src/HOL/Isar_examples/MutilatedCheckerboard.thy
author wenzelm
Wed Nov 23 22:26:13 2005 +0100 (2005-11-23)
changeset 18241 afdba6b3e383
parent 18192 6e2fd2d276d3
child 22273 9785397cc344
permissions -rw-r--r--
tuned induction proofs;
wenzelm@7382
     1
(*  Title:      HOL/Isar_examples/MutilatedCheckerboard.thy
wenzelm@7382
     2
    ID:         $Id$
wenzelm@7385
     3
    Author:     Markus Wenzel, TU Muenchen (Isar document)
wenzelm@7385
     4
                Lawrence C Paulson, Cambridge University Computer Laboratory (original scripts)
wenzelm@7382
     5
*)
wenzelm@7382
     6
wenzelm@10007
     7
header {* The Mutilated Checker Board Problem *}
wenzelm@7761
     8
haftmann@16417
     9
theory MutilatedCheckerboard imports Main begin
wenzelm@7382
    10
wenzelm@7968
    11
text {*
wenzelm@7968
    12
 The Mutilated Checker Board Problem, formalized inductively.  See
wenzelm@7968
    13
 \cite{paulson-mutilated-board} and
wenzelm@7968
    14
 \url{http://isabelle.in.tum.de/library/HOL/Induct/Mutil.html} for the
wenzelm@7968
    15
 original tactic script version.
wenzelm@10007
    16
*}
wenzelm@7382
    17
wenzelm@10007
    18
subsection {* Tilings *}
wenzelm@7382
    19
wenzelm@7382
    20
consts
wenzelm@10007
    21
  tiling :: "'a set set => 'a set set"
wenzelm@7382
    22
wenzelm@7382
    23
inductive "tiling A"
wenzelm@9596
    24
  intros
wenzelm@7382
    25
    empty: "{} : tiling A"
wenzelm@10408
    26
    Un: "a : A ==> t : tiling A ==> a <= - t ==> a Un t : tiling A"
wenzelm@7382
    27
wenzelm@7382
    28
wenzelm@10007
    29
text "The union of two disjoint tilings is a tiling."
wenzelm@7382
    30
wenzelm@7761
    31
lemma tiling_Un:
wenzelm@18153
    32
  assumes "t : tiling A" and "u : tiling A" and "t Int u = {}"
wenzelm@18153
    33
  shows "t Un u : tiling A"
wenzelm@10408
    34
proof -
wenzelm@10408
    35
  let ?T = "tiling A"
wenzelm@18153
    36
  from `t : ?T` and `t Int u = {}`
wenzelm@18153
    37
  show "t Un u : ?T"
wenzelm@10408
    38
  proof (induct t)
wenzelm@11987
    39
    case empty
wenzelm@18153
    40
    with `u : ?T` show "{} Un u : ?T" by simp
wenzelm@9475
    41
  next
wenzelm@11987
    42
    case (Un a t)
wenzelm@10408
    43
    show "(a Un t) Un u : ?T"
wenzelm@10408
    44
    proof -
wenzelm@10408
    45
      have "a Un (t Un u) : ?T"
wenzelm@10408
    46
      proof (rule tiling.Un)
wenzelm@10408
    47
        show "a : A" .
wenzelm@18153
    48
        from `(a Un t) Int u = {}` have "t Int u = {}" by blast
wenzelm@18153
    49
        then show "t Un u: ?T" by (rule Un)
wenzelm@18153
    50
        have "a <= - t" .
wenzelm@18153
    51
        with `(a Un t) Int u = {}` show "a <= - (t Un u)" by blast
wenzelm@10408
    52
      qed
wenzelm@10408
    53
      also have "a Un (t Un u) = (a Un t) Un u"
wenzelm@10408
    54
        by (simp only: Un_assoc)
wenzelm@10408
    55
      finally show ?thesis .
wenzelm@10408
    56
    qed
wenzelm@10007
    57
  qed
wenzelm@10007
    58
qed
wenzelm@7382
    59
wenzelm@7382
    60
wenzelm@10007
    61
subsection {* Basic properties of ``below'' *}
wenzelm@7382
    62
wenzelm@7382
    63
constdefs
wenzelm@7382
    64
  below :: "nat => nat set"
wenzelm@10007
    65
  "below n == {i. i < n}"
wenzelm@7382
    66
wenzelm@10007
    67
lemma below_less_iff [iff]: "(i: below k) = (i < k)"
wenzelm@10007
    68
  by (simp add: below_def)
wenzelm@7382
    69
wenzelm@10007
    70
lemma below_0: "below 0 = {}"
wenzelm@10007
    71
  by (simp add: below_def)
wenzelm@7382
    72
wenzelm@7761
    73
lemma Sigma_Suc1:
wenzelm@10007
    74
    "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)"
wenzelm@10007
    75
  by (simp add: below_def less_Suc_eq) blast
wenzelm@7382
    76
wenzelm@7761
    77
lemma Sigma_Suc2:
wenzelm@11704
    78
    "m = n + 2 ==> A <*> below m =
wenzelm@10007
    79
      (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)"
nipkow@13187
    80
  by (auto simp add: below_def)
wenzelm@7382
    81
wenzelm@10007
    82
lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2
wenzelm@7382
    83
wenzelm@7382
    84
wenzelm@10007
    85
subsection {* Basic properties of ``evnodd'' *}
wenzelm@7382
    86
wenzelm@7382
    87
constdefs
wenzelm@7385
    88
  evnodd :: "(nat * nat) set => nat => (nat * nat) set"
wenzelm@11704
    89
  "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"
wenzelm@7382
    90
wenzelm@7761
    91
lemma evnodd_iff:
wenzelm@11704
    92
    "(i, j): evnodd A b = ((i, j): A  & (i + j) mod 2 = b)"
wenzelm@10007
    93
  by (simp add: evnodd_def)
wenzelm@7382
    94
wenzelm@10007
    95
lemma evnodd_subset: "evnodd A b <= A"
wenzelm@10007
    96
  by (unfold evnodd_def, rule Int_lower1)
wenzelm@7382
    97
wenzelm@10007
    98
lemma evnoddD: "x : evnodd A b ==> x : A"
wenzelm@10007
    99
  by (rule subsetD, rule evnodd_subset)
wenzelm@7382
   100
wenzelm@10007
   101
lemma evnodd_finite: "finite A ==> finite (evnodd A b)"
wenzelm@10007
   102
  by (rule finite_subset, rule evnodd_subset)
wenzelm@7382
   103
wenzelm@10007
   104
lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b"
wenzelm@10007
   105
  by (unfold evnodd_def) blast
wenzelm@7382
   106
wenzelm@10007
   107
lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b"
wenzelm@10007
   108
  by (unfold evnodd_def) blast
wenzelm@7382
   109
wenzelm@10007
   110
lemma evnodd_empty: "evnodd {} b = {}"
wenzelm@10007
   111
  by (simp add: evnodd_def)
wenzelm@7382
   112
wenzelm@7385
   113
lemma evnodd_insert: "evnodd (insert (i, j) C) b =
wenzelm@11704
   114
    (if (i + j) mod 2 = b
wenzelm@10007
   115
      then insert (i, j) (evnodd C b) else evnodd C b)"
wenzelm@10007
   116
  by (simp add: evnodd_def) blast
wenzelm@7382
   117
wenzelm@7382
   118
wenzelm@10007
   119
subsection {* Dominoes *}
wenzelm@7382
   120
wenzelm@10408
   121
consts
wenzelm@10007
   122
  domino :: "(nat * nat) set set"
wenzelm@7382
   123
wenzelm@7382
   124
inductive domino
wenzelm@9596
   125
  intros
wenzelm@10408
   126
    horiz: "{(i, j), (i, j + 1)} : domino"
wenzelm@10408
   127
    vertl: "{(i, j), (i + 1, j)} : domino"
wenzelm@7382
   128
wenzelm@7800
   129
lemma dominoes_tile_row:
wenzelm@11704
   130
  "{i} <*> below (2 * n) : tiling domino"
wenzelm@11987
   131
  (is "?B n : ?T")
wenzelm@10007
   132
proof (induct n)
wenzelm@11987
   133
  case 0
wenzelm@11987
   134
  show ?case by (simp add: below_0 tiling.empty)
wenzelm@11987
   135
next
wenzelm@11987
   136
  case (Suc n)
wenzelm@11704
   137
  let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}"
wenzelm@10007
   138
  have "?B (Suc n) = ?a Un ?B n"
wenzelm@10007
   139
    by (auto simp add: Sigma_Suc Un_assoc)
wenzelm@10007
   140
  also have "... : ?T"
wenzelm@10007
   141
  proof (rule tiling.Un)
wenzelm@11704
   142
    have "{(i, 2 * n), (i, 2 * n + 1)} : domino"
wenzelm@10007
   143
      by (rule domino.horiz)
wenzelm@11704
   144
    also have "{(i, 2 * n), (i, 2 * n + 1)} = ?a" by blast
wenzelm@10007
   145
    finally show "... : domino" .
wenzelm@11987
   146
    show "?B n : ?T" by (rule Suc)
wenzelm@10007
   147
    show "?a <= - ?B n" by blast
wenzelm@10007
   148
  qed
wenzelm@11987
   149
  finally show ?case .
wenzelm@10007
   150
qed
wenzelm@7382
   151
wenzelm@7761
   152
lemma dominoes_tile_matrix:
wenzelm@11704
   153
  "below m <*> below (2 * n) : tiling domino"
wenzelm@11987
   154
  (is "?B m : ?T")
wenzelm@10007
   155
proof (induct m)
wenzelm@11987
   156
  case 0
wenzelm@11987
   157
  show ?case by (simp add: below_0 tiling.empty)
wenzelm@11987
   158
next
wenzelm@11987
   159
  case (Suc m)
wenzelm@11704
   160
  let ?t = "{m} <*> below (2 * n)"
wenzelm@10007
   161
  have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)
wenzelm@10007
   162
  also have "... : ?T"
wenzelm@10408
   163
  proof (rule tiling_Un)
wenzelm@10007
   164
    show "?t : ?T" by (rule dominoes_tile_row)
wenzelm@11987
   165
    show "?B m : ?T" by (rule Suc)
wenzelm@10007
   166
    show "?t Int ?B m = {}" by blast
wenzelm@10007
   167
  qed
wenzelm@11987
   168
  finally show ?case .
wenzelm@10007
   169
qed
wenzelm@7382
   170
wenzelm@7761
   171
lemma domino_singleton:
wenzelm@18241
   172
  assumes d: "d : domino" and "b < 2"
wenzelm@18241
   173
  shows "EX i j. evnodd d b = {(i, j)}"  (is "?P d")
wenzelm@18241
   174
  using d
wenzelm@18241
   175
proof induct
wenzelm@18241
   176
  from `b < 2` have b_cases: "b = 0 | b = 1" by arith
wenzelm@18241
   177
  fix i j
wenzelm@18241
   178
  note [simp] = evnodd_empty evnodd_insert mod_Suc
wenzelm@18241
   179
  from b_cases show "?P {(i, j), (i, j + 1)}" by rule auto
wenzelm@18241
   180
  from b_cases show "?P {(i, j), (i + 1, j)}" by rule auto
wenzelm@10007
   181
qed
wenzelm@7382
   182
wenzelm@18153
   183
lemma domino_finite:
wenzelm@18241
   184
  assumes d: "d: domino"
wenzelm@18153
   185
  shows "finite d"
wenzelm@18241
   186
  using d
wenzelm@18192
   187
proof induct
wenzelm@18192
   188
  fix i j :: nat
wenzelm@18192
   189
  show "finite {(i, j), (i, j + 1)}" by (intro Finites.intros)
wenzelm@18192
   190
  show "finite {(i, j), (i + 1, j)}" by (intro Finites.intros)
wenzelm@10007
   191
qed
wenzelm@7382
   192
wenzelm@7382
   193
wenzelm@10007
   194
subsection {* Tilings of dominoes *}
wenzelm@7382
   195
wenzelm@7761
   196
lemma tiling_domino_finite:
wenzelm@18241
   197
  assumes t: "t : tiling domino"  (is "t : ?T")
wenzelm@18153
   198
  shows "finite t"  (is "?F t")
wenzelm@18241
   199
  using t
wenzelm@18153
   200
proof induct
wenzelm@18153
   201
  show "?F {}" by (rule Finites.emptyI)
wenzelm@18153
   202
  fix a t assume "?F t"
wenzelm@18153
   203
  assume "a : domino" then have "?F a" by (rule domino_finite)
wenzelm@18153
   204
  then show "?F (a Un t)" by (rule finite_UnI)
wenzelm@10007
   205
qed
wenzelm@7382
   206
wenzelm@7761
   207
lemma tiling_domino_01:
wenzelm@18241
   208
  assumes t: "t : tiling domino"  (is "t : ?T")
wenzelm@18153
   209
  shows "card (evnodd t 0) = card (evnodd t 1)"
wenzelm@18241
   210
  using t
wenzelm@18153
   211
proof induct
wenzelm@18153
   212
  case empty
wenzelm@18153
   213
  show ?case by (simp add: evnodd_def)
wenzelm@18153
   214
next
wenzelm@18153
   215
  case (Un a t)
wenzelm@18153
   216
  let ?e = evnodd
wenzelm@18153
   217
  note hyp = `card (?e t 0) = card (?e t 1)`
wenzelm@18153
   218
    and at = `a <= - t`
wenzelm@18153
   219
  have card_suc:
wenzelm@18153
   220
    "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))"
wenzelm@18153
   221
  proof -
wenzelm@18153
   222
    fix b :: nat assume "b < 2"
wenzelm@18153
   223
    have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un)
wenzelm@18153
   224
    also obtain i j where e: "?e a b = {(i, j)}"
wenzelm@10007
   225
    proof -
wenzelm@18153
   226
      have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)
wenzelm@18153
   227
      then show ?thesis by (blast intro: that)
wenzelm@10007
   228
    qed
wenzelm@18153
   229
    also have "... Un ?e t b = insert (i, j) (?e t b)" by simp
wenzelm@18153
   230
    also have "card ... = Suc (card (?e t b))"
wenzelm@18153
   231
    proof (rule card_insert_disjoint)
wenzelm@18153
   232
      show "finite (?e t b)"
wenzelm@18153
   233
        by (rule evnodd_finite, rule tiling_domino_finite)
wenzelm@18153
   234
      from e have "(i, j) : ?e a b" by simp
wenzelm@18153
   235
      with at show "(i, j) ~: ?e t b" by (blast dest: evnoddD)
wenzelm@18153
   236
    qed
wenzelm@18153
   237
    finally show "?thesis b" .
wenzelm@10007
   238
  qed
wenzelm@18153
   239
  then have "card (?e (a Un t) 0) = Suc (card (?e t 0))" by simp
wenzelm@18153
   240
  also from hyp have "card (?e t 0) = card (?e t 1)" .
wenzelm@18153
   241
  also from card_suc have "Suc ... = card (?e (a Un t) 1)"
wenzelm@18153
   242
    by simp
wenzelm@18153
   243
  finally show ?case .
wenzelm@10007
   244
qed
wenzelm@7382
   245
wenzelm@7382
   246
wenzelm@10007
   247
subsection {* Main theorem *}
wenzelm@7382
   248
wenzelm@7382
   249
constdefs
wenzelm@7382
   250
  mutilated_board :: "nat => nat => (nat * nat) set"
wenzelm@7761
   251
  "mutilated_board m n ==
wenzelm@11704
   252
    below (2 * (m + 1)) <*> below (2 * (n + 1))
wenzelm@11704
   253
      - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"
wenzelm@7382
   254
wenzelm@10007
   255
theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"
wenzelm@10007
   256
proof (unfold mutilated_board_def)
wenzelm@10007
   257
  let ?T = "tiling domino"
wenzelm@11704
   258
  let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))"
wenzelm@10007
   259
  let ?t' = "?t - {(0, 0)}"
wenzelm@11704
   260
  let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}"
wenzelm@7761
   261
wenzelm@10007
   262
  show "?t'' ~: ?T"
wenzelm@10007
   263
  proof
wenzelm@10007
   264
    have t: "?t : ?T" by (rule dominoes_tile_matrix)
wenzelm@10007
   265
    assume t'': "?t'' : ?T"
wenzelm@7382
   266
wenzelm@10007
   267
    let ?e = evnodd
wenzelm@10007
   268
    have fin: "finite (?e ?t 0)"
wenzelm@10007
   269
      by (rule evnodd_finite, rule tiling_domino_finite, rule t)
wenzelm@7382
   270
wenzelm@10007
   271
    note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff
wenzelm@10007
   272
    have "card (?e ?t'' 0) < card (?e ?t' 0)"
wenzelm@10007
   273
    proof -
wenzelm@11704
   274
      have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)})
wenzelm@10007
   275
        < card (?e ?t' 0)"
wenzelm@10007
   276
      proof (rule card_Diff1_less)
wenzelm@10408
   277
        from _ fin show "finite (?e ?t' 0)"
wenzelm@10007
   278
          by (rule finite_subset) auto
wenzelm@11704
   279
        show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0" by simp
wenzelm@10007
   280
      qed
wenzelm@18153
   281
      then show ?thesis by simp
wenzelm@10007
   282
    qed
wenzelm@10007
   283
    also have "... < card (?e ?t 0)"
wenzelm@10007
   284
    proof -
wenzelm@10007
   285
      have "(0, 0) : ?e ?t 0" by simp
wenzelm@10007
   286
      with fin have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)"
wenzelm@10007
   287
        by (rule card_Diff1_less)
wenzelm@18153
   288
      then show ?thesis by simp
wenzelm@10007
   289
    qed
wenzelm@10007
   290
    also from t have "... = card (?e ?t 1)"
wenzelm@10007
   291
      by (rule tiling_domino_01)
wenzelm@10007
   292
    also have "?e ?t 1 = ?e ?t'' 1" by simp
wenzelm@10007
   293
    also from t'' have "card ... = card (?e ?t'' 0)"
wenzelm@10007
   294
      by (rule tiling_domino_01 [symmetric])
wenzelm@18153
   295
    finally have "... < ..." . then show False ..
wenzelm@10007
   296
  qed
wenzelm@10007
   297
qed
wenzelm@7382
   298
wenzelm@10007
   299
end