src/ZF/int_arith.ML
author wenzelm
Thu Sep 02 00:48:07 2010 +0200 (2010-09-02)
changeset 38980 af73cf0dc31f
parent 38715 6513ea67d95d
child 40312 dff9f73a3763
permissions -rw-r--r--
turned show_question_marks into proper configuration option;
show_question_marks only affects regular type/term pretty printing, not raw Term.string_of_vname;
tuned;
wenzelm@23146
     1
(*  Title:      ZF/int_arith.ML
wenzelm@23146
     2
    Author:     Larry Paulson
wenzelm@23146
     3
wenzelm@23146
     4
Simprocs for linear arithmetic.
wenzelm@23146
     5
*)
wenzelm@23146
     6
wenzelm@23146
     7
structure Int_Numeral_Simprocs =
wenzelm@23146
     8
struct
wenzelm@23146
     9
wenzelm@35112
    10
(* abstract syntax operations *)
wenzelm@35112
    11
wenzelm@35112
    12
fun mk_bit 0 = @{term "0"}
wenzelm@35112
    13
  | mk_bit 1 = @{term "succ(0)"}
wenzelm@35112
    14
  | mk_bit _ = sys_error "mk_bit";
wenzelm@35112
    15
wenzelm@35112
    16
fun dest_bit @{term "0"} = 0
wenzelm@35112
    17
  | dest_bit @{term "succ(0)"} = 1
wenzelm@35112
    18
  | dest_bit _ = raise Match;
wenzelm@35112
    19
wenzelm@35112
    20
fun mk_bin i =
wenzelm@35112
    21
  let
wenzelm@35112
    22
    fun term_of [] = @{term Pls}
wenzelm@35112
    23
      | term_of [~1] = @{term Min}
wenzelm@35112
    24
      | term_of (b :: bs) = @{term Bit} $ term_of bs $ mk_bit b;
wenzelm@35123
    25
  in term_of (Numeral_Syntax.make_binary i) end;
wenzelm@35112
    26
wenzelm@35112
    27
fun dest_bin tm =
wenzelm@35112
    28
  let
wenzelm@35112
    29
    fun bin_of @{term Pls} = []
wenzelm@35112
    30
      | bin_of @{term Min} = [~1]
wenzelm@35112
    31
      | bin_of (@{term Bit} $ bs $ b) = dest_bit b :: bin_of bs
wenzelm@35112
    32
      | bin_of _ = sys_error "dest_bin";
wenzelm@35123
    33
  in Numeral_Syntax.dest_binary (bin_of tm) end;
wenzelm@35112
    34
wenzelm@35112
    35
wenzelm@23146
    36
(*Utilities*)
wenzelm@23146
    37
wenzelm@35112
    38
fun mk_numeral i = @{const integ_of} $ mk_bin i;
wenzelm@23146
    39
wenzelm@23146
    40
(*Decodes a binary INTEGER*)
wenzelm@27237
    41
fun dest_numeral (Const(@{const_name integ_of}, _) $ w) =
wenzelm@35112
    42
     (dest_bin w handle SYS_ERROR _ => raise TERM("Int_Numeral_Simprocs.dest_numeral:1", [w]))
wenzelm@35112
    43
  | dest_numeral t = raise TERM("Int_Numeral_Simprocs.dest_numeral:2", [t]);
wenzelm@23146
    44
wenzelm@23146
    45
fun find_first_numeral past (t::terms) =
wenzelm@23146
    46
        ((dest_numeral t, rev past @ terms)
wenzelm@23146
    47
         handle TERM _ => find_first_numeral (t::past) terms)
wenzelm@23146
    48
  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
wenzelm@23146
    49
wenzelm@23146
    50
val zero = mk_numeral 0;
wenzelm@26059
    51
val mk_plus = FOLogic.mk_binop @{const_name "zadd"};
wenzelm@23146
    52
wenzelm@23146
    53
(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
wenzelm@23146
    54
fun mk_sum []        = zero
wenzelm@23146
    55
  | mk_sum [t,u]     = mk_plus (t, u)
wenzelm@23146
    56
  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
wenzelm@23146
    57
wenzelm@23146
    58
(*this version ALWAYS includes a trailing zero*)
wenzelm@23146
    59
fun long_mk_sum []        = zero
wenzelm@23146
    60
  | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
wenzelm@23146
    61
wenzelm@26190
    62
val dest_plus = FOLogic.dest_bin @{const_name "zadd"} @{typ i};
wenzelm@23146
    63
wenzelm@23146
    64
(*decompose additions AND subtractions as a sum*)
wenzelm@26059
    65
fun dest_summing (pos, Const (@{const_name "zadd"}, _) $ t $ u, ts) =
wenzelm@23146
    66
        dest_summing (pos, t, dest_summing (pos, u, ts))
wenzelm@26059
    67
  | dest_summing (pos, Const (@{const_name "zdiff"}, _) $ t $ u, ts) =
wenzelm@23146
    68
        dest_summing (pos, t, dest_summing (not pos, u, ts))
wenzelm@23146
    69
  | dest_summing (pos, t, ts) =
wenzelm@27237
    70
        if pos then t::ts else @{const zminus} $ t :: ts;
wenzelm@23146
    71
wenzelm@23146
    72
fun dest_sum t = dest_summing (true, t, []);
wenzelm@23146
    73
wenzelm@26059
    74
val mk_diff = FOLogic.mk_binop @{const_name "zdiff"};
wenzelm@26190
    75
val dest_diff = FOLogic.dest_bin @{const_name "zdiff"} @{typ i};
wenzelm@23146
    76
wenzelm@23146
    77
val one = mk_numeral 1;
wenzelm@26059
    78
val mk_times = FOLogic.mk_binop @{const_name "zmult"};
wenzelm@23146
    79
wenzelm@23146
    80
fun mk_prod [] = one
wenzelm@23146
    81
  | mk_prod [t] = t
wenzelm@23146
    82
  | mk_prod (t :: ts) = if t = one then mk_prod ts
wenzelm@23146
    83
                        else mk_times (t, mk_prod ts);
wenzelm@23146
    84
wenzelm@26190
    85
val dest_times = FOLogic.dest_bin @{const_name "zmult"} @{typ i};
wenzelm@23146
    86
wenzelm@23146
    87
fun dest_prod t =
wenzelm@23146
    88
      let val (t,u) = dest_times t
wenzelm@23146
    89
      in  dest_prod t @ dest_prod u  end
wenzelm@23146
    90
      handle TERM _ => [t];
wenzelm@23146
    91
wenzelm@23146
    92
(*DON'T do the obvious simplifications; that would create special cases*)
wenzelm@23146
    93
fun mk_coeff (k, t) = mk_times (mk_numeral k, t);
wenzelm@23146
    94
wenzelm@23146
    95
(*Express t as a product of (possibly) a numeral with other sorted terms*)
wenzelm@26059
    96
fun dest_coeff sign (Const (@{const_name "zminus"}, _) $ t) = dest_coeff (~sign) t
wenzelm@23146
    97
  | dest_coeff sign t =
wenzelm@35408
    98
    let val ts = sort Term_Ord.term_ord (dest_prod t)
wenzelm@23146
    99
        val (n, ts') = find_first_numeral [] ts
wenzelm@23146
   100
                          handle TERM _ => (1, ts)
wenzelm@23146
   101
    in (sign*n, mk_prod ts') end;
wenzelm@23146
   102
wenzelm@23146
   103
(*Find first coefficient-term THAT MATCHES u*)
wenzelm@23146
   104
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
wenzelm@23146
   105
  | find_first_coeff past u (t::terms) =
wenzelm@23146
   106
        let val (n,u') = dest_coeff 1 t
wenzelm@23146
   107
        in  if u aconv u' then (n, rev past @ terms)
wenzelm@23146
   108
                          else find_first_coeff (t::past) u terms
wenzelm@23146
   109
        end
wenzelm@23146
   110
        handle TERM _ => find_first_coeff (t::past) u terms;
wenzelm@23146
   111
wenzelm@23146
   112
wenzelm@23146
   113
(*Simplify #1*n and n*#1 to n*)
wenzelm@24893
   114
val add_0s = [@{thm zadd_0_intify}, @{thm zadd_0_right_intify}];
wenzelm@23146
   115
wenzelm@24893
   116
val mult_1s = [@{thm zmult_1_intify}, @{thm zmult_1_right_intify},
wenzelm@24893
   117
               @{thm zmult_minus1}, @{thm zmult_minus1_right}];
wenzelm@23146
   118
wenzelm@24893
   119
val tc_rules = [@{thm integ_of_type}, @{thm intify_in_int},
wenzelm@24893
   120
                @{thm int_of_type}, @{thm zadd_type}, @{thm zdiff_type}, @{thm zmult_type}] @ 
wenzelm@24893
   121
               @{thms bin.intros};
wenzelm@24893
   122
val intifys = [@{thm intify_ident}, @{thm zadd_intify1}, @{thm zadd_intify2},
wenzelm@24893
   123
               @{thm zdiff_intify1}, @{thm zdiff_intify2}, @{thm zmult_intify1}, @{thm zmult_intify2},
wenzelm@24893
   124
               @{thm zless_intify1}, @{thm zless_intify2}, @{thm zle_intify1}, @{thm zle_intify2}];
wenzelm@23146
   125
wenzelm@23146
   126
(*To perform binary arithmetic*)
wenzelm@24893
   127
val bin_simps = [@{thm add_integ_of_left}] @ @{thms bin_arith_simps} @ @{thms bin_rel_simps};
wenzelm@23146
   128
wenzelm@23146
   129
(*To evaluate binary negations of coefficients*)
wenzelm@24893
   130
val zminus_simps = @{thms NCons_simps} @
wenzelm@35409
   131
                   [@{thm integ_of_minus} RS @{thm sym},
wenzelm@24893
   132
                    @{thm bin_minus_1}, @{thm bin_minus_0}, @{thm bin_minus_Pls}, @{thm bin_minus_Min},
wenzelm@24893
   133
                    @{thm bin_pred_1}, @{thm bin_pred_0}, @{thm bin_pred_Pls}, @{thm bin_pred_Min}];
wenzelm@23146
   134
wenzelm@23146
   135
(*To let us treat subtraction as addition*)
wenzelm@24893
   136
val diff_simps = [@{thm zdiff_def}, @{thm zminus_zadd_distrib}, @{thm zminus_zminus}];
wenzelm@23146
   137
wenzelm@35020
   138
(*push the unary minus down*)
wenzelm@35020
   139
val int_minus_mult_eq_1_to_2 = @{lemma "$- w $* z = w $* $- z" by simp};
wenzelm@23146
   140
wenzelm@23146
   141
(*to extract again any uncancelled minuses*)
wenzelm@23146
   142
val int_minus_from_mult_simps =
wenzelm@24893
   143
    [@{thm zminus_zminus}, @{thm zmult_zminus}, @{thm zmult_zminus_right}];
wenzelm@23146
   144
wenzelm@23146
   145
(*combine unary minus with numeric literals, however nested within a product*)
wenzelm@23146
   146
val int_mult_minus_simps =
wenzelm@35409
   147
    [@{thm zmult_assoc}, @{thm zmult_zminus} RS @{thm sym}, int_minus_mult_eq_1_to_2];
wenzelm@23146
   148
wenzelm@32155
   149
fun prep_simproc thy (name, pats, proc) =
wenzelm@38715
   150
  Simplifier.simproc_global thy name pats proc;
wenzelm@23146
   151
wenzelm@23146
   152
structure CancelNumeralsCommon =
wenzelm@23146
   153
  struct
wenzelm@23146
   154
  val mk_sum            = (fn T:typ => mk_sum)
wenzelm@23146
   155
  val dest_sum          = dest_sum
wenzelm@23146
   156
  val mk_coeff          = mk_coeff
wenzelm@23146
   157
  val dest_coeff        = dest_coeff 1
wenzelm@23146
   158
  val find_first_coeff  = find_first_coeff []
wenzelm@35409
   159
  fun trans_tac _       = ArithData.gen_trans_tac @{thm iff_trans}
wenzelm@23146
   160
wenzelm@24893
   161
  val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac}
wenzelm@23146
   162
  val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
wenzelm@24893
   163
  val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys
wenzelm@23146
   164
  fun norm_tac ss =
wenzelm@23146
   165
    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
wenzelm@23146
   166
    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
wenzelm@23146
   167
    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
wenzelm@23146
   168
wenzelm@23146
   169
  val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
wenzelm@23146
   170
  fun numeral_simp_tac ss =
wenzelm@23146
   171
    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
wenzelm@32149
   172
    THEN ALLGOALS (asm_simp_tac (simpset_of (Simplifier.the_context ss)))
wenzelm@23146
   173
  val simplify_meta_eq  = ArithData.simplify_meta_eq (add_0s @ mult_1s)
wenzelm@23146
   174
  end;
wenzelm@23146
   175
wenzelm@23146
   176
wenzelm@23146
   177
structure EqCancelNumerals = CancelNumeralsFun
wenzelm@23146
   178
 (open CancelNumeralsCommon
wenzelm@23146
   179
  val prove_conv = ArithData.prove_conv "inteq_cancel_numerals"
wenzelm@23146
   180
  val mk_bal   = FOLogic.mk_eq
wenzelm@23146
   181
  val dest_bal = FOLogic.dest_eq
wenzelm@35409
   182
  val bal_add1 = @{thm eq_add_iff1} RS @{thm iff_trans}
wenzelm@35409
   183
  val bal_add2 = @{thm eq_add_iff2} RS @{thm iff_trans}
wenzelm@23146
   184
);
wenzelm@23146
   185
wenzelm@23146
   186
structure LessCancelNumerals = CancelNumeralsFun
wenzelm@23146
   187
 (open CancelNumeralsCommon
wenzelm@23146
   188
  val prove_conv = ArithData.prove_conv "intless_cancel_numerals"
wenzelm@26059
   189
  val mk_bal   = FOLogic.mk_binrel @{const_name "zless"}
wenzelm@26190
   190
  val dest_bal = FOLogic.dest_bin @{const_name "zless"} @{typ i}
wenzelm@35409
   191
  val bal_add1 = @{thm less_add_iff1} RS @{thm iff_trans}
wenzelm@35409
   192
  val bal_add2 = @{thm less_add_iff2} RS @{thm iff_trans}
wenzelm@23146
   193
);
wenzelm@23146
   194
wenzelm@23146
   195
structure LeCancelNumerals = CancelNumeralsFun
wenzelm@23146
   196
 (open CancelNumeralsCommon
wenzelm@23146
   197
  val prove_conv = ArithData.prove_conv "intle_cancel_numerals"
wenzelm@26059
   198
  val mk_bal   = FOLogic.mk_binrel @{const_name "zle"}
wenzelm@26190
   199
  val dest_bal = FOLogic.dest_bin @{const_name "zle"} @{typ i}
wenzelm@35409
   200
  val bal_add1 = @{thm le_add_iff1} RS @{thm iff_trans}
wenzelm@35409
   201
  val bal_add2 = @{thm le_add_iff2} RS @{thm iff_trans}
wenzelm@23146
   202
);
wenzelm@23146
   203
wenzelm@23146
   204
val cancel_numerals =
wenzelm@32155
   205
  map (prep_simproc @{theory})
wenzelm@23146
   206
   [("inteq_cancel_numerals",
wenzelm@23146
   207
     ["l $+ m = n", "l = m $+ n",
wenzelm@23146
   208
      "l $- m = n", "l = m $- n",
wenzelm@23146
   209
      "l $* m = n", "l = m $* n"],
wenzelm@23146
   210
     K EqCancelNumerals.proc),
wenzelm@23146
   211
    ("intless_cancel_numerals",
wenzelm@23146
   212
     ["l $+ m $< n", "l $< m $+ n",
wenzelm@23146
   213
      "l $- m $< n", "l $< m $- n",
wenzelm@23146
   214
      "l $* m $< n", "l $< m $* n"],
wenzelm@23146
   215
     K LessCancelNumerals.proc),
wenzelm@23146
   216
    ("intle_cancel_numerals",
wenzelm@23146
   217
     ["l $+ m $<= n", "l $<= m $+ n",
wenzelm@23146
   218
      "l $- m $<= n", "l $<= m $- n",
wenzelm@23146
   219
      "l $* m $<= n", "l $<= m $* n"],
wenzelm@23146
   220
     K LeCancelNumerals.proc)];
wenzelm@23146
   221
wenzelm@23146
   222
wenzelm@23146
   223
(*version without the hyps argument*)
wenzelm@23146
   224
fun prove_conv_nohyps name tacs sg = ArithData.prove_conv name tacs sg [];
wenzelm@23146
   225
wenzelm@23146
   226
structure CombineNumeralsData =
wenzelm@23146
   227
  struct
wenzelm@24630
   228
  type coeff            = int
wenzelm@24630
   229
  val iszero            = (fn x => x = 0)
wenzelm@24630
   230
  val add               = op + 
wenzelm@23146
   231
  val mk_sum            = (fn T:typ => long_mk_sum) (*to work for #2*x $+ #3*x *)
wenzelm@23146
   232
  val dest_sum          = dest_sum
wenzelm@23146
   233
  val mk_coeff          = mk_coeff
wenzelm@23146
   234
  val dest_coeff        = dest_coeff 1
wenzelm@35409
   235
  val left_distrib      = @{thm left_zadd_zmult_distrib} RS @{thm trans}
wenzelm@23146
   236
  val prove_conv        = prove_conv_nohyps "int_combine_numerals"
wenzelm@35409
   237
  fun trans_tac _       = ArithData.gen_trans_tac @{thm trans}
wenzelm@23146
   238
wenzelm@24893
   239
  val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} @ intifys
wenzelm@23146
   240
  val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
wenzelm@24893
   241
  val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys
wenzelm@23146
   242
  fun norm_tac ss =
wenzelm@23146
   243
    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
wenzelm@23146
   244
    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
wenzelm@23146
   245
    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
wenzelm@23146
   246
wenzelm@23146
   247
  val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
wenzelm@23146
   248
  fun numeral_simp_tac ss =
wenzelm@23146
   249
    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
wenzelm@23146
   250
  val simplify_meta_eq  = ArithData.simplify_meta_eq (add_0s @ mult_1s)
wenzelm@23146
   251
  end;
wenzelm@23146
   252
wenzelm@23146
   253
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
wenzelm@23146
   254
wenzelm@23146
   255
val combine_numerals =
wenzelm@32155
   256
  prep_simproc @{theory}
wenzelm@32155
   257
    ("int_combine_numerals", ["i $+ j", "i $- j"], K CombineNumerals.proc);
wenzelm@23146
   258
wenzelm@23146
   259
wenzelm@23146
   260
wenzelm@23146
   261
(** Constant folding for integer multiplication **)
wenzelm@23146
   262
wenzelm@23146
   263
(*The trick is to regard products as sums, e.g. #3 $* x $* #4 as
wenzelm@23146
   264
  the "sum" of #3, x, #4; the literals are then multiplied*)
wenzelm@23146
   265
wenzelm@23146
   266
wenzelm@23146
   267
structure CombineNumeralsProdData =
wenzelm@23146
   268
  struct
wenzelm@24630
   269
  type coeff            = int
wenzelm@24630
   270
  val iszero            = (fn x => x = 0)
wenzelm@24630
   271
  val add               = op *
wenzelm@23146
   272
  val mk_sum            = (fn T:typ => mk_prod)
wenzelm@23146
   273
  val dest_sum          = dest_prod
wenzelm@23146
   274
  fun mk_coeff(k,t) = if t=one then mk_numeral k
wenzelm@23146
   275
                      else raise TERM("mk_coeff", [])
wenzelm@23146
   276
  fun dest_coeff t = (dest_numeral t, one)  (*We ONLY want pure numerals.*)
wenzelm@35409
   277
  val left_distrib      = @{thm zmult_assoc} RS @{thm sym} RS @{thm trans}
wenzelm@23146
   278
  val prove_conv        = prove_conv_nohyps "int_combine_numerals_prod"
wenzelm@35409
   279
  fun trans_tac _       = ArithData.gen_trans_tac @{thm trans}
wenzelm@23146
   280
wenzelm@23146
   281
wenzelm@23146
   282
wenzelm@23146
   283
val norm_ss1 = ZF_ss addsimps mult_1s @ diff_simps @ zminus_simps
wenzelm@35409
   284
  val norm_ss2 = ZF_ss addsimps [@{thm zmult_zminus_right} RS @{thm sym}] @
wenzelm@24893
   285
    bin_simps @ @{thms zmult_ac} @ tc_rules @ intifys
wenzelm@23146
   286
  fun norm_tac ss =
wenzelm@23146
   287
    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
wenzelm@23146
   288
    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
wenzelm@23146
   289
wenzelm@23146
   290
  val numeral_simp_ss = ZF_ss addsimps bin_simps @ tc_rules @ intifys
wenzelm@23146
   291
  fun numeral_simp_tac ss =
wenzelm@23146
   292
    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
wenzelm@23146
   293
  val simplify_meta_eq  = ArithData.simplify_meta_eq (mult_1s);
wenzelm@23146
   294
  end;
wenzelm@23146
   295
wenzelm@23146
   296
wenzelm@23146
   297
structure CombineNumeralsProd = CombineNumeralsFun(CombineNumeralsProdData);
wenzelm@23146
   298
wenzelm@23146
   299
val combine_numerals_prod =
wenzelm@32155
   300
  prep_simproc @{theory}
wenzelm@32155
   301
    ("int_combine_numerals_prod", ["i $* j"], K CombineNumeralsProd.proc);
wenzelm@23146
   302
wenzelm@23146
   303
end;
wenzelm@23146
   304
wenzelm@23146
   305
wenzelm@23146
   306
Addsimprocs Int_Numeral_Simprocs.cancel_numerals;
wenzelm@23146
   307
Addsimprocs [Int_Numeral_Simprocs.combine_numerals,
wenzelm@23146
   308
             Int_Numeral_Simprocs.combine_numerals_prod];
wenzelm@23146
   309
wenzelm@23146
   310
wenzelm@23146
   311
(*examples:*)
wenzelm@23146
   312
(*
wenzelm@23146
   313
print_depth 22;
wenzelm@23146
   314
set timing;
wenzelm@23146
   315
set trace_simp;
wenzelm@23146
   316
fun test s = (Goal s; by (Asm_simp_tac 1));
wenzelm@23146
   317
val sg = #sign (rep_thm (topthm()));
wenzelm@23146
   318
val t = FOLogic.dest_Trueprop (Logic.strip_assums_concl(getgoal 1));
wenzelm@23146
   319
val (t,_) = FOLogic.dest_eq t;
wenzelm@23146
   320
wenzelm@23146
   321
(*combine_numerals_prod (products of separate literals) *)
wenzelm@23146
   322
test "#5 $* x $* #3 = y";
wenzelm@23146
   323
wenzelm@23146
   324
test "y2 $+ ?x42 = y $+ y2";
wenzelm@23146
   325
wenzelm@23146
   326
test "oo : int ==> l $+ (l $+ #2) $+ oo = oo";
wenzelm@23146
   327
wenzelm@23146
   328
test "#9$*x $+ y = x$*#23 $+ z";
wenzelm@23146
   329
test "y $+ x = x $+ z";
wenzelm@23146
   330
wenzelm@23146
   331
test "x : int ==> x $+ y $+ z = x $+ z";
wenzelm@23146
   332
test "x : int ==> y $+ (z $+ x) = z $+ x";
wenzelm@23146
   333
test "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)";
wenzelm@23146
   334
test "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)";
wenzelm@23146
   335
wenzelm@23146
   336
test "#-3 $* x $+ y $<= x $* #2 $+ z";
wenzelm@23146
   337
test "y $+ x $<= x $+ z";
wenzelm@23146
   338
test "x $+ y $+ z $<= x $+ z";
wenzelm@23146
   339
wenzelm@23146
   340
test "y $+ (z $+ x) $< z $+ x";
wenzelm@23146
   341
test "x $+ y $+ z $< (z $+ y) $+ (x $+ w)";
wenzelm@23146
   342
test "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)";
wenzelm@23146
   343
wenzelm@23146
   344
test "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu";
wenzelm@23146
   345
test "u : int ==> #2 $* u = u";
wenzelm@23146
   346
test "(i $+ j $+ #12 $+ k) $- #15 = y";
wenzelm@23146
   347
test "(i $+ j $+ #12 $+ k) $- #5 = y";
wenzelm@23146
   348
wenzelm@23146
   349
test "y $- b $< b";
wenzelm@23146
   350
test "y $- (#3 $* b $+ c) $< b $- #2 $* c";
wenzelm@23146
   351
wenzelm@23146
   352
test "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w";
wenzelm@23146
   353
test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w";
wenzelm@23146
   354
test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w";
wenzelm@23146
   355
test "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w";
wenzelm@23146
   356
wenzelm@23146
   357
test "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y";
wenzelm@23146
   358
test "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y";
wenzelm@23146
   359
wenzelm@23146
   360
test "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv";
wenzelm@23146
   361
wenzelm@23146
   362
test "a $+ $-(b$+c) $+ b = d";
wenzelm@23146
   363
test "a $+ $-(b$+c) $- b = d";
wenzelm@23146
   364
wenzelm@23146
   365
(*negative numerals*)
wenzelm@23146
   366
test "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz";
wenzelm@23146
   367
test "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y";
wenzelm@23146
   368
test "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y";
wenzelm@23146
   369
test "(i $+ j $+ #-12 $+ k) $- #15 = y";
wenzelm@23146
   370
test "(i $+ j $+ #12 $+ k) $- #-15 = y";
wenzelm@23146
   371
test "(i $+ j $+ #-12 $+ k) $- #-15 = y";
wenzelm@23146
   372
wenzelm@23146
   373
(*Multiplying separated numerals*)
wenzelm@23146
   374
Goal "#6 $* ($# x $* #2) =  uu";
wenzelm@23146
   375
Goal "#4 $* ($# x $* $# x) $* (#2 $* $# x) =  uu";
wenzelm@23146
   376
*)
wenzelm@23146
   377