src/HOL/BNF_Def.thy
author blanchet
Tue Jul 29 23:39:35 2014 +0200 (2014-07-29)
changeset 57698 afef6616cbae
parent 57641 dc59f147b27d
child 57802 9c065009cd8a
permissions -rw-r--r--
header tuning
blanchet@55059
     1
(*  Title:      HOL/BNF_Def.thy
blanchet@48975
     2
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@57398
     3
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@57698
     4
    Copyright   2012, 2013, 2014
blanchet@48975
     5
blanchet@48975
     6
Definition of bounded natural functors.
blanchet@48975
     7
*)
blanchet@48975
     8
blanchet@48975
     9
header {* Definition of Bounded Natural Functors *}
blanchet@48975
    10
blanchet@48975
    11
theory BNF_Def
blanchet@57398
    12
imports BNF_Cardinal_Arithmetic Fun_Def_Base
blanchet@48975
    13
keywords
blanchet@49286
    14
  "print_bnfs" :: diag and
blanchet@51836
    15
  "bnf" :: thy_goal
blanchet@48975
    16
begin
blanchet@48975
    17
blanchet@57398
    18
definition
blanchet@57398
    19
  rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool"
blanchet@57398
    20
where
blanchet@57398
    21
  "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
blanchet@57398
    22
blanchet@57398
    23
lemma rel_funI [intro]:
blanchet@57398
    24
  assumes "\<And>x y. A x y \<Longrightarrow> B (f x) (g y)"
blanchet@57398
    25
  shows "rel_fun A B f g"
blanchet@57398
    26
  using assms by (simp add: rel_fun_def)
blanchet@57398
    27
blanchet@57398
    28
lemma rel_funD:
blanchet@57398
    29
  assumes "rel_fun A B f g" and "A x y"
blanchet@57398
    30
  shows "B (f x) (g y)"
blanchet@57398
    31
  using assms by (simp add: rel_fun_def)
blanchet@57398
    32
blanchet@57398
    33
definition collect where
blanchet@57398
    34
"collect F x = (\<Union>f \<in> F. f x)"
blanchet@57398
    35
blanchet@57398
    36
lemma fstI: "x = (y, z) \<Longrightarrow> fst x = y"
blanchet@57398
    37
by simp
blanchet@57398
    38
blanchet@57398
    39
lemma sndI: "x = (y, z) \<Longrightarrow> snd x = z"
blanchet@57398
    40
by simp
blanchet@57398
    41
blanchet@57398
    42
lemma bijI': "\<lbrakk>\<And>x y. (f x = f y) = (x = y); \<And>y. \<exists>x. y = f x\<rbrakk> \<Longrightarrow> bij f"
blanchet@57398
    43
unfolding bij_def inj_on_def by auto blast
blanchet@57398
    44
blanchet@57398
    45
(* Operator: *)
blanchet@57398
    46
definition "Gr A f = {(a, f a) | a. a \<in> A}"
blanchet@57398
    47
blanchet@57398
    48
definition "Grp A f = (\<lambda>a b. b = f a \<and> a \<in> A)"
blanchet@57398
    49
blanchet@57398
    50
definition vimage2p where
blanchet@57398
    51
  "vimage2p f g R = (\<lambda>x y. R (f x) (g y))"
blanchet@57398
    52
blanchet@56635
    53
lemma collect_comp: "collect F \<circ> g = collect ((\<lambda>f. f \<circ> g) ` F)"
blanchet@55066
    54
  by (rule ext) (auto simp only: comp_apply collect_def)
traytel@51893
    55
wenzelm@57641
    56
definition convol ("\<langle>(_,/ _)\<rangle>") where
wenzelm@57641
    57
"\<langle>f, g\<rangle> \<equiv> \<lambda>a. (f a, g a)"
traytel@49495
    58
traytel@49495
    59
lemma fst_convol:
wenzelm@57641
    60
"fst \<circ> \<langle>f, g\<rangle> = f"
traytel@49495
    61
apply(rule ext)
traytel@49495
    62
unfolding convol_def by simp
traytel@49495
    63
traytel@49495
    64
lemma snd_convol:
wenzelm@57641
    65
"snd \<circ> \<langle>f, g\<rangle> = g"
traytel@49495
    66
apply(rule ext)
traytel@49495
    67
unfolding convol_def by simp
traytel@49495
    68
traytel@51893
    69
lemma convol_mem_GrpI:
wenzelm@57641
    70
"x \<in> A \<Longrightarrow> \<langle>id, g\<rangle> x \<in> (Collect (split (Grp A g)))"
traytel@51893
    71
unfolding convol_def Grp_def by auto
traytel@51893
    72
blanchet@49312
    73
definition csquare where
blanchet@49312
    74
"csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))"
blanchet@49312
    75
traytel@51893
    76
lemma eq_alt: "op = = Grp UNIV id"
traytel@51893
    77
unfolding Grp_def by auto
traytel@51893
    78
traytel@51893
    79
lemma leq_conversepI: "R = op = \<Longrightarrow> R \<le> R^--1"
traytel@51893
    80
  by auto
traytel@51893
    81
traytel@54841
    82
lemma leq_OOI: "R = op = \<Longrightarrow> R \<le> R OO R"
traytel@51893
    83
  by auto
traytel@51893
    84
traytel@53561
    85
lemma OO_Grp_alt: "(Grp A f)^--1 OO Grp A g = (\<lambda>x y. \<exists>z. z \<in> A \<and> f z = x \<and> g z = y)"
traytel@53561
    86
  unfolding Grp_def by auto
traytel@53561
    87
traytel@51893
    88
lemma Grp_UNIV_id: "f = id \<Longrightarrow> (Grp UNIV f)^--1 OO Grp UNIV f = Grp UNIV f"
traytel@51893
    89
unfolding Grp_def by auto
traytel@51893
    90
traytel@51893
    91
lemma Grp_UNIV_idI: "x = y \<Longrightarrow> Grp UNIV id x y"
traytel@51893
    92
unfolding Grp_def by auto
traytel@51893
    93
traytel@51893
    94
lemma Grp_mono: "A \<le> B \<Longrightarrow> Grp A f \<le> Grp B f"
traytel@51893
    95
unfolding Grp_def by auto
traytel@51893
    96
traytel@51893
    97
lemma GrpI: "\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> Grp A f x y"
traytel@51893
    98
unfolding Grp_def by auto
traytel@51893
    99
traytel@51893
   100
lemma GrpE: "Grp A f x y \<Longrightarrow> (\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
traytel@51893
   101
unfolding Grp_def by auto
traytel@51893
   102
traytel@51893
   103
lemma Collect_split_Grp_eqD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> (f \<circ> fst) z = snd z"
blanchet@55066
   104
unfolding Grp_def comp_def by auto
traytel@51893
   105
traytel@51893
   106
lemma Collect_split_Grp_inD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> fst z \<in> A"
blanchet@55066
   107
unfolding Grp_def comp_def by auto
traytel@51893
   108
traytel@51893
   109
definition "pick_middlep P Q a c = (SOME b. P a b \<and> Q b c)"
traytel@51893
   110
traytel@51893
   111
lemma pick_middlep:
traytel@51893
   112
"(P OO Q) a c \<Longrightarrow> P a (pick_middlep P Q a c) \<and> Q (pick_middlep P Q a c) c"
traytel@51893
   113
unfolding pick_middlep_def apply(rule someI_ex) by auto
blanchet@49312
   114
traytel@51893
   115
definition fstOp where "fstOp P Q ac = (fst ac, pick_middlep P Q (fst ac) (snd ac))"
traytel@51893
   116
definition sndOp where "sndOp P Q ac = (pick_middlep P Q (fst ac) (snd ac), (snd ac))"
traytel@51893
   117
traytel@51893
   118
lemma fstOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> fstOp P Q ac \<in> Collect (split P)"
traytel@51893
   119
unfolding fstOp_def mem_Collect_eq
blanchet@55642
   120
by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct1])
blanchet@49312
   121
traytel@51893
   122
lemma fst_fstOp: "fst bc = (fst \<circ> fstOp P Q) bc"
traytel@51893
   123
unfolding comp_def fstOp_def by simp
traytel@51893
   124
traytel@51893
   125
lemma snd_sndOp: "snd bc = (snd \<circ> sndOp P Q) bc"
traytel@51893
   126
unfolding comp_def sndOp_def by simp
traytel@51893
   127
traytel@51893
   128
lemma sndOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> sndOp P Q ac \<in> Collect (split Q)"
traytel@51893
   129
unfolding sndOp_def mem_Collect_eq
blanchet@55642
   130
by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct2])
traytel@51893
   131
traytel@51893
   132
lemma csquare_fstOp_sndOp:
traytel@51893
   133
"csquare (Collect (split (P OO Q))) snd fst (fstOp P Q) (sndOp P Q)"
traytel@51893
   134
unfolding csquare_def fstOp_def sndOp_def using pick_middlep by simp
traytel@51893
   135
blanchet@56635
   136
lemma snd_fst_flip: "snd xy = (fst \<circ> (%(x, y). (y, x))) xy"
blanchet@49312
   137
by (simp split: prod.split)
blanchet@49312
   138
blanchet@56635
   139
lemma fst_snd_flip: "fst xy = (snd \<circ> (%(x, y). (y, x))) xy"
blanchet@49312
   140
by (simp split: prod.split)
blanchet@49312
   141
traytel@51893
   142
lemma flip_pred: "A \<subseteq> Collect (split (R ^--1)) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> Collect (split R)"
traytel@51893
   143
by auto
traytel@51893
   144
traytel@51893
   145
lemma Collect_split_mono: "A \<le> B \<Longrightarrow> Collect (split A) \<subseteq> Collect (split B)"
traytel@51893
   146
  by auto
traytel@51893
   147
traytel@51916
   148
lemma Collect_split_mono_strong: 
traytel@55163
   149
  "\<lbrakk>X = fst ` A; Y = snd ` A; \<forall>a\<in>X. \<forall>b \<in> Y. P a b \<longrightarrow> Q a b; A \<subseteq> Collect (split P)\<rbrakk> \<Longrightarrow>
traytel@51916
   150
  A \<subseteq> Collect (split Q)"
traytel@51916
   151
  by fastforce
traytel@51916
   152
traytel@55163
   153
traytel@51917
   154
lemma predicate2_eqD: "A = B \<Longrightarrow> A a b \<longleftrightarrow> B a b"
traytel@55811
   155
by simp
blanchet@49537
   156
blanchet@55414
   157
lemma case_sum_o_inj:
blanchet@55414
   158
"case_sum f g \<circ> Inl = f"
blanchet@55414
   159
"case_sum f g \<circ> Inr = g"
traytel@52635
   160
by auto
traytel@52635
   161
traytel@52635
   162
lemma card_order_csum_cone_cexp_def:
traytel@52635
   163
  "card_order r \<Longrightarrow> ( |A1| +c cone) ^c r = |Func UNIV (Inl ` A1 \<union> {Inr ()})|"
traytel@52635
   164
  unfolding cexp_def cone_def Field_csum Field_card_of by (auto dest: Field_card_order)
traytel@52635
   165
traytel@52635
   166
lemma If_the_inv_into_in_Func:
traytel@52635
   167
  "\<lbrakk>inj_on g C; C \<subseteq> B \<union> {x}\<rbrakk> \<Longrightarrow>
traytel@52635
   168
  (\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<in> Func UNIV (B \<union> {x})"
traytel@52635
   169
unfolding Func_def by (auto dest: the_inv_into_into)
traytel@52635
   170
traytel@52635
   171
lemma If_the_inv_into_f_f:
traytel@52635
   172
  "\<lbrakk>i \<in> C; inj_on g C\<rbrakk> \<Longrightarrow>
blanchet@56635
   173
  ((\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<circ> g) i = id i"
traytel@52635
   174
unfolding Func_def by (auto elim: the_inv_into_f_f)
traytel@52635
   175
blanchet@56635
   176
lemma the_inv_f_o_f_id: "inj f \<Longrightarrow> (the_inv f \<circ> f) z = id z"
blanchet@56635
   177
  by (simp add: the_inv_f_f)
blanchet@56635
   178
traytel@52731
   179
lemma vimage2pI: "R (f x) (g y) \<Longrightarrow> vimage2p f g R x y"
traytel@52731
   180
  unfolding vimage2p_def by -
traytel@52719
   181
blanchet@55945
   182
lemma rel_fun_iff_leq_vimage2p: "(rel_fun R S) f g = (R \<le> vimage2p f g S)"
blanchet@55945
   183
  unfolding rel_fun_def vimage2p_def by auto
traytel@52719
   184
wenzelm@57641
   185
lemma convol_image_vimage2p: "\<langle>f \<circ> fst, g \<circ> snd\<rangle> ` Collect (split (vimage2p f g R)) \<subseteq> Collect (split R)"
traytel@52731
   186
  unfolding vimage2p_def convol_def by auto
traytel@52719
   187
traytel@54961
   188
lemma vimage2p_Grp: "vimage2p f g P = Grp UNIV f OO P OO (Grp UNIV g)\<inverse>\<inverse>"
traytel@54961
   189
  unfolding vimage2p_def Grp_def by auto
traytel@54961
   190
blanchet@57398
   191
ML_file "Tools/BNF/bnf_util.ML"
blanchet@57398
   192
ML_file "Tools/BNF/bnf_tactics.ML"
blanchet@55062
   193
ML_file "Tools/BNF/bnf_def_tactics.ML"
blanchet@55062
   194
ML_file "Tools/BNF/bnf_def.ML"
blanchet@49309
   195
blanchet@48975
   196
end