src/HOL/Complex/Complex.thy
author haftmann
Tue Dec 11 10:23:03 2007 +0100 (2007-12-11)
changeset 25599 afdff3ad4057
parent 25571 c9e39eafc7a0
child 25712 f488a37cfad4
permissions -rw-r--r--
tuned
paulson@13957
     1
(*  Title:       Complex.thy
paulson@14430
     2
    ID:      $Id$
paulson@13957
     3
    Author:      Jacques D. Fleuriot
paulson@13957
     4
    Copyright:   2001 University of Edinburgh
paulson@14387
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@13957
     6
*)
paulson@13957
     7
paulson@14377
     8
header {* Complex Numbers: Rectangular and Polar Representations *}
paulson@14373
     9
nipkow@15131
    10
theory Complex
haftmann@25599
    11
imports "../Real/Real" "../Hyperreal/Transcendental"
nipkow@15131
    12
begin
paulson@13957
    13
paulson@14373
    14
datatype complex = Complex real real
paulson@13957
    15
huffman@23125
    16
consts Re :: "complex \<Rightarrow> real"
huffman@20557
    17
primrec Re: "Re (Complex x y) = x"
paulson@14373
    18
huffman@23125
    19
consts Im :: "complex \<Rightarrow> real"
huffman@20557
    20
primrec Im: "Im (Complex x y) = y"
paulson@14373
    21
paulson@14373
    22
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
paulson@14373
    23
  by (induct z) simp
paulson@13957
    24
huffman@23125
    25
lemma complex_equality [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
huffman@23125
    26
by (induct x, induct y) simp
huffman@23125
    27
haftmann@25599
    28
lemma expand_complex_eq: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
huffman@23125
    29
by (induct x, induct y) simp
huffman@23125
    30
huffman@23125
    31
lemmas complex_Re_Im_cancel_iff = expand_complex_eq
huffman@23125
    32
huffman@23125
    33
huffman@23125
    34
subsection {* Addition and Subtraction *}
huffman@23125
    35
haftmann@25599
    36
instantiation complex :: ab_group_add
haftmann@25571
    37
begin
haftmann@25571
    38
haftmann@25571
    39
definition
haftmann@25571
    40
  complex_zero_def: "0 = Complex 0 0"
haftmann@25571
    41
haftmann@25571
    42
definition
haftmann@25571
    43
  complex_add_def: "x + y = Complex (Re x + Re y) (Im x + Im y)"
huffman@23124
    44
haftmann@25571
    45
definition
haftmann@25571
    46
  complex_minus_def: "- x = Complex (- Re x) (- Im x)"
paulson@14323
    47
haftmann@25571
    48
definition
haftmann@25571
    49
  complex_diff_def: "x - (y\<Colon>complex) = x + - y"
haftmann@25571
    50
haftmann@25599
    51
instance proof
haftmann@25599
    52
  fix x y z :: complex
haftmann@25599
    53
  show "(x + y) + z = x + (y + z)"
haftmann@25599
    54
    by (simp add: expand_complex_eq complex_add_def add_assoc)
haftmann@25599
    55
  show "x + y = y + x"
haftmann@25599
    56
    by (simp add: expand_complex_eq complex_add_def add_commute)
haftmann@25599
    57
  show "0 + x = x"
haftmann@25599
    58
    by (simp add: expand_complex_eq complex_add_def complex_zero_def)
haftmann@25599
    59
  show "- x + x = 0"
haftmann@25599
    60
    by (simp add: expand_complex_eq complex_add_def complex_zero_def complex_minus_def)
haftmann@25599
    61
  show "x - y = x + - y"
haftmann@25599
    62
    by (simp add: expand_complex_eq complex_add_def complex_zero_def complex_diff_def)
haftmann@25599
    63
qed
haftmann@25571
    64
haftmann@25571
    65
end
paulson@14323
    66
haftmann@25599
    67
lemma Complex_eq_0 [simp]: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
haftmann@25599
    68
  by (simp add: complex_zero_def)
paulson@14323
    69
paulson@14374
    70
lemma complex_Re_zero [simp]: "Re 0 = 0"
haftmann@25599
    71
  by (simp add: complex_zero_def)
paulson@14374
    72
paulson@14374
    73
lemma complex_Im_zero [simp]: "Im 0 = 0"
haftmann@25599
    74
  by (simp add: complex_zero_def)
haftmann@25599
    75
haftmann@25599
    76
lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
haftmann@25599
    77
  by (simp add: complex_add_def)
haftmann@25599
    78
haftmann@25599
    79
lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
haftmann@25599
    80
  by (simp add: complex_add_def)
paulson@14323
    81
huffman@23125
    82
lemma complex_add [simp]:
huffman@23125
    83
  "Complex a b + Complex c d = Complex (a + c) (b + d)"
haftmann@25599
    84
  by (simp add: complex_add_def)
huffman@23125
    85
huffman@23125
    86
lemma complex_minus [simp]: "- (Complex a b) = Complex (- a) (- b)"
haftmann@25599
    87
  by (simp add: complex_minus_def)
huffman@23125
    88
huffman@23125
    89
lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
haftmann@25599
    90
  by (simp add: complex_minus_def)
huffman@23125
    91
huffman@23125
    92
lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
haftmann@25599
    93
  by (simp add: complex_minus_def)
huffman@23125
    94
huffman@23275
    95
lemma complex_diff [simp]:
huffman@23125
    96
  "Complex a b - Complex c d = Complex (a - c) (b - d)"
haftmann@25599
    97
  by (simp add: complex_diff_def)
huffman@23125
    98
huffman@23125
    99
lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
haftmann@25599
   100
  by (simp add: complex_diff_def)
huffman@23125
   101
huffman@23125
   102
lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
haftmann@25599
   103
  by (simp add: complex_diff_def)
huffman@23125
   104
huffman@23125
   105
huffman@23125
   106
subsection {* Multiplication and Division *}
huffman@23125
   107
haftmann@25571
   108
instantiation complex :: "{one, times, inverse}"
haftmann@25571
   109
begin
haftmann@25571
   110
haftmann@25571
   111
definition
haftmann@25571
   112
  complex_one_def: "1 = Complex 1 0"
haftmann@25571
   113
haftmann@25571
   114
definition
haftmann@25571
   115
  complex_mult_def: "x * y =
haftmann@25571
   116
    Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)"
huffman@23125
   117
haftmann@25571
   118
definition
haftmann@25571
   119
  complex_inverse_def: "inverse x =
haftmann@25571
   120
    Complex (Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)) (- Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>))"
huffman@23125
   121
haftmann@25571
   122
definition
haftmann@25571
   123
  complex_divide_def: "x / (y\<Colon>complex) = x * inverse y"
haftmann@25571
   124
haftmann@25571
   125
instance ..
haftmann@25571
   126
haftmann@25571
   127
end
huffman@23125
   128
huffman@23125
   129
lemma Complex_eq_1 [simp]: "(Complex a b = 1) = (a = 1 \<and> b = 0)"
huffman@23125
   130
by (simp add: complex_one_def)
huffman@22861
   131
paulson@14374
   132
lemma complex_Re_one [simp]: "Re 1 = 1"
paulson@14374
   133
by (simp add: complex_one_def)
paulson@14323
   134
paulson@14374
   135
lemma complex_Im_one [simp]: "Im 1 = 0"
paulson@14373
   136
by (simp add: complex_one_def)
paulson@14323
   137
huffman@23125
   138
lemma complex_mult [simp]:
huffman@23125
   139
  "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
huffman@23125
   140
by (simp add: complex_mult_def)
paulson@14323
   141
huffman@23125
   142
lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
huffman@23125
   143
by (simp add: complex_mult_def)
paulson@14323
   144
huffman@23125
   145
lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
paulson@14373
   146
by (simp add: complex_mult_def)
paulson@14323
   147
paulson@14377
   148
lemma complex_inverse [simp]:
huffman@23125
   149
  "inverse (Complex a b) = Complex (a / (a\<twosuperior> + b\<twosuperior>)) (- b / (a\<twosuperior> + b\<twosuperior>))"
paulson@14373
   150
by (simp add: complex_inverse_def)
paulson@14335
   151
huffman@23125
   152
lemma complex_Re_inverse:
huffman@23125
   153
  "Re (inverse x) = Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
huffman@23125
   154
by (simp add: complex_inverse_def)
paulson@14323
   155
huffman@23125
   156
lemma complex_Im_inverse:
huffman@23125
   157
  "Im (inverse x) = - Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
huffman@23125
   158
by (simp add: complex_inverse_def)
paulson@14335
   159
paulson@14335
   160
instance complex :: field
paulson@14335
   161
proof
huffman@23125
   162
  fix x y z :: complex
huffman@23125
   163
  show "(x * y) * z = x * (y * z)"
nipkow@23477
   164
    by (simp add: expand_complex_eq ring_simps)
huffman@23125
   165
  show "x * y = y * x"
huffman@23125
   166
    by (simp add: expand_complex_eq mult_commute add_commute)
huffman@23125
   167
  show "1 * x = x"
huffman@23125
   168
    by (simp add: expand_complex_eq)
paulson@14341
   169
  show "0 \<noteq> (1::complex)"
huffman@23125
   170
    by (simp add: expand_complex_eq)
huffman@23125
   171
  show "(x + y) * z = x * z + y * z"
nipkow@23477
   172
    by (simp add: expand_complex_eq ring_simps)
huffman@23125
   173
  show "x / y = x * inverse y"
huffman@23125
   174
    by (simp only: complex_divide_def)
huffman@23125
   175
  show "x \<noteq> 0 \<Longrightarrow> inverse x * x = 1"
huffman@23125
   176
    by (induct x, simp add: power2_eq_square add_divide_distrib [symmetric])
paulson@14335
   177
qed
paulson@14335
   178
paulson@14373
   179
instance complex :: division_by_zero
paulson@14373
   180
proof
paulson@14430
   181
  show "inverse 0 = (0::complex)"
huffman@23125
   182
    by (simp add: complex_inverse_def)
huffman@23125
   183
qed
huffman@23125
   184
huffman@23125
   185
huffman@23125
   186
subsection {* Exponentiation *}
huffman@23125
   187
huffman@23125
   188
instance complex :: power ..
huffman@23125
   189
huffman@23125
   190
primrec
huffman@23125
   191
     complexpow_0:   "z ^ 0       = 1"
huffman@23125
   192
     complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)"
huffman@23125
   193
huffman@23125
   194
instance complex :: recpower
huffman@23125
   195
proof
huffman@23125
   196
  fix x :: complex and n :: nat
huffman@23125
   197
  show "x ^ 0 = 1" by simp
huffman@23125
   198
  show "x ^ Suc n = x * x ^ n" by simp
paulson@14373
   199
qed
paulson@14335
   200
paulson@14323
   201
huffman@23125
   202
subsection {* Numerals and Arithmetic *}
huffman@23125
   203
haftmann@25571
   204
instantiation complex :: number_ring
haftmann@25571
   205
begin
huffman@23125
   206
haftmann@25571
   207
definition
haftmann@25571
   208
  complex_number_of_def: "number_of w = (of_int w \<Colon> complex)"
haftmann@25571
   209
haftmann@25571
   210
instance
haftmann@25571
   211
  by (intro_classes, simp only: complex_number_of_def)
haftmann@25571
   212
haftmann@25571
   213
end
huffman@23125
   214
huffman@23125
   215
lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
huffman@23125
   216
by (induct n) simp_all
huffman@20556
   217
huffman@23125
   218
lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
huffman@23125
   219
by (induct n) simp_all
huffman@23125
   220
huffman@23125
   221
lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
huffman@23125
   222
by (cases z rule: int_diff_cases) simp
huffman@23125
   223
huffman@23125
   224
lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
huffman@23125
   225
by (cases z rule: int_diff_cases) simp
huffman@23125
   226
huffman@23125
   227
lemma complex_Re_number_of [simp]: "Re (number_of v) = number_of v"
haftmann@25502
   228
unfolding number_of_eq by (rule complex_Re_of_int)
huffman@20556
   229
huffman@23125
   230
lemma complex_Im_number_of [simp]: "Im (number_of v) = 0"
haftmann@25502
   231
unfolding number_of_eq by (rule complex_Im_of_int)
huffman@23125
   232
huffman@23125
   233
lemma Complex_eq_number_of [simp]:
huffman@23125
   234
  "(Complex a b = number_of w) = (a = number_of w \<and> b = 0)"
huffman@23125
   235
by (simp add: expand_complex_eq)
huffman@23125
   236
huffman@23125
   237
huffman@23125
   238
subsection {* Scalar Multiplication *}
huffman@20556
   239
haftmann@25571
   240
instantiation complex :: scaleR
haftmann@25571
   241
begin
haftmann@25571
   242
haftmann@25571
   243
definition
haftmann@25571
   244
  complex_scaleR_def: "scaleR r x = Complex (r * Re x) (r * Im x)"
haftmann@25571
   245
haftmann@25571
   246
instance ..
haftmann@25571
   247
haftmann@25571
   248
end
huffman@22972
   249
huffman@23125
   250
lemma complex_scaleR [simp]:
huffman@23125
   251
  "scaleR r (Complex a b) = Complex (r * a) (r * b)"
huffman@23125
   252
unfolding complex_scaleR_def by simp
huffman@23125
   253
huffman@23125
   254
lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
huffman@23125
   255
unfolding complex_scaleR_def by simp
huffman@23125
   256
huffman@23125
   257
lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
huffman@23125
   258
unfolding complex_scaleR_def by simp
huffman@22972
   259
huffman@20725
   260
instance complex :: real_field
huffman@20556
   261
proof
huffman@23125
   262
  fix a b :: real and x y :: complex
huffman@23125
   263
  show "scaleR a (x + y) = scaleR a x + scaleR a y"
huffman@23125
   264
    by (simp add: expand_complex_eq right_distrib)
huffman@23125
   265
  show "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@23125
   266
    by (simp add: expand_complex_eq left_distrib)
huffman@23125
   267
  show "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@23125
   268
    by (simp add: expand_complex_eq mult_assoc)
huffman@23125
   269
  show "scaleR 1 x = x"
huffman@23125
   270
    by (simp add: expand_complex_eq)
huffman@23125
   271
  show "scaleR a x * y = scaleR a (x * y)"
nipkow@23477
   272
    by (simp add: expand_complex_eq ring_simps)
huffman@23125
   273
  show "x * scaleR a y = scaleR a (x * y)"
nipkow@23477
   274
    by (simp add: expand_complex_eq ring_simps)
huffman@20556
   275
qed
huffman@20556
   276
huffman@20556
   277
huffman@23125
   278
subsection{* Properties of Embedding from Reals *}
paulson@14323
   279
huffman@20557
   280
abbreviation
huffman@23125
   281
  complex_of_real :: "real \<Rightarrow> complex" where
huffman@23125
   282
    "complex_of_real \<equiv> of_real"
huffman@20557
   283
huffman@20557
   284
lemma complex_of_real_def: "complex_of_real r = Complex r 0"
huffman@20557
   285
by (simp add: of_real_def complex_scaleR_def)
huffman@20557
   286
huffman@20557
   287
lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
huffman@20557
   288
by (simp add: complex_of_real_def)
huffman@20557
   289
huffman@20557
   290
lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
huffman@20557
   291
by (simp add: complex_of_real_def)
huffman@20557
   292
paulson@14377
   293
lemma Complex_add_complex_of_real [simp]:
paulson@14377
   294
     "Complex x y + complex_of_real r = Complex (x+r) y"
paulson@14377
   295
by (simp add: complex_of_real_def)
paulson@14377
   296
paulson@14377
   297
lemma complex_of_real_add_Complex [simp]:
paulson@14377
   298
     "complex_of_real r + Complex x y = Complex (r+x) y"
huffman@23125
   299
by (simp add: complex_of_real_def)
paulson@14377
   300
paulson@14377
   301
lemma Complex_mult_complex_of_real:
paulson@14377
   302
     "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
paulson@14377
   303
by (simp add: complex_of_real_def)
paulson@14377
   304
paulson@14377
   305
lemma complex_of_real_mult_Complex:
paulson@14377
   306
     "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
huffman@23125
   307
by (simp add: complex_of_real_def)
huffman@20557
   308
paulson@14377
   309
huffman@23125
   310
subsection {* Vector Norm *}
paulson@14323
   311
haftmann@25571
   312
instantiation complex :: norm
haftmann@25571
   313
begin
haftmann@25571
   314
haftmann@25571
   315
definition
haftmann@25571
   316
  complex_norm_def: "norm z = sqrt ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
haftmann@25571
   317
haftmann@25571
   318
instance ..
haftmann@25571
   319
haftmann@25571
   320
end
huffman@20557
   321
huffman@20557
   322
abbreviation
huffman@22861
   323
  cmod :: "complex \<Rightarrow> real" where
huffman@23125
   324
    "cmod \<equiv> norm"
huffman@20557
   325
haftmann@25571
   326
instantiation complex :: sgn
haftmann@25571
   327
begin
haftmann@25571
   328
haftmann@25571
   329
definition
haftmann@25571
   330
  complex_sgn_def: "sgn x = x /\<^sub>R cmod x"
haftmann@25571
   331
haftmann@25571
   332
instance ..
haftmann@25571
   333
haftmann@25571
   334
end
nipkow@24506
   335
huffman@20557
   336
lemmas cmod_def = complex_norm_def
huffman@20557
   337
huffman@23125
   338
lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@23125
   339
by (simp add: complex_norm_def)
huffman@22852
   340
huffman@20725
   341
instance complex :: real_normed_field
huffman@20557
   342
proof
huffman@23125
   343
  fix r :: real and x y :: complex
huffman@23125
   344
  show "0 \<le> norm x"
huffman@22861
   345
    by (induct x) simp
huffman@23125
   346
  show "(norm x = 0) = (x = 0)"
huffman@22861
   347
    by (induct x) simp
huffman@23125
   348
  show "norm (x + y) \<le> norm x + norm y"
huffman@23125
   349
    by (induct x, induct y)
huffman@23125
   350
       (simp add: real_sqrt_sum_squares_triangle_ineq)
huffman@23125
   351
  show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
huffman@23125
   352
    by (induct x)
huffman@23125
   353
       (simp add: power_mult_distrib right_distrib [symmetric] real_sqrt_mult)
huffman@23125
   354
  show "norm (x * y) = norm x * norm y"
huffman@23125
   355
    by (induct x, induct y)
nipkow@23477
   356
       (simp add: real_sqrt_mult [symmetric] power2_eq_square ring_simps)
nipkow@24506
   357
  show "sgn x = x /\<^sub>R cmod x" by(simp add: complex_sgn_def)
huffman@24520
   358
qed
huffman@20557
   359
huffman@22861
   360
lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1"
huffman@22861
   361
by simp
paulson@14323
   362
huffman@22861
   363
lemma cmod_complex_polar [simp]:
huffman@22861
   364
     "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
huffman@23125
   365
by (simp add: norm_mult)
huffman@22861
   366
huffman@22861
   367
lemma complex_Re_le_cmod: "Re x \<le> cmod x"
huffman@22861
   368
unfolding complex_norm_def
huffman@22861
   369
by (rule real_sqrt_sum_squares_ge1)
huffman@22861
   370
huffman@22861
   371
lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x"
huffman@22861
   372
by (rule order_trans [OF _ norm_ge_zero], simp)
huffman@22861
   373
huffman@22861
   374
lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a"
huffman@22861
   375
by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
paulson@14323
   376
huffman@22861
   377
lemmas real_sum_squared_expand = power2_sum [where 'a=real]
paulson@14323
   378
paulson@14354
   379
huffman@23123
   380
subsection {* Completeness of the Complexes *}
huffman@23123
   381
huffman@23123
   382
interpretation Re: bounded_linear ["Re"]
huffman@23123
   383
apply (unfold_locales, simp, simp)
huffman@23123
   384
apply (rule_tac x=1 in exI)
huffman@23123
   385
apply (simp add: complex_norm_def)
huffman@23123
   386
done
huffman@23123
   387
huffman@23123
   388
interpretation Im: bounded_linear ["Im"]
huffman@23123
   389
apply (unfold_locales, simp, simp)
huffman@23123
   390
apply (rule_tac x=1 in exI)
huffman@23123
   391
apply (simp add: complex_norm_def)
huffman@23123
   392
done
huffman@23123
   393
huffman@23123
   394
lemma LIMSEQ_Complex:
huffman@23123
   395
  "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. Complex (X n) (Y n)) ----> Complex a b"
huffman@23123
   396
apply (rule LIMSEQ_I)
huffman@23123
   397
apply (subgoal_tac "0 < r / sqrt 2")
huffman@23123
   398
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
huffman@23123
   399
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
huffman@23123
   400
apply (rename_tac M N, rule_tac x="max M N" in exI, safe)
huffman@23123
   401
apply (simp add: real_sqrt_sum_squares_less)
huffman@23123
   402
apply (simp add: divide_pos_pos)
huffman@23123
   403
done
huffman@23123
   404
huffman@23123
   405
instance complex :: banach
huffman@23123
   406
proof
huffman@23123
   407
  fix X :: "nat \<Rightarrow> complex"
huffman@23123
   408
  assume X: "Cauchy X"
huffman@23123
   409
  from Re.Cauchy [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
huffman@23123
   410
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   411
  from Im.Cauchy [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
huffman@23123
   412
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   413
  have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
huffman@23123
   414
    using LIMSEQ_Complex [OF 1 2] by simp
huffman@23123
   415
  thus "convergent X"
huffman@23123
   416
    by (rule convergentI)
huffman@23123
   417
qed
huffman@23123
   418
huffman@23123
   419
huffman@23125
   420
subsection {* The Complex Number @{term "\<i>"} *}
huffman@23125
   421
huffman@23125
   422
definition
huffman@23125
   423
  "ii" :: complex  ("\<i>") where
huffman@23125
   424
  i_def: "ii \<equiv> Complex 0 1"
huffman@23125
   425
huffman@23125
   426
lemma complex_Re_i [simp]: "Re ii = 0"
huffman@23125
   427
by (simp add: i_def)
paulson@14354
   428
huffman@23125
   429
lemma complex_Im_i [simp]: "Im ii = 1"
huffman@23125
   430
by (simp add: i_def)
huffman@23125
   431
huffman@23125
   432
lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
huffman@23125
   433
by (simp add: i_def)
huffman@23125
   434
huffman@23125
   435
lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
huffman@23125
   436
by (simp add: expand_complex_eq)
huffman@23125
   437
huffman@23125
   438
lemma complex_i_not_one [simp]: "ii \<noteq> 1"
huffman@23125
   439
by (simp add: expand_complex_eq)
huffman@23124
   440
huffman@23125
   441
lemma complex_i_not_number_of [simp]: "ii \<noteq> number_of w"
huffman@23125
   442
by (simp add: expand_complex_eq)
huffman@23125
   443
huffman@23125
   444
lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
huffman@23125
   445
by (simp add: expand_complex_eq)
huffman@23125
   446
huffman@23125
   447
lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
huffman@23125
   448
by (simp add: expand_complex_eq)
huffman@23125
   449
huffman@23125
   450
lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
huffman@23125
   451
by (simp add: i_def complex_of_real_def)
huffman@23125
   452
huffman@23125
   453
lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
huffman@23125
   454
by (simp add: i_def complex_of_real_def)
huffman@23125
   455
huffman@23125
   456
lemma i_squared [simp]: "ii * ii = -1"
huffman@23125
   457
by (simp add: i_def)
huffman@23125
   458
huffman@23125
   459
lemma power2_i [simp]: "ii\<twosuperior> = -1"
huffman@23125
   460
by (simp add: power2_eq_square)
huffman@23125
   461
huffman@23125
   462
lemma inverse_i [simp]: "inverse ii = - ii"
huffman@23125
   463
by (rule inverse_unique, simp)
paulson@14354
   464
paulson@14354
   465
huffman@23125
   466
subsection {* Complex Conjugation *}
huffman@23125
   467
huffman@23125
   468
definition
huffman@23125
   469
  cnj :: "complex \<Rightarrow> complex" where
huffman@23125
   470
  "cnj z = Complex (Re z) (- Im z)"
huffman@23125
   471
huffman@23125
   472
lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
huffman@23125
   473
by (simp add: cnj_def)
huffman@23125
   474
huffman@23125
   475
lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
huffman@23125
   476
by (simp add: cnj_def)
huffman@23125
   477
huffman@23125
   478
lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
huffman@23125
   479
by (simp add: cnj_def)
huffman@23125
   480
huffman@23125
   481
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
huffman@23125
   482
by (simp add: expand_complex_eq)
huffman@23125
   483
huffman@23125
   484
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
huffman@23125
   485
by (simp add: cnj_def)
huffman@23125
   486
huffman@23125
   487
lemma complex_cnj_zero [simp]: "cnj 0 = 0"
huffman@23125
   488
by (simp add: expand_complex_eq)
huffman@23125
   489
huffman@23125
   490
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
huffman@23125
   491
by (simp add: expand_complex_eq)
huffman@23125
   492
huffman@23125
   493
lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
huffman@23125
   494
by (simp add: expand_complex_eq)
huffman@23125
   495
huffman@23125
   496
lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
huffman@23125
   497
by (simp add: expand_complex_eq)
huffman@23125
   498
huffman@23125
   499
lemma complex_cnj_minus: "cnj (- x) = - cnj x"
huffman@23125
   500
by (simp add: expand_complex_eq)
huffman@23125
   501
huffman@23125
   502
lemma complex_cnj_one [simp]: "cnj 1 = 1"
huffman@23125
   503
by (simp add: expand_complex_eq)
huffman@23125
   504
huffman@23125
   505
lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
huffman@23125
   506
by (simp add: expand_complex_eq)
huffman@23125
   507
huffman@23125
   508
lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
huffman@23125
   509
by (simp add: complex_inverse_def)
paulson@14323
   510
huffman@23125
   511
lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
huffman@23125
   512
by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
huffman@23125
   513
huffman@23125
   514
lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
huffman@23125
   515
by (induct n, simp_all add: complex_cnj_mult)
huffman@23125
   516
huffman@23125
   517
lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
huffman@23125
   518
by (simp add: expand_complex_eq)
huffman@23125
   519
huffman@23125
   520
lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
huffman@23125
   521
by (simp add: expand_complex_eq)
huffman@23125
   522
huffman@23125
   523
lemma complex_cnj_number_of [simp]: "cnj (number_of w) = number_of w"
huffman@23125
   524
by (simp add: expand_complex_eq)
huffman@23125
   525
huffman@23125
   526
lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
huffman@23125
   527
by (simp add: expand_complex_eq)
huffman@23125
   528
huffman@23125
   529
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
huffman@23125
   530
by (simp add: complex_norm_def)
paulson@14323
   531
huffman@23125
   532
lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
huffman@23125
   533
by (simp add: expand_complex_eq)
huffman@23125
   534
huffman@23125
   535
lemma complex_cnj_i [simp]: "cnj ii = - ii"
huffman@23125
   536
by (simp add: expand_complex_eq)
huffman@23125
   537
huffman@23125
   538
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
huffman@23125
   539
by (simp add: expand_complex_eq)
huffman@23125
   540
huffman@23125
   541
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii"
huffman@23125
   542
by (simp add: expand_complex_eq)
paulson@14354
   543
huffman@23125
   544
lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
huffman@23125
   545
by (simp add: expand_complex_eq power2_eq_square)
huffman@23125
   546
huffman@23125
   547
lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<twosuperior>"
huffman@23125
   548
by (simp add: norm_mult power2_eq_square)
huffman@23125
   549
huffman@23125
   550
interpretation cnj: bounded_linear ["cnj"]
huffman@23125
   551
apply (unfold_locales)
huffman@23125
   552
apply (rule complex_cnj_add)
huffman@23125
   553
apply (rule complex_cnj_scaleR)
huffman@23125
   554
apply (rule_tac x=1 in exI, simp)
huffman@23125
   555
done
paulson@14354
   556
paulson@14354
   557
huffman@22972
   558
subsection{*The Functions @{term sgn} and @{term arg}*}
paulson@14323
   559
huffman@22972
   560
text {*------------ Argand -------------*}
huffman@20557
   561
wenzelm@21404
   562
definition
wenzelm@21404
   563
  arg :: "complex => real" where
huffman@20557
   564
  "arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)"
huffman@20557
   565
paulson@14374
   566
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
nipkow@24506
   567
by (simp add: complex_sgn_def divide_inverse scaleR_conv_of_real mult_commute)
paulson@14323
   568
paulson@14323
   569
lemma i_mult_eq: "ii * ii = complex_of_real (-1)"
huffman@20725
   570
by (simp add: i_def complex_of_real_def)
paulson@14323
   571
paulson@14374
   572
lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)"
huffman@20725
   573
by (simp add: i_def complex_one_def)
paulson@14323
   574
paulson@14374
   575
lemma complex_eq_cancel_iff2 [simp]:
paulson@14377
   576
     "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
paulson@14377
   577
by (simp add: complex_of_real_def)
paulson@14323
   578
paulson@14374
   579
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
nipkow@24506
   580
by (simp add: complex_sgn_def divide_inverse)
paulson@14323
   581
paulson@14374
   582
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
nipkow@24506
   583
by (simp add: complex_sgn_def divide_inverse)
paulson@14323
   584
paulson@14323
   585
lemma complex_inverse_complex_split:
paulson@14323
   586
     "inverse(complex_of_real x + ii * complex_of_real y) =
paulson@14323
   587
      complex_of_real(x/(x ^ 2 + y ^ 2)) -
paulson@14323
   588
      ii * complex_of_real(y/(x ^ 2 + y ^ 2))"
huffman@20725
   589
by (simp add: complex_of_real_def i_def diff_minus divide_inverse)
paulson@14323
   590
paulson@14323
   591
(*----------------------------------------------------------------------------*)
paulson@14323
   592
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *)
paulson@14323
   593
(* many of the theorems are not used - so should they be kept?                *)
paulson@14323
   594
(*----------------------------------------------------------------------------*)
paulson@14323
   595
paulson@14354
   596
lemma cos_arg_i_mult_zero_pos:
paulson@14377
   597
   "0 < y ==> cos (arg(Complex 0 y)) = 0"
paulson@14373
   598
apply (simp add: arg_def abs_if)
paulson@14334
   599
apply (rule_tac a = "pi/2" in someI2, auto)
paulson@14334
   600
apply (rule order_less_trans [of _ 0], auto)
paulson@14323
   601
done
paulson@14323
   602
paulson@14354
   603
lemma cos_arg_i_mult_zero_neg:
paulson@14377
   604
   "y < 0 ==> cos (arg(Complex 0 y)) = 0"
paulson@14373
   605
apply (simp add: arg_def abs_if)
paulson@14334
   606
apply (rule_tac a = "- pi/2" in someI2, auto)
paulson@14334
   607
apply (rule order_trans [of _ 0], auto)
paulson@14323
   608
done
paulson@14323
   609
paulson@14374
   610
lemma cos_arg_i_mult_zero [simp]:
paulson@14377
   611
     "y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
paulson@14377
   612
by (auto simp add: linorder_neq_iff cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg)
paulson@14323
   613
paulson@14323
   614
paulson@14323
   615
subsection{*Finally! Polar Form for Complex Numbers*}
paulson@14323
   616
huffman@20557
   617
definition
huffman@20557
   618
huffman@20557
   619
  (* abbreviation for (cos a + i sin a) *)
wenzelm@21404
   620
  cis :: "real => complex" where
huffman@20557
   621
  "cis a = Complex (cos a) (sin a)"
huffman@20557
   622
wenzelm@21404
   623
definition
huffman@20557
   624
  (* abbreviation for r*(cos a + i sin a) *)
wenzelm@21404
   625
  rcis :: "[real, real] => complex" where
huffman@20557
   626
  "rcis r a = complex_of_real r * cis a"
huffman@20557
   627
wenzelm@21404
   628
definition
huffman@20557
   629
  (* e ^ (x + iy) *)
wenzelm@21404
   630
  expi :: "complex => complex" where
huffman@20557
   631
  "expi z = complex_of_real(exp (Re z)) * cis (Im z)"
huffman@20557
   632
paulson@14374
   633
lemma complex_split_polar:
paulson@14377
   634
     "\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
huffman@20725
   635
apply (induct z)
paulson@14377
   636
apply (auto simp add: polar_Ex complex_of_real_mult_Complex)
paulson@14323
   637
done
paulson@14323
   638
paulson@14354
   639
lemma rcis_Ex: "\<exists>r a. z = rcis r a"
huffman@20725
   640
apply (induct z)
paulson@14377
   641
apply (simp add: rcis_def cis_def polar_Ex complex_of_real_mult_Complex)
paulson@14323
   642
done
paulson@14323
   643
paulson@14374
   644
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
paulson@14373
   645
by (simp add: rcis_def cis_def)
paulson@14323
   646
paulson@14348
   647
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
paulson@14373
   648
by (simp add: rcis_def cis_def)
paulson@14323
   649
paulson@14377
   650
lemma sin_cos_squared_add2_mult: "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior>"
paulson@14377
   651
proof -
paulson@14377
   652
  have "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior> * ((cos a)\<twosuperior> + (sin a)\<twosuperior>)"
huffman@20725
   653
    by (simp only: power_mult_distrib right_distrib)
paulson@14377
   654
  thus ?thesis by simp
paulson@14377
   655
qed
paulson@14323
   656
paulson@14374
   657
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r"
paulson@14377
   658
by (simp add: rcis_def cis_def sin_cos_squared_add2_mult)
paulson@14323
   659
paulson@14374
   660
lemma complex_Re_cnj [simp]: "Re(cnj z) = Re z"
paulson@14373
   661
by (induct z, simp add: complex_cnj)
paulson@14323
   662
paulson@14374
   663
lemma complex_Im_cnj [simp]: "Im(cnj z) = - Im z"
paulson@14374
   664
by (induct z, simp add: complex_cnj)
paulson@14374
   665
huffman@23125
   666
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
huffman@23125
   667
by (simp add: cmod_def power2_eq_square)
huffman@23125
   668
paulson@14374
   669
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
huffman@23125
   670
by simp
paulson@14323
   671
paulson@14323
   672
paulson@14323
   673
(*---------------------------------------------------------------------------*)
paulson@14323
   674
(*  (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b)                      *)
paulson@14323
   675
(*---------------------------------------------------------------------------*)
paulson@14323
   676
paulson@14323
   677
lemma cis_rcis_eq: "cis a = rcis 1 a"
paulson@14373
   678
by (simp add: rcis_def)
paulson@14323
   679
paulson@14374
   680
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
paulson@15013
   681
by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib
paulson@15013
   682
              complex_of_real_def)
paulson@14323
   683
paulson@14323
   684
lemma cis_mult: "cis a * cis b = cis (a + b)"
paulson@14373
   685
by (simp add: cis_rcis_eq rcis_mult)
paulson@14323
   686
paulson@14374
   687
lemma cis_zero [simp]: "cis 0 = 1"
paulson@14377
   688
by (simp add: cis_def complex_one_def)
paulson@14323
   689
paulson@14374
   690
lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
paulson@14373
   691
by (simp add: rcis_def)
paulson@14323
   692
paulson@14374
   693
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
paulson@14373
   694
by (simp add: rcis_def)
paulson@14323
   695
paulson@14323
   696
lemma complex_of_real_minus_one:
paulson@14323
   697
   "complex_of_real (-(1::real)) = -(1::complex)"
huffman@20725
   698
by (simp add: complex_of_real_def complex_one_def)
paulson@14323
   699
paulson@14374
   700
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
huffman@23125
   701
by (simp add: mult_assoc [symmetric])
paulson@14323
   702
paulson@14323
   703
paulson@14323
   704
lemma cis_real_of_nat_Suc_mult:
paulson@14323
   705
   "cis (real (Suc n) * a) = cis a * cis (real n * a)"
paulson@14377
   706
by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib)
paulson@14323
   707
paulson@14323
   708
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
paulson@14323
   709
apply (induct_tac "n")
paulson@14323
   710
apply (auto simp add: cis_real_of_nat_Suc_mult)
paulson@14323
   711
done
paulson@14323
   712
paulson@14374
   713
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
huffman@22890
   714
by (simp add: rcis_def power_mult_distrib DeMoivre)
paulson@14323
   715
paulson@14374
   716
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
huffman@20725
   717
by (simp add: cis_def complex_inverse_complex_split diff_minus)
paulson@14323
   718
paulson@14323
   719
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
huffman@22884
   720
by (simp add: divide_inverse rcis_def)
paulson@14323
   721
paulson@14323
   722
lemma cis_divide: "cis a / cis b = cis (a - b)"
paulson@14373
   723
by (simp add: complex_divide_def cis_mult real_diff_def)
paulson@14323
   724
paulson@14354
   725
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
paulson@14373
   726
apply (simp add: complex_divide_def)
paulson@14373
   727
apply (case_tac "r2=0", simp)
paulson@14373
   728
apply (simp add: rcis_inverse rcis_mult real_diff_def)
paulson@14323
   729
done
paulson@14323
   730
paulson@14374
   731
lemma Re_cis [simp]: "Re(cis a) = cos a"
paulson@14373
   732
by (simp add: cis_def)
paulson@14323
   733
paulson@14374
   734
lemma Im_cis [simp]: "Im(cis a) = sin a"
paulson@14373
   735
by (simp add: cis_def)
paulson@14323
   736
paulson@14323
   737
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
paulson@14334
   738
by (auto simp add: DeMoivre)
paulson@14323
   739
paulson@14323
   740
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
paulson@14334
   741
by (auto simp add: DeMoivre)
paulson@14323
   742
paulson@14323
   743
lemma expi_add: "expi(a + b) = expi(a) * expi(b)"
huffman@20725
   744
by (simp add: expi_def exp_add cis_mult [symmetric] mult_ac)
paulson@14323
   745
paulson@14374
   746
lemma expi_zero [simp]: "expi (0::complex) = 1"
paulson@14373
   747
by (simp add: expi_def)
paulson@14323
   748
paulson@14374
   749
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a"
paulson@14373
   750
apply (insert rcis_Ex [of z])
huffman@23125
   751
apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])
paulson@14334
   752
apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
paulson@14323
   753
done
paulson@14323
   754
paulson@14387
   755
lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
huffman@23125
   756
by (simp add: expi_def cis_def)
paulson@14387
   757
paulson@13957
   758
end