
paulson@13163
|
267 |
|
paulson@13163
|
268 |
|
paulson@13356
|
269 |
subsection{* Properties assuming @{term "Transset(A)"} *}
|
paulson@13163
|
270 |
|
paulson@13163
|
271 |
lemma Transset_Vfrom: "Transset(A) ==> Transset(Vfrom(A,i))"
|
paulson@13163
|
272 |
apply (rule_tac a=i in eps_induct)
|
paulson@13163
|
273 |
apply (subst Vfrom)
|
paulson@13163
|
274 |
apply (blast intro!: Transset_Union_family Transset_Un Transset_Pow)
|
paulson@13163
|
275 |
done
|
paulson@13163
|
276 |
|
paulson@13163
|
277 |
lemma Transset_Vfrom_succ:
|
paulson@13163
|
278 |
"Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))"
|
paulson@13163
|
279 |
apply (rule Vfrom_succ [THEN trans])
|
paulson@13163
|
280 |
apply (rule equalityI [OF _ Un_upper2])
|
paulson@13163
|
281 |
apply (rule Un_least [OF _ subset_refl])
|
paulson@13163
|
282 |
apply (rule A_subset_Vfrom [THEN subset_trans])
|
paulson@13163
|
283 |
apply (erule Transset_Vfrom [THEN Transset_iff_Pow [THEN iffD1]])
|
paulson@13163
|
284 |
done
|
paulson@13163
|
285 |
|
paulson@13163
|
286 |
lemma Transset_Pair_subset: "[| <a,b> <= C; Transset(C) |] ==> a: C & b: C"
|
paulson@13163
|
287 |
by (unfold Pair_def Transset_def, blast)
|
paulson@13163
|
288 |
|
paulson@13163
|
289 |
lemma Transset_Pair_subset_VLimit:
|
paulson@13163
|
290 |
"[| <a,b> <= Vfrom(A,i); Transset(A); Limit(i) |]
|
paulson@13220
|
291 |
==> <a,b> \<in> Vfrom(A,i)"
|
paulson@13163
|
292 |
apply (erule Transset_Pair_subset [THEN conjE])
|
paulson@13163
|
293 |
apply (erule Transset_Vfrom)
|
paulson@13163
|
294 |
apply (blast intro: Pair_in_VLimit)
|
paulson@13163
|
295 |
done
|
paulson@13163
|
296 |
|
paulson@13163
|
297 |
lemma Union_in_Vfrom:
|
paulson@13220
|
298 |
"[| X \<in> Vfrom(A,j); Transset(A) |] ==> Union(X) \<in> Vfrom(A, succ(j))"
|
paulson@13163
|
299 |
apply (drule Transset_Vfrom)
|
paulson@13163
|
300 |
apply (rule subset_mem_Vfrom)
|
paulson@13163
|
301 |
apply (unfold Transset_def, blast)
|
paulson@13163
|
302 |
done
|
paulson@13163
|
303 |
|
paulson@13163
|
304 |
lemma Union_in_VLimit:
|
paulson@13220
|
305 |
"[| X \<in> Vfrom(A,i); Limit(i); Transset(A) |] ==> Union(X) \<in> Vfrom(A,i)"
|
paulson@13163
|
306 |
apply (rule Limit_VfromE, assumption+)
|
paulson@13203
|
307 |
apply (blast intro: Limit_has_succ VfromI Union_in_Vfrom)
|
paulson@13163
|
308 |
done
|
paulson@13163
|
309 |
|
paulson@13163
|
310 |
|
paulson@13163
|
311 |
(*** Closure under product/sum applied to elements -- thus Vfrom(A,i)
|
paulson@13163
|
312 |
is a model of simple type theory provided A is a transitive set
|
paulson@13163
|
313 |
and i is a limit ordinal
|
paulson@13163
|
314 |
***)
|
paulson@13163
|
315 |
|
paulson@13163
|
316 |
text{*General theorem for membership in Vfrom(A,i) when i is a limit ordinal*}
|
paulson@13163
|
317 |
lemma in_VLimit:
|
paulson@13220
|
318 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i);
|
paulson@13220
|
319 |
!!x y j. [| j<i; 1:j; x \<in> Vfrom(A,j); y \<in> Vfrom(A,j) |]
|
paulson@13220
|
320 |
==> EX k. h(x,y) \<in> Vfrom(A,k) & k<i |]
|
paulson@13220
|
321 |
==> h(a,b) \<in> Vfrom(A,i)"
|
paulson@13163
|
322 |
txt{*Infer that a, b occur at ordinals x,xa < i.*}
|
paulson@13163
|
323 |
apply (erule Limit_VfromE, assumption)
|
paulson@13163
|
324 |
apply (erule Limit_VfromE, assumption, atomize)
|
paulson@13163
|
325 |
apply (drule_tac x=a in spec)
|
paulson@13163
|
326 |
apply (drule_tac x=b in spec)
|
paulson@13163
|
327 |
apply (drule_tac x="x Un xa Un 2" in spec)
|
paulson@13203
|
328 |
apply (simp add: Un_least_lt_iff lt_Ord Vfrom_UnI1 Vfrom_UnI2)
|
paulson@13203
|
329 |
apply (blast intro: Limit_has_0 Limit_has_succ VfromI)
|
paulson@13163
|
330 |
done
|
paulson@13163
|
331 |
|
paulson@13356
|
332 |
subsubsection{* Products *}
|
paulson@13163
|
333 |
|
paulson@13163
|
334 |
lemma prod_in_Vfrom:
|
paulson@13220
|
335 |
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A) |]
|
paulson@13220
|
336 |
==> a*b \<in> Vfrom(A, succ(succ(succ(j))))"
|
paulson@13163
|
337 |
apply (drule Transset_Vfrom)
|
paulson@13163
|
338 |
apply (rule subset_mem_Vfrom)
|
paulson@13163
|
339 |
apply (unfold Transset_def)
|
paulson@13163
|
340 |
apply (blast intro: Pair_in_Vfrom)
|
paulson@13163
|
341 |
done
|
paulson@13163
|
342 |
|
paulson@13163
|
343 |
lemma prod_in_VLimit:
|
paulson@13220
|
344 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |]
|
paulson@13220
|
345 |
==> a*b \<in> Vfrom(A,i)"
|
paulson@13163
|
346 |
apply (erule in_VLimit, assumption+)
|
paulson@13163
|
347 |
apply (blast intro: prod_in_Vfrom Limit_has_succ)
|
paulson@13163
|
348 |
done
|
paulson@13163
|
349 |
|
paulson@13356
|
350 |
subsubsection{* Disjoint Sums, or Quine Ordered Pairs *}
|
paulson@13163
|
351 |
|
paulson@13163
|
352 |
lemma sum_in_Vfrom:
|
paulson@13220
|
353 |
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A); 1:j |]
|
paulson@13220
|
354 |
==> a+b \<in> Vfrom(A, succ(succ(succ(j))))"
|
paulson@13163
|
355 |
apply (unfold sum_def)
|
paulson@13163
|
356 |
apply (drule Transset_Vfrom)
|
paulson@13163
|
357 |
apply (rule subset_mem_Vfrom)
|
paulson@13163
|
358 |
apply (unfold Transset_def)
|
paulson@13163
|
359 |
apply (blast intro: zero_in_Vfrom Pair_in_Vfrom i_subset_Vfrom [THEN subsetD])
|
paulson@13163
|
360 |
done
|
paulson@13163
|
361 |
|
paulson@13163
|
362 |
lemma sum_in_VLimit:
|
paulson@13220
|
363 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |]
|
paulson@13220
|
364 |
==> a+b \<in> Vfrom(A,i)"
|
paulson@13163
|
365 |
apply (erule in_VLimit, assumption+)
|
paulson@13163
|
366 |
apply (blast intro: sum_in_Vfrom Limit_has_succ)
|
paulson@13163
|
367 |
done
|
paulson@13163
|
368 |
|
paulson@13356
|
369 |
subsubsection{* Function Space! *}
|
paulson@13163
|
370 |
|
paulson@13163
|
371 |
lemma fun_in_Vfrom:
|
paulson@13220
|
372 |
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A) |] ==>
|
paulson@13220
|
373 |
a->b \<in> Vfrom(A, succ(succ(succ(succ(j)))))"
|
paulson@13163
|
374 |
apply (unfold Pi_def)
|
paulson@13163
|
375 |
apply (drule Transset_Vfrom)
|
paulson@13163
|
376 |
apply (rule subset_mem_Vfrom)
|
paulson@13163
|
377 |
apply (rule Collect_subset [THEN subset_trans])
|
paulson@13163
|
378 |
apply (subst Vfrom)
|
paulson@13163
|
379 |
apply (rule subset_trans [THEN subset_trans])
|
paulson@13163
|
380 |
apply (rule_tac [3] Un_upper2)
|
paulson@13163
|
381 |
apply (rule_tac [2] succI1 [THEN UN_upper])
|
paulson@13163
|
382 |
apply (rule Pow_mono)
|
paulson@13163
|
383 |
apply (unfold Transset_def)
|
paulson@13163
|
384 |
apply (blast intro: Pair_in_Vfrom)
|
paulson@13163
|
385 |
done
|
paulson@13163
|
386 |
|
paulson@13163
|
387 |
lemma fun_in_VLimit:
|
paulson@13220
|
388 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |]
|
paulson@13220
|
389 |
==> a->b \<in> Vfrom(A,i)"
|
paulson@13163
|
390 |
apply (erule in_VLimit, assumption+)
|
paulson@13163
|
391 |
apply (blast intro: fun_in_Vfrom Limit_has_succ)
|
paulson@13163
|
392 |
done
|
paulson@13163
|
393 |
|
paulson@13163
|
394 |
lemma Pow_in_Vfrom:
|
paulson@13220
|
395 |
"[| a \<in> Vfrom(A,j); Transset(A) |] ==> Pow(a) \<in> Vfrom(A, succ(succ(j)))"
|
paulson@13163
|
396 |
apply (drule Transset_Vfrom)
|
paulson@13163
|
397 |
apply (rule subset_mem_Vfrom)
|
paulson@13163
|
398 |
apply (unfold Transset_def)
|
paulson@13163
|
399 |
apply (subst Vfrom, blast)
|
paulson@13163
|
400 |
done
|
paulson@13163
|
401 |
|
paulson@13163
|
402 |
lemma Pow_in_VLimit:
|
paulson@13220
|
403 |
"[| a \<in> Vfrom(A,i); Limit(i); Transset(A) |] ==> Pow(a) \<in> Vfrom(A,i)"
|
paulson@13203
|
404 |
by (blast elim: Limit_VfromE intro: Limit_has_succ Pow_in_Vfrom VfromI)
|
paulson@13163
|
405 |
|
paulson@13163
|
406 |
|
paulson@13356
|
407 |
subsection{* The Set @{term "Vset(i)"} *}
|
paulson@13163
|
408 |
|
paulson@13220
|
409 |
lemma Vset: "Vset(i) = (\<Union>j\<in>i. Pow(Vset(j)))"
|
paulson@13163
|
410 |
by (subst Vfrom, blast)
|
paulson@13163
|
411 |
|
paulson@13163
|
412 |
lemmas Vset_succ = Transset_0 [THEN Transset_Vfrom_succ, standard]
|
paulson@13163
|
413 |
lemmas Transset_Vset = Transset_0 [THEN Transset_Vfrom, standard]
|
paulson@13163
|
414 |
|
paulson@13356
|
415 |
subsubsection{* Characterisation of the elements of @{term "Vset(i)"} *}
|
paulson@13163
|
416 |
|
paulson@13220
|
417 |
lemma VsetD [rule_format]: "Ord(i) ==> \<forall>b. b \<in> Vset(i) --> rank(b) < i"
|
paulson@13163
|
418 |
apply (erule trans_induct)
|
paulson@13163
|
419 |
apply (subst Vset, safe)
|
paulson@13163
|
420 |
apply (subst rank)
|
paulson@13163
|
421 |
apply (blast intro: ltI UN_succ_least_lt)
|
paulson@13163
|
422 |
done
|
paulson@13163
|
423 |
|
paulson@13163
|
424 |
lemma VsetI_lemma [rule_format]:
|
paulson@13220
|
425 |
"Ord(i) ==> \<forall>b. rank(b) \<in> i --> b \<in> Vset(i)"
|
paulson@13163
|
426 |
apply (erule trans_induct)
|
paulson@13163
|
427 |
apply (rule allI)
|
paulson@13163
|
428 |
apply (subst Vset)
|
paulson@13163
|
429 |
apply (blast intro!: rank_lt [THEN ltD])
|
paulson@13163
|
430 |
done
|
paulson@13163
|
431 |
|
paulson@13220
|
432 |
lemma VsetI: "rank(x)<i ==> x \<in> Vset(i)"
|
paulson@13163
|
433 |
by (blast intro: VsetI_lemma elim: ltE)
|
paulson@13163
|
434 |
|
paulson@13163
|
435 |
text{*Merely a lemma for the next result*}
|
paulson@13220
|
436 |
lemma Vset_Ord_rank_iff: "Ord(i) ==> b \<in> Vset(i) <-> rank(b) < i"
|
paulson@13163
|
437 |
by (blast intro: VsetD VsetI)
|
paulson@13163
|
438 |
|
paulson@13220
|
439 |
lemma Vset_rank_iff [simp]: "b \<in> Vset(a) <-> rank(b) < rank(a)"
|
paulson@13163
|
440 |
apply (rule Vfrom_rank_eq [THEN subst])
|
paulson@13163
|
441 |
apply (rule Ord_rank [THEN Vset_Ord_rank_iff])
|
paulson@13163
|
442 |
done
|
paulson@13163
|
443 |
|
paulson@13163
|
444 |
text{*This is rank(rank(a)) = rank(a) *}
|
paulson@13163
|
445 |
declare Ord_rank [THEN rank_of_Ord, simp]
|
paulson@13163
|
446 |
|
paulson@13163
|
447 |
lemma rank_Vset: "Ord(i) ==> rank(Vset(i)) = i"
|
paulson@13163
|
448 |
apply (subst rank)
|
paulson@13163
|
449 |
apply (rule equalityI, safe)
|
paulson@13163
|
450 |
apply (blast intro: VsetD [THEN ltD])
|
paulson@13163
|
451 |
apply (blast intro: VsetD [THEN ltD] Ord_trans)
|
paulson@13163
|
452 |
apply (blast intro: i_subset_Vfrom [THEN subsetD]
|
paulson@13163
|
453 |
Ord_in_Ord [THEN rank_of_Ord, THEN ssubst])
|
paulson@13163
|
454 |
done
|
paulson@13163
|
455 |
|
paulson@13269
|
456 |
lemma Finite_Vset: "i \<in> nat ==> Finite(Vset(i))";
|
paulson@13269
|
457 |
apply (erule nat_induct)
|
paulson@13269
|
458 |
apply (simp add: Vfrom_0)
|
paulson@13269
|
459 |
apply (simp add: Vset_succ)
|
paulson@13269
|
460 |
done
|
paulson@13269
|
461 |
|
paulson@13356
|
462 |
subsubsection{* Reasoning about Sets in Terms of Their Elements' Ranks *}
|
clasohm@0
|
463 |
|
paulson@13163
|
464 |
lemma arg_subset_Vset_rank: "a <= Vset(rank(a))"
|
paulson@13163
|
465 |
apply (rule subsetI)
|
paulson@13163
|
466 |
apply (erule rank_lt [THEN VsetI])
|
paulson@13163
|
467 |
done
|
paulson@13163
|
468 |
|
paulson@13163
|
469 |
lemma Int_Vset_subset:
|
paulson@13163
|
470 |
"[| !!i. Ord(i) ==> a Int Vset(i) <= b |] ==> a <= b"
|
paulson@13163
|
471 |
apply (rule subset_trans)
|
paulson@13163
|
472 |
apply (rule Int_greatest [OF subset_refl arg_subset_Vset_rank])
|
paulson@13163
|
473 |
apply (blast intro: Ord_rank)
|
paulson@13163
|
474 |
done
|
paulson@13163
|
475 |
|
paulson@13356
|
476 |
subsubsection{* Set Up an Environment for Simplification *}
|
paulson@13163
|
477 |
|
paulson@13163
|
478 |
lemma rank_Inl: "rank(a) < rank(Inl(a))"
|
paulson@13163
|
479 |
apply (unfold Inl_def)
|
paulson@13163
|
480 |
apply (rule rank_pair2)
|
paulson@13163
|
481 |
done
|
paulson@13163
|
482 |
|
paulson@13163
|
483 |
lemma rank_Inr: "rank(a) < rank(Inr(a))"
|
paulson@13163
|
484 |
apply (unfold Inr_def)
|
paulson@13163
|
485 |
apply (rule rank_pair2)
|
paulson@13163
|
486 |
done
|
paulson@13163
|
487 |
|
paulson@13163
|
488 |
lemmas rank_rls = rank_Inl rank_Inr rank_pair1 rank_pair2
|
paulson@13163
|
489 |
|
paulson@13356
|
490 |
subsubsection{* Recursion over Vset Levels! *}
|
paulson@13163
|
491 |
|
paulson@13163
|
492 |
text{*NOT SUITABLE FOR REWRITING: recursive!*}
|
paulson@13163
|
493 |
lemma Vrec: "Vrec(a,H) = H(a, lam x:Vset(rank(a)). Vrec(x,H))"
|
paulson@13163
|
494 |
apply (unfold Vrec_def)
|
paulson@13269
|
495 |
apply (subst transrec, simp)
|
paulson@13175
|
496 |
apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def)
|
paulson@13163
|
497 |
done
|
paulson@13163
|
498 |
|
paulson@13163
|
499 |
text{*This form avoids giant explosions in proofs. NOTE USE OF == *}
|
paulson@13163
|
500 |
lemma def_Vrec:
|
paulson@13163
|
501 |
"[| !!x. h(x)==Vrec(x,H) |] ==>
|
paulson@13163
|
502 |
h(a) = H(a, lam x: Vset(rank(a)). h(x))"
|
paulson@13163
|
503 |
apply simp
|
paulson@13163
|
504 |
apply (rule Vrec)
|
paulson@13163
|
505 |
done
|
paulson@13163
|
506 |
|
paulson@13163
|
507 |
text{*NOT SUITABLE FOR REWRITING: recursive!*}
|
paulson@13163
|
508 |
lemma Vrecursor:
|
paulson@13163
|
509 |
"Vrecursor(H,a) = H(lam x:Vset(rank(a)). Vrecursor(H,x), a)"
|
paulson@13163
|
510 |
apply (unfold Vrecursor_def)
|
paulson@13163
|
511 |
apply (subst transrec, simp)
|
paulson@13175
|
512 |
apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def)
|
paulson@13163
|
513 |
done
|
paulson@13163
|
514 |
|
paulson@13163
|
515 |
text{*This form avoids giant explosions in proofs. NOTE USE OF == *}
|
paulson@13163
|
516 |
lemma def_Vrecursor:
|
paulson@13163
|
517 |
"h == Vrecursor(H) ==> h(a) = H(lam x: Vset(rank(a)). h(x), a)"
|
paulson@13163
|
518 |
apply simp
|
paulson@13163
|
519 |
apply (rule Vrecursor)
|
paulson@13163
|
520 |
done
|
paulson@13163
|
521 |
|
paulson@13163
|
522 |
|
paulson@13356
|
523 |
subsection{* The Datatype Universe: @{term "univ(A)"} *}
|
paulson@13163
|
524 |
|
paulson@13163
|
525 |
lemma univ_mono: "A<=B ==> univ(A) <= univ(B)"
|
paulson@13163
|
526 |
apply (unfold univ_def)
|
paulson@13163
|
527 |
apply (erule Vfrom_mono)
|
paulson@13163
|
528 |
apply (rule subset_refl)
|
paulson@13163
|
529 |
done
|
paulson@13163
|
530 |
|
paulson@13163
|
531 |
lemma Transset_univ: "Transset(A) ==> Transset(univ(A))"
|
paulson@13163
|
532 |
apply (unfold univ_def)
|
paulson@13163
|
533 |
apply (erule Transset_Vfrom)
|
paulson@13163
|
534 |
done
|
paulson@13163
|
535 |
|
paulson@13356
|
536 |
subsubsection{* The Set @{term"univ(A)"} as a Limit *}
|
paulson@13163
|
537 |
|
paulson@13220
|
538 |
lemma univ_eq_UN: "univ(A) = (\<Union>i\<in>nat. Vfrom(A,i))"
|
paulson@13163
|
539 |
apply (unfold univ_def)
|
paulson@13163
|
540 |
apply (rule Limit_nat [THEN Limit_Vfrom_eq])
|
paulson@13163
|
541 |
done
|
paulson@13163
|
542 |
|
paulson@13220
|
543 |
lemma subset_univ_eq_Int: "c <= univ(A) ==> c = (\<Union>i\<in>nat. c Int Vfrom(A,i))"
|
paulson@13163
|
544 |
apply (rule subset_UN_iff_eq [THEN iffD1])
|
paulson@13163
|
545 |
apply (erule univ_eq_UN [THEN subst])
|
paulson@13163
|
546 |
done
|
paulson@13163
|
547 |
|
paulson@13163
|
548 |
lemma univ_Int_Vfrom_subset:
|
paulson@13163
|
549 |
"[| a <= univ(X);
|
paulson@13163
|
550 |
!!i. i:nat ==> a Int Vfrom(X,i) <= b |]
|
paulson@13163
|
551 |
==> a <= b"
|
paulson@13163
|
552 |
apply (subst subset_univ_eq_Int, assumption)
|
paulson@13163
|
553 |
apply (rule UN_least, simp)
|
paulson@13163
|
554 |
done
|
paulson@13163
|
555 |
|
paulson@13163
|
556 |
lemma univ_Int_Vfrom_eq:
|
paulson@13163
|
557 |
"[| a <= univ(X); b <= univ(X);
|
paulson@13163
|
558 |
!!i. i:nat ==> a Int Vfrom(X,i) = b Int Vfrom(X,i)
|
paulson@13163
|
559 |
|] ==> a = b"
|
paulson@13163
|
560 |
apply (rule equalityI)
|
paulson@13163
|
561 |
apply (rule univ_Int_Vfrom_subset, assumption)
|
paulson@13163
|
562 |
apply (blast elim: equalityCE)
|
paulson@13163
|
563 |
apply (rule univ_Int_Vfrom_subset, assumption)
|
paulson@13163
|
564 |
apply (blast elim: equalityCE)
|
paulson@13163
|
565 |
done
|
paulson@13163
|
566 |
|
paulson@13356
|
567 |
subsection{* Closure Properties for @{term "univ(A)"}*}
|
paulson@13163
|
568 |
|
paulson@13220
|
569 |
lemma zero_in_univ: "0 \<in> univ(A)"
|
paulson@13163
|
570 |
apply (unfold univ_def)
|
paulson@13163
|
571 |
apply (rule nat_0I [THEN zero_in_Vfrom])
|
paulson@13163
|
572 |
done
|
paulson@13163
|
573 |
|
paulson@13255
|
574 |
lemma zero_subset_univ: "{0} <= univ(A)"
|
paulson@13255
|
575 |
by (blast intro: zero_in_univ)
|
paulson@13255
|
576 |
|
paulson@13163
|
577 |
lemma A_subset_univ: "A <= univ(A)"
|
paulson@13163
|
578 |
apply (unfold univ_def)
|
paulson@13163
|
579 |
apply (rule A_subset_Vfrom)
|
paulson@13163
|
580 |
done
|
paulson@13163
|
581 |
|
paulson@13163
|
582 |
lemmas A_into_univ = A_subset_univ [THEN subsetD, standard]
|
paulson@13163
|
583 |
|
paulson@13356
|
584 |
subsubsection{* Closure under Unordered and Ordered Pairs *}
|
paulson@13163
|
585 |
|
paulson@13220
|
586 |
lemma singleton_in_univ: "a: univ(A) ==> {a} \<in> univ(A)"
|
paulson@13163
|
587 |
apply (unfold univ_def)
|
paulson@13163
|
588 |
apply (blast intro: singleton_in_VLimit Limit_nat)
|
paulson@13163
|
589 |
done
|
paulson@13163
|
590 |
|
paulson@13163
|
591 |
lemma doubleton_in_univ:
|
paulson@13220
|
592 |
"[| a: univ(A); b: univ(A) |] ==> {a,b} \<in> univ(A)"
|
paulson@13163
|
593 |
apply (unfold univ_def)
|
paulson@13163
|
594 |
apply (blast intro: doubleton_in_VLimit Limit_nat)
|
paulson@13163
|
595 |
done
|
paulson@13163
|
596 |
|
paulson@13163
|
597 |
lemma Pair_in_univ:
|
paulson@13220
|
598 |
"[| a: univ(A); b: univ(A) |] ==> <a,b> \<in> univ(A)"
|
paulson@13163
|
599 |
apply (unfold univ_def)
|
paulson@13163
|
600 |
apply (blast intro: Pair_in_VLimit Limit_nat)
|
paulson@13163
|
601 |
done
|
paulson@13163
|
602 |
|
paulson@13163
|
603 |
lemma Union_in_univ:
|
paulson@13220
|
604 |
"[| X: univ(A); Transset(A) |] ==> Union(X) \<in> univ(A)"
|
paulson@13163
|
605 |
apply (unfold univ_def)
|
paulson@13163
|
606 |
apply (blast intro: Union_in_VLimit Limit_nat)
|
paulson@13163
|
607 |
done
|
paulson@13163
|
608 |
|
paulson@13163
|
609 |
lemma product_univ: "univ(A)*univ(A) <= univ(A)"
|
paulson@13163
|
610 |
apply (unfold univ_def)
|
paulson@13163
|
611 |
apply (rule Limit_nat [THEN product_VLimit])
|
paulson@13163
|
612 |
done
|
paulson@13163
|
613 |
|
paulson@13163
|
614 |
|
paulson@13356
|
615 |
subsubsection{* The Natural Numbers *}
|
paulson@13163
|
616 |
|
paulson@13163
|
617 |
lemma nat_subset_univ: "nat <= univ(A)"
|
paulson@13163
|
618 |
apply (unfold univ_def)
|
paulson@13163
|
619 |
apply (rule i_subset_Vfrom)
|
paulson@13163
|
620 |
done
|
paulson@13163
|
621 |
|
paulson@13163
|
622 |
text{* n:nat ==> n:univ(A) *}
|
paulson@13163
|
623 |
lemmas nat_into_univ = nat_subset_univ [THEN subsetD, standard]
|
paulson@13163
|
624 |
|
paulson@13356
|
625 |
subsubsection{* Instances for 1 and 2 *}
|
paulson@13163
|
626 |
|
paulson@13220
|
627 |
lemma one_in_univ: "1 \<in> univ(A)"
|
paulson@13163
|
628 |
apply (unfold univ_def)
|
paulson@13163
|
629 |
apply (rule Limit_nat [THEN one_in_VLimit])
|
paulson@13163
|
630 |
done
|
paulson@13163
|
631 |
|
paulson@13163
|
632 |
text{*unused!*}
|
paulson@13220
|
633 |
lemma two_in_univ: "2 \<in> univ(A)"
|
paulson@13163
|
634 |
by (blast intro: nat_into_univ)
|
paulson@13163
|
635 |
|
paulson@13163
|
636 |
lemma bool_subset_univ: "bool <= univ(A)"
|
paulson@13163
|
637 |
apply (unfold bool_def)
|
paulson@13163
|
638 |
apply (blast intro!: zero_in_univ one_in_univ)
|
paulson@13163
|
639 |
done
|
paulson@13163
|
640 |
|
paulson@13163
|
641 |
lemmas bool_into_univ = bool_subset_univ [THEN subsetD, standard]
|
paulson@13163
|
642 |
|
paulson@13163
|
643 |
|
paulson@13356
|
644 |
subsubsection{* Closure under Disjoint Union *}
|
paulson@13163
|
645 |
|
paulson@13220
|
646 |
lemma Inl_in_univ: "a: univ(A) ==> Inl(a) \<in> univ(A)"
|
paulson@13163
|
647 |
apply (unfold univ_def)
|
paulson@13163
|
648 |
apply (erule Inl_in_VLimit [OF _ Limit_nat])
|
paulson@13163
|
649 |
done
|
paulson@13163
|
650 |
|
paulson@13220
|
651 |
lemma Inr_in_univ: "b: univ(A) ==> Inr(b) \<in> univ(A)"
|
paulson@13163
|
652 |
apply (unfold univ_def)
|
paulson@13163
|
653 |
apply (erule Inr_in_VLimit [OF _ Limit_nat])
|
paulson@13163
|
654 |
done
|
paulson@13163
|
655 |
|
paulson@13163
|
656 |
lemma sum_univ: "univ(C)+univ(C) <= univ(C)"
|
paulson@13163
|
657 |
apply (unfold univ_def)
|
paulson@13163
|
658 |
apply (rule Limit_nat [THEN sum_VLimit])
|
paulson@13163
|
659 |
done
|
paulson@13163
|
660 |
|
paulson@13163
|
661 |
lemmas sum_subset_univ = subset_trans [OF sum_mono sum_univ]
|
paulson@13163
|
662 |
|
paulson@13255
|
663 |
lemma Sigma_subset_univ:
|
paulson@13255
|
664 |
"[|A \<subseteq> univ(D); \<And>x. x \<in> A \<Longrightarrow> B(x) \<subseteq> univ(D)|] ==> Sigma(A,B) \<subseteq> univ(D)"
|
paulson@13255
|
665 |
apply (simp add: univ_def)
|
paulson@13255
|
666 |
apply (blast intro: Sigma_subset_VLimit del: subsetI)
|
paulson@13255
|
667 |
done
|
paulson@13163
|
668 |
|
paulson@13255
|
669 |
|
paulson@13255
|
670 |
(*Closure under binary union -- use Un_least
|
paulson@13255
|
671 |
Closure under Collect -- use Collect_subset [THEN subset_trans]
|
paulson@13255
|
672 |
Closure under RepFun -- use RepFun_subset *)
|
paulson@13163
|
673 |
|
paulson@13163
|
674 |
|
paulson@13163
|
675 |
subsection{* Finite Branching Closure Properties *}
|
paulson@13163
|
676 |
|
paulson@13356
|
677 |
subsubsection{* Closure under Finite Powerset *}
|
paulson@13163
|
678 |
|
paulson@13163
|
679 |
lemma Fin_Vfrom_lemma:
|
paulson@13163
|
680 |
"[| b: Fin(Vfrom(A,i)); Limit(i) |] ==> EX j. b <= Vfrom(A,j) & j<i"
|
paulson@13163
|
681 |
apply (erule Fin_induct)
|
paulson@13163
|
682 |
apply (blast dest!: Limit_has_0, safe)
|
paulson@13163
|
683 |
apply (erule Limit_VfromE, assumption)
|
paulson@13163
|
684 |
apply (blast intro!: Un_least_lt intro: Vfrom_UnI1 Vfrom_UnI2)
|
paulson@13163
|
685 |
done
|
clasohm@0
|
686 |
|
paulson@13163
|
687 |
lemma Fin_VLimit: "Limit(i) ==> Fin(Vfrom(A,i)) <= Vfrom(A,i)"
|
paulson@13163
|
688 |
apply (rule subsetI)
|
paulson@13163
|
689 |
apply (drule Fin_Vfrom_lemma, safe)
|
paulson@13163
|
690 |
apply (rule Vfrom [THEN ssubst])
|
paulson@13163
|
691 |
apply (blast dest!: ltD)
|
paulson@13163
|
692 |
done
|
paulson@13163
|
693 |
|
paulson@13163
|
694 |
lemmas Fin_subset_VLimit = subset_trans [OF Fin_mono Fin_VLimit]
|
paulson@13163
|
695 |
|
paulson@13163
|
696 |
lemma Fin_univ: "Fin(univ(A)) <= univ(A)"
|
paulson@13163
|
697 |
apply (unfold univ_def)
|
paulson@13163
|
698 |
apply (rule Limit_nat [THEN Fin_VLimit])
|
paulson@13163
|
699 |
done
|
paulson@13163
|
700 |
|
paulson@13356
|
701 |
subsubsection{* Closure under Finite Powers: Functions from a Natural Number *}
|
paulson@13163
|
702 |
|
paulson@13163
|
703 |
lemma nat_fun_VLimit:
|
paulson@13163
|
704 |
"[| n: nat; Limit(i) |] ==> n -> Vfrom(A,i) <= Vfrom(A,i)"
|
paulson@13163
|
705 |
apply (erule nat_fun_subset_Fin [THEN subset_trans])
|
paulson@13163
|
706 |
apply (blast del: subsetI
|
paulson@13163
|
707 |
intro: subset_refl Fin_subset_VLimit Sigma_subset_VLimit nat_subset_VLimit)
|
paulson@13163
|
708 |
done
|
paulson@13163
|
709 |
|
paulson@13163
|
710 |
lemmas nat_fun_subset_VLimit = subset_trans [OF Pi_mono nat_fun_VLimit]
|
paulson@13163
|
711 |
|
paulson@13163
|
712 |
lemma nat_fun_univ: "n: nat ==> n -> univ(A) <= univ(A)"
|
paulson@13163
|
713 |
apply (unfold univ_def)
|
paulson@13163
|
714 |
apply (erule nat_fun_VLimit [OF _ Limit_nat])
|
paulson@13163
|
715 |
done
|
paulson@13163
|
716 |
|
paulson@13163
|
717 |
|
paulson@13356
|
718 |
subsubsection{* Closure under Finite Function Space *}
|
paulson@13163
|
719 |
|
paulson@13163
|
720 |
text{*General but seldom-used version; normally the domain is fixed*}
|
paulson@13163
|
721 |
lemma FiniteFun_VLimit1:
|
paulson@13163
|
722 |
"Limit(i) ==> Vfrom(A,i) -||> Vfrom(A,i) <= Vfrom(A,i)"
|
paulson@13163
|
723 |
apply (rule FiniteFun.dom_subset [THEN subset_trans])
|
paulson@13163
|
724 |
apply (blast del: subsetI
|
paulson@13163
|
725 |
intro: Fin_subset_VLimit Sigma_subset_VLimit subset_refl)
|
paulson@13163
|
726 |
done
|
paulson@13163
|
727 |
|
paulson@13163
|
728 |
lemma FiniteFun_univ1: "univ(A) -||> univ(A) <= univ(A)"
|
paulson@13163
|
729 |
apply (unfold univ_def)
|
paulson@13163
|
730 |
apply (rule Limit_nat [THEN FiniteFun_VLimit1])
|
paulson@13163
|
731 |
done
|
paulson@13163
|
732 |
|
paulson@13163
|
733 |
text{*Version for a fixed domain*}
|
paulson@13163
|
734 |
lemma FiniteFun_VLimit:
|
paulson@13163
|
735 |
"[| W <= Vfrom(A,i); Limit(i) |] ==> W -||> Vfrom(A,i) <= Vfrom(A,i)"
|
paulson@13163
|
736 |
apply (rule subset_trans)
|
paulson@13163
|
737 |
apply (erule FiniteFun_mono [OF _ subset_refl])
|
paulson@13163
|
738 |
apply (erule FiniteFun_VLimit1)
|
paulson@13163
|
739 |
done
|
paulson@13163
|
740 |
|
paulson@13163
|
741 |
lemma FiniteFun_univ:
|
paulson@13163
|
742 |
"W <= univ(A) ==> W -||> univ(A) <= univ(A)"
|
paulson@13163
|
743 |
apply (unfold univ_def)
|
paulson@13163
|
744 |
apply (erule FiniteFun_VLimit [OF _ Limit_nat])
|
paulson@13163
|
745 |
done
|
paulson@13163
|
746 |
|
paulson@13163
|
747 |
lemma FiniteFun_in_univ:
|
paulson@13220
|
748 |
"[| f: W -||> univ(A); W <= univ(A) |] ==> f \<in> univ(A)"
|
paulson@13163
|
749 |
by (erule FiniteFun_univ [THEN subsetD], assumption)
|
paulson@13163
|
750 |
|
paulson@13163
|
751 |
text{*Remove <= from the rule above*}
|
paulson@13163
|
752 |
lemmas FiniteFun_in_univ' = FiniteFun_in_univ [OF _ subsetI]
|
paulson@13163
|
753 |
|
paulson@13163
|
754 |
|
paulson@13163
|
755 |
subsection{** For QUniv. Properties of Vfrom analogous to the "take-lemma" **}
|
paulson@13163
|
756 |
|
paulson@13356
|
757 |
text{* Intersecting a*b with Vfrom... *}
|
paulson@13163
|
758 |
|
paulson@13163
|
759 |
text{*This version says a, b exist one level down, in the smaller set Vfrom(X,i)*}
|
paulson@13163
|
760 |
lemma doubleton_in_Vfrom_D:
|
paulson@13220
|
761 |
"[| {a,b} \<in> Vfrom(X,succ(i)); Transset(X) |]
|
paulson@13220
|
762 |
==> a \<in> Vfrom(X,i) & b \<in> Vfrom(X,i)"
|
paulson@13163
|
763 |
by (drule Transset_Vfrom_succ [THEN equalityD1, THEN subsetD, THEN PowD],
|
paulson@13163
|
764 |
assumption, fast)
|
paulson@13163
|
765 |
|
paulson@13163
|
766 |
text{*This weaker version says a, b exist at the same level*}
|
paulson@13163
|
767 |
lemmas Vfrom_doubleton_D = Transset_Vfrom [THEN Transset_doubleton_D, standard]
|
paulson@13163
|
768 |
|
paulson@13220
|
769 |
(** Using only the weaker theorem would prove <a,b> \<in> Vfrom(X,i)
|
paulson@13220
|
770 |
implies a, b \<in> Vfrom(X,i), which is useless for induction.
|
paulson@13220
|
771 |
Using only the stronger theorem would prove <a,b> \<in> Vfrom(X,succ(succ(i)))
|
paulson@13220
|
772 |
implies a, b \<in> Vfrom(X,i), leaving the succ(i) case untreated.
|
paulson@13163
|
773 |
The combination gives a reduction by precisely one level, which is
|
paulson@13163
|
774 |
most convenient for proofs.
|
paulson@13163
|
775 |
**)
|
paulson@13163
|
776 |
|
paulson@13163
|
777 |
lemma Pair_in_Vfrom_D:
|
paulson@13220
|
778 |
"[| <a,b> \<in> Vfrom(X,succ(i)); Transset(X) |]
|
paulson@13220
|
779 |
==> a \<in> Vfrom(X,i) & b \<in> Vfrom(X,i)"
|
paulson@13163
|
780 |
apply (unfold Pair_def)
|
paulson@13163
|
781 |
apply (blast dest!: doubleton_in_Vfrom_D Vfrom_doubleton_D)
|
paulson@13163
|
782 |
done
|
paulson@13163
|
783 |
|
paulson@13163
|
784 |
lemma product_Int_Vfrom_subset:
|
paulson@13163
|
785 |
"Transset(X) ==>
|
paulson@13163
|
786 |
(a*b) Int Vfrom(X, succ(i)) <= (a Int Vfrom(X,i)) * (b Int Vfrom(X,i))"
|
paulson@13163
|
787 |
by (blast dest!: Pair_in_Vfrom_D)
|
paulson@13163
|
788 |
|
paulson@13163
|
789 |
|
paulson@13163
|
790 |
ML
|
paulson@13163
|
791 |
{*
|
wenzelm@24893
|
792 |
val rank_ss = @{simpset} addsimps [@{thm VsetI}]
|
wenzelm@24893
|
793 |
addsimps @{thms rank_rls} @ (@{thms rank_rls} RLN (2, [@{thm lt_trans}]));
|
paulson@13163
|
794 |
*}
|
clasohm@0
|
795 |
|
clasohm@0
|
796 |
end
|