src/HOL/Probability/Probability_Mass_Function.thy
author haftmann
Sun Nov 18 18:07:51 2018 +0000 (8 months ago)
changeset 69313 b021008c5397
parent 68386 98cf1c823c48
child 69529 4ab9657b3257
permissions -rw-r--r--
removed legacy input syntax
hoelzl@58606
     1
(*  Title:      HOL/Probability/Probability_Mass_Function.thy
lp15@59667
     2
    Author:     Johannes Hölzl, TU München
Andreas@59023
     3
    Author:     Andreas Lochbihler, ETH Zurich
Andreas@59023
     4
*)
hoelzl@58606
     5
hoelzl@59000
     6
section \<open> Probability mass function \<close>
hoelzl@59000
     7
hoelzl@58587
     8
theory Probability_Mass_Function
hoelzl@59000
     9
imports
hoelzl@59000
    10
  Giry_Monad
wenzelm@66453
    11
  "HOL-Library.Multiset"
hoelzl@58587
    12
begin
hoelzl@58587
    13
hoelzl@59664
    14
lemma AE_emeasure_singleton:
hoelzl@59664
    15
  assumes x: "emeasure M {x} \<noteq> 0" and ae: "AE x in M. P x" shows "P x"
hoelzl@59664
    16
proof -
hoelzl@59664
    17
  from x have x_M: "{x} \<in> sets M"
hoelzl@59664
    18
    by (auto intro: emeasure_notin_sets)
hoelzl@59664
    19
  from ae obtain N where N: "{x\<in>space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
hoelzl@59664
    20
    by (auto elim: AE_E)
hoelzl@59664
    21
  { assume "\<not> P x"
hoelzl@59664
    22
    with x_M[THEN sets.sets_into_space] N have "emeasure M {x} \<le> emeasure M N"
hoelzl@59664
    23
      by (intro emeasure_mono) auto
hoelzl@59664
    24
    with x N have False
hoelzl@62975
    25
      by (auto simp:) }
hoelzl@59664
    26
  then show "P x" by auto
hoelzl@59664
    27
qed
hoelzl@59664
    28
hoelzl@59664
    29
lemma AE_measure_singleton: "measure M {x} \<noteq> 0 \<Longrightarrow> AE x in M. P x \<Longrightarrow> P x"
hoelzl@59664
    30
  by (metis AE_emeasure_singleton measure_def emeasure_empty measure_empty)
hoelzl@59664
    31
hoelzl@59000
    32
lemma (in finite_measure) AE_support_countable:
hoelzl@59000
    33
  assumes [simp]: "sets M = UNIV"
hoelzl@59000
    34
  shows "(AE x in M. measure M {x} \<noteq> 0) \<longleftrightarrow> (\<exists>S. countable S \<and> (AE x in M. x \<in> S))"
hoelzl@59000
    35
proof
hoelzl@59000
    36
  assume "\<exists>S. countable S \<and> (AE x in M. x \<in> S)"
hoelzl@59000
    37
  then obtain S where S[intro]: "countable S" and ae: "AE x in M. x \<in> S"
hoelzl@59000
    38
    by auto
lp15@59667
    39
  then have "emeasure M (\<Union>x\<in>{x\<in>S. emeasure M {x} \<noteq> 0}. {x}) =
hoelzl@59000
    40
    (\<integral>\<^sup>+ x. emeasure M {x} * indicator {x\<in>S. emeasure M {x} \<noteq> 0} x \<partial>count_space UNIV)"
hoelzl@59000
    41
    by (subst emeasure_UN_countable)
hoelzl@59000
    42
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
hoelzl@59000
    43
  also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} * indicator S x \<partial>count_space UNIV)"
hoelzl@59000
    44
    by (auto intro!: nn_integral_cong split: split_indicator)
hoelzl@59000
    45
  also have "\<dots> = emeasure M (\<Union>x\<in>S. {x})"
hoelzl@59000
    46
    by (subst emeasure_UN_countable)
hoelzl@59000
    47
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
hoelzl@59000
    48
  also have "\<dots> = emeasure M (space M)"
hoelzl@59000
    49
    using ae by (intro emeasure_eq_AE) auto
hoelzl@59000
    50
  finally have "emeasure M {x \<in> space M. x\<in>S \<and> emeasure M {x} \<noteq> 0} = emeasure M (space M)"
hoelzl@59000
    51
    by (simp add: emeasure_single_in_space cong: rev_conj_cong)
hoelzl@59000
    52
  with finite_measure_compl[of "{x \<in> space M. x\<in>S \<and> emeasure M {x} \<noteq> 0}"]
hoelzl@59000
    53
  have "AE x in M. x \<in> S \<and> emeasure M {x} \<noteq> 0"
hoelzl@62975
    54
    by (intro AE_I[OF order_refl]) (auto simp: emeasure_eq_measure measure_nonneg set_diff_eq cong: conj_cong)
hoelzl@59000
    55
  then show "AE x in M. measure M {x} \<noteq> 0"
hoelzl@59000
    56
    by (auto simp: emeasure_eq_measure)
hoelzl@59000
    57
qed (auto intro!: exI[of _ "{x. measure M {x} \<noteq> 0}"] countable_support)
hoelzl@59000
    58
hoelzl@59664
    59
subsection \<open> PMF as measure \<close>
hoelzl@59000
    60
hoelzl@58587
    61
typedef 'a pmf = "{M :: 'a measure. prob_space M \<and> sets M = UNIV \<and> (AE x in M. measure M {x} \<noteq> 0)}"
hoelzl@58587
    62
  morphisms measure_pmf Abs_pmf
hoelzl@58606
    63
  by (intro exI[of _ "uniform_measure (count_space UNIV) {undefined}"])
hoelzl@58606
    64
     (auto intro!: prob_space_uniform_measure AE_uniform_measureI)
hoelzl@58587
    65
hoelzl@58587
    66
declare [[coercion measure_pmf]]
hoelzl@58587
    67
hoelzl@58587
    68
lemma prob_space_measure_pmf: "prob_space (measure_pmf p)"
hoelzl@58587
    69
  using pmf.measure_pmf[of p] by auto
hoelzl@58587
    70
wenzelm@61605
    71
interpretation measure_pmf: prob_space "measure_pmf M" for M
hoelzl@58587
    72
  by (rule prob_space_measure_pmf)
hoelzl@58587
    73
wenzelm@61605
    74
interpretation measure_pmf: subprob_space "measure_pmf M" for M
hoelzl@59000
    75
  by (rule prob_space_imp_subprob_space) unfold_locales
hoelzl@59000
    76
hoelzl@59048
    77
lemma subprob_space_measure_pmf: "subprob_space (measure_pmf x)"
hoelzl@59048
    78
  by unfold_locales
hoelzl@59048
    79
hoelzl@58587
    80
locale pmf_as_measure
hoelzl@58587
    81
begin
hoelzl@58587
    82
hoelzl@58587
    83
setup_lifting type_definition_pmf
hoelzl@58587
    84
hoelzl@58587
    85
end
hoelzl@58587
    86
hoelzl@58587
    87
context
hoelzl@58587
    88
begin
hoelzl@58587
    89
hoelzl@58587
    90
interpretation pmf_as_measure .
hoelzl@58587
    91
hoelzl@58587
    92
lemma sets_measure_pmf[simp]: "sets (measure_pmf p) = UNIV"
lp15@59667
    93
  by transfer blast
hoelzl@58587
    94
hoelzl@59048
    95
lemma sets_measure_pmf_count_space[measurable_cong]:
hoelzl@59048
    96
  "sets (measure_pmf M) = sets (count_space UNIV)"
hoelzl@59000
    97
  by simp
hoelzl@59000
    98
hoelzl@58587
    99
lemma space_measure_pmf[simp]: "space (measure_pmf p) = UNIV"
hoelzl@58587
   100
  using sets_eq_imp_space_eq[of "measure_pmf p" "count_space UNIV"] by simp
hoelzl@58587
   101
Andreas@61634
   102
lemma measure_pmf_UNIV [simp]: "measure (measure_pmf p) UNIV = 1"
Andreas@61634
   103
using measure_pmf.prob_space[of p] by simp
Andreas@61634
   104
hoelzl@59048
   105
lemma measure_pmf_in_subprob_algebra[measurable (raw)]: "measure_pmf x \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59048
   106
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)
hoelzl@59048
   107
hoelzl@58587
   108
lemma measurable_pmf_measure1[simp]: "measurable (M :: 'a pmf) N = UNIV \<rightarrow> space N"
hoelzl@58587
   109
  by (auto simp: measurable_def)
hoelzl@58587
   110
hoelzl@58587
   111
lemma measurable_pmf_measure2[simp]: "measurable N (M :: 'a pmf) = measurable N (count_space UNIV)"
hoelzl@58587
   112
  by (intro measurable_cong_sets) simp_all
hoelzl@58587
   113
hoelzl@59664
   114
lemma measurable_pair_restrict_pmf2:
hoelzl@59664
   115
  assumes "countable A"
hoelzl@59664
   116
  assumes [measurable]: "\<And>y. y \<in> A \<Longrightarrow> (\<lambda>x. f (x, y)) \<in> measurable M L"
hoelzl@59664
   117
  shows "f \<in> measurable (M \<Otimes>\<^sub>M restrict_space (measure_pmf N) A) L" (is "f \<in> measurable ?M _")
hoelzl@59664
   118
proof -
hoelzl@59664
   119
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
hoelzl@59664
   120
    by (simp add: restrict_count_space)
hoelzl@58587
   121
hoelzl@59664
   122
  show ?thesis
hoelzl@59664
   123
    by (intro measurable_compose_countable'[where f="\<lambda>a b. f (fst b, a)" and g=snd and I=A,
haftmann@61424
   124
                                            unfolded prod.collapse] assms)
hoelzl@59664
   125
        measurable
hoelzl@59664
   126
qed
hoelzl@58587
   127
hoelzl@59664
   128
lemma measurable_pair_restrict_pmf1:
hoelzl@59664
   129
  assumes "countable A"
hoelzl@59664
   130
  assumes [measurable]: "\<And>x. x \<in> A \<Longrightarrow> (\<lambda>y. f (x, y)) \<in> measurable N L"
hoelzl@59664
   131
  shows "f \<in> measurable (restrict_space (measure_pmf M) A \<Otimes>\<^sub>M N) L"
hoelzl@59664
   132
proof -
hoelzl@59664
   133
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
hoelzl@59664
   134
    by (simp add: restrict_count_space)
hoelzl@59000
   135
hoelzl@59664
   136
  show ?thesis
hoelzl@59664
   137
    by (intro measurable_compose_countable'[where f="\<lambda>a b. f (a, snd b)" and g=fst and I=A,
haftmann@61424
   138
                                            unfolded prod.collapse] assms)
hoelzl@59664
   139
        measurable
hoelzl@59664
   140
qed
hoelzl@59664
   141
hoelzl@59664
   142
lift_definition pmf :: "'a pmf \<Rightarrow> 'a \<Rightarrow> real" is "\<lambda>M x. measure M {x}" .
hoelzl@59664
   143
hoelzl@59664
   144
lift_definition set_pmf :: "'a pmf \<Rightarrow> 'a set" is "\<lambda>M. {x. measure M {x} \<noteq> 0}" .
hoelzl@59664
   145
declare [[coercion set_pmf]]
hoelzl@58587
   146
hoelzl@58587
   147
lemma AE_measure_pmf: "AE x in (M::'a pmf). x \<in> M"
hoelzl@58587
   148
  by transfer simp
hoelzl@58587
   149
hoelzl@58587
   150
lemma emeasure_pmf_single_eq_zero_iff:
hoelzl@58587
   151
  fixes M :: "'a pmf"
hoelzl@58587
   152
  shows "emeasure M {y} = 0 \<longleftrightarrow> y \<notin> M"
hoelzl@62975
   153
  unfolding set_pmf.rep_eq by (simp add: measure_pmf.emeasure_eq_measure)
hoelzl@58587
   154
hoelzl@58587
   155
lemma AE_measure_pmf_iff: "(AE x in measure_pmf M. P x) \<longleftrightarrow> (\<forall>y\<in>M. P y)"
hoelzl@59664
   156
  using AE_measure_singleton[of M] AE_measure_pmf[of M]
hoelzl@59664
   157
  by (auto simp: set_pmf.rep_eq)
hoelzl@59664
   158
Andreas@61634
   159
lemma AE_pmfI: "(\<And>y. y \<in> set_pmf M \<Longrightarrow> P y) \<Longrightarrow> almost_everywhere (measure_pmf M) P"
Andreas@61634
   160
by(simp add: AE_measure_pmf_iff)
Andreas@61634
   161
hoelzl@59664
   162
lemma countable_set_pmf [simp]: "countable (set_pmf p)"
hoelzl@59664
   163
  by transfer (metis prob_space.finite_measure finite_measure.countable_support)
hoelzl@59664
   164
hoelzl@59664
   165
lemma pmf_positive: "x \<in> set_pmf p \<Longrightarrow> 0 < pmf p x"
hoelzl@62975
   166
  by transfer (simp add: less_le)
hoelzl@59664
   167
hoelzl@62975
   168
lemma pmf_nonneg[simp]: "0 \<le> pmf p x"
hoelzl@62975
   169
  by transfer simp
hoelzl@63886
   170
eberlm@63099
   171
lemma pmf_not_neg [simp]: "\<not>pmf p x < 0"
eberlm@63099
   172
  by (simp add: not_less pmf_nonneg)
eberlm@63099
   173
eberlm@63099
   174
lemma pmf_pos [simp]: "pmf p x \<noteq> 0 \<Longrightarrow> pmf p x > 0"
eberlm@63099
   175
  using pmf_nonneg[of p x] by linarith
hoelzl@59664
   176
hoelzl@59664
   177
lemma pmf_le_1: "pmf p x \<le> 1"
hoelzl@59664
   178
  by (simp add: pmf.rep_eq)
hoelzl@58587
   179
hoelzl@58587
   180
lemma set_pmf_not_empty: "set_pmf M \<noteq> {}"
hoelzl@58587
   181
  using AE_measure_pmf[of M] by (intro notI) simp
hoelzl@58587
   182
hoelzl@58587
   183
lemma set_pmf_iff: "x \<in> set_pmf M \<longleftrightarrow> pmf M x \<noteq> 0"
hoelzl@58587
   184
  by transfer simp
hoelzl@58587
   185
hoelzl@62975
   186
lemma pmf_positive_iff: "0 < pmf p x \<longleftrightarrow> x \<in> set_pmf p"
hoelzl@62975
   187
  unfolding less_le by (simp add: set_pmf_iff)
hoelzl@62975
   188
hoelzl@59664
   189
lemma set_pmf_eq: "set_pmf M = {x. pmf M x \<noteq> 0}"
hoelzl@59664
   190
  by (auto simp: set_pmf_iff)
hoelzl@59664
   191
eberlm@63099
   192
lemma set_pmf_eq': "set_pmf p = {x. pmf p x > 0}"
eberlm@63099
   193
proof safe
eberlm@63099
   194
  fix x assume "x \<in> set_pmf p"
eberlm@63099
   195
  hence "pmf p x \<noteq> 0" by (auto simp: set_pmf_eq)
eberlm@63099
   196
  with pmf_nonneg[of p x] show "pmf p x > 0" by simp
eberlm@63099
   197
qed (auto simp: set_pmf_eq)
eberlm@63099
   198
hoelzl@59664
   199
lemma emeasure_pmf_single:
hoelzl@59664
   200
  fixes M :: "'a pmf"
hoelzl@59664
   201
  shows "emeasure M {x} = pmf M x"
hoelzl@59664
   202
  by transfer (simp add: finite_measure.emeasure_eq_measure[OF prob_space.finite_measure])
hoelzl@59664
   203
Andreas@60068
   204
lemma measure_pmf_single: "measure (measure_pmf M) {x} = pmf M x"
hoelzl@62975
   205
  using emeasure_pmf_single[of M x] by(simp add: measure_pmf.emeasure_eq_measure pmf_nonneg measure_nonneg)
Andreas@60068
   206
hoelzl@59000
   207
lemma emeasure_measure_pmf_finite: "finite S \<Longrightarrow> emeasure (measure_pmf M) S = (\<Sum>s\<in>S. pmf M s)"
nipkow@64267
   208
  by (subst emeasure_eq_sum_singleton) (auto simp: emeasure_pmf_single pmf_nonneg)
hoelzl@59000
   209
nipkow@64267
   210
lemma measure_measure_pmf_finite: "finite S \<Longrightarrow> measure (measure_pmf M) S = sum (pmf M) S"
hoelzl@62975
   211
  using emeasure_measure_pmf_finite[of S M]
nipkow@64267
   212
  by (simp add: measure_pmf.emeasure_eq_measure measure_nonneg sum_nonneg pmf_nonneg)
Andreas@59023
   213
nipkow@64267
   214
lemma sum_pmf_eq_1:
eberlm@63099
   215
  assumes "finite A" "set_pmf p \<subseteq> A"
eberlm@63099
   216
  shows   "(\<Sum>x\<in>A. pmf p x) = 1"
eberlm@63099
   217
proof -
eberlm@63099
   218
  have "(\<Sum>x\<in>A. pmf p x) = measure_pmf.prob p A"
eberlm@63099
   219
    by (simp add: measure_measure_pmf_finite assms)
eberlm@63099
   220
  also from assms have "\<dots> = 1"
eberlm@63099
   221
    by (subst measure_pmf.prob_eq_1) (auto simp: AE_measure_pmf_iff)
eberlm@63099
   222
  finally show ?thesis .
eberlm@63099
   223
qed
eberlm@63099
   224
hoelzl@59000
   225
lemma nn_integral_measure_pmf_support:
hoelzl@62975
   226
  fixes f :: "'a \<Rightarrow> ennreal"
hoelzl@59000
   227
  assumes f: "finite A" and nn: "\<And>x. x \<in> A \<Longrightarrow> 0 \<le> f x" "\<And>x. x \<in> set_pmf M \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = 0"
hoelzl@59000
   228
  shows "(\<integral>\<^sup>+x. f x \<partial>measure_pmf M) = (\<Sum>x\<in>A. f x * pmf M x)"
hoelzl@59000
   229
proof -
hoelzl@59000
   230
  have "(\<integral>\<^sup>+x. f x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M)"
hoelzl@59000
   231
    using nn by (intro nn_integral_cong_AE) (auto simp: AE_measure_pmf_iff split: split_indicator)
hoelzl@59000
   232
  also have "\<dots> = (\<Sum>x\<in>A. f x * emeasure M {x})"
hoelzl@59000
   233
    using assms by (intro nn_integral_indicator_finite) auto
hoelzl@59000
   234
  finally show ?thesis
hoelzl@59000
   235
    by (simp add: emeasure_measure_pmf_finite)
hoelzl@59000
   236
qed
hoelzl@59000
   237
hoelzl@59000
   238
lemma nn_integral_measure_pmf_finite:
hoelzl@62975
   239
  fixes f :: "'a \<Rightarrow> ennreal"
hoelzl@59000
   240
  assumes f: "finite (set_pmf M)" and nn: "\<And>x. x \<in> set_pmf M \<Longrightarrow> 0 \<le> f x"
hoelzl@59000
   241
  shows "(\<integral>\<^sup>+x. f x \<partial>measure_pmf M) = (\<Sum>x\<in>set_pmf M. f x * pmf M x)"
hoelzl@59000
   242
  using assms by (intro nn_integral_measure_pmf_support) auto
hoelzl@62975
   243
hoelzl@59000
   244
lemma integrable_measure_pmf_finite:
hoelzl@59000
   245
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
hoelzl@59000
   246
  shows "finite (set_pmf M) \<Longrightarrow> integrable M f"
hoelzl@62975
   247
  by (auto intro!: integrableI_bounded simp: nn_integral_measure_pmf_finite ennreal_mult_less_top)
hoelzl@59000
   248
hoelzl@64008
   249
lemma integral_measure_pmf_real:
hoelzl@59000
   250
  assumes [simp]: "finite A" and "\<And>a. a \<in> set_pmf M \<Longrightarrow> f a \<noteq> 0 \<Longrightarrow> a \<in> A"
hoelzl@59000
   251
  shows "(\<integral>x. f x \<partial>measure_pmf M) = (\<Sum>a\<in>A. f a * pmf M a)"
hoelzl@59000
   252
proof -
hoelzl@59000
   253
  have "(\<integral>x. f x \<partial>measure_pmf M) = (\<integral>x. f x * indicator A x \<partial>measure_pmf M)"
hoelzl@59000
   254
    using assms(2) by (intro integral_cong_AE) (auto split: split_indicator simp: AE_measure_pmf_iff)
hoelzl@59000
   255
  also have "\<dots> = (\<Sum>a\<in>A. f a * pmf M a)"
hoelzl@62975
   256
    by (subst integral_indicator_finite_real)
hoelzl@62975
   257
       (auto simp: measure_def emeasure_measure_pmf_finite pmf_nonneg)
hoelzl@59000
   258
  finally show ?thesis .
hoelzl@59000
   259
qed
hoelzl@59000
   260
hoelzl@59000
   261
lemma integrable_pmf: "integrable (count_space X) (pmf M)"
hoelzl@59000
   262
proof -
hoelzl@59000
   263
  have " (\<integral>\<^sup>+ x. pmf M x \<partial>count_space X) = (\<integral>\<^sup>+ x. pmf M x \<partial>count_space (M \<inter> X))"
hoelzl@59000
   264
    by (auto simp add: nn_integral_count_space_indicator set_pmf_iff intro!: nn_integral_cong split: split_indicator)
hoelzl@59000
   265
  then have "integrable (count_space X) (pmf M) = integrable (count_space (M \<inter> X)) (pmf M)"
hoelzl@59000
   266
    by (simp add: integrable_iff_bounded pmf_nonneg)
hoelzl@59000
   267
  then show ?thesis
Andreas@59023
   268
    by (simp add: pmf.rep_eq measure_pmf.integrable_measure disjoint_family_on_def)
hoelzl@59000
   269
qed
hoelzl@59000
   270
hoelzl@59000
   271
lemma integral_pmf: "(\<integral>x. pmf M x \<partial>count_space X) = measure M X"
hoelzl@59000
   272
proof -
hoelzl@59000
   273
  have "(\<integral>x. pmf M x \<partial>count_space X) = (\<integral>\<^sup>+x. pmf M x \<partial>count_space X)"
hoelzl@59000
   274
    by (simp add: pmf_nonneg integrable_pmf nn_integral_eq_integral)
hoelzl@59000
   275
  also have "\<dots> = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space (X \<inter> M))"
hoelzl@59000
   276
    by (auto intro!: nn_integral_cong_AE split: split_indicator
hoelzl@59000
   277
             simp: pmf.rep_eq measure_pmf.emeasure_eq_measure nn_integral_count_space_indicator
hoelzl@59000
   278
                   AE_count_space set_pmf_iff)
hoelzl@59000
   279
  also have "\<dots> = emeasure M (X \<inter> M)"
hoelzl@59000
   280
    by (rule emeasure_countable_singleton[symmetric]) (auto intro: countable_set_pmf)
hoelzl@59000
   281
  also have "\<dots> = emeasure M X"
hoelzl@59000
   282
    by (auto intro!: emeasure_eq_AE simp: AE_measure_pmf_iff)
hoelzl@59000
   283
  finally show ?thesis
hoelzl@62975
   284
    by (simp add: measure_pmf.emeasure_eq_measure measure_nonneg integral_nonneg pmf_nonneg)
hoelzl@59000
   285
qed
hoelzl@59000
   286
hoelzl@59000
   287
lemma integral_pmf_restrict:
hoelzl@59000
   288
  "(f::'a \<Rightarrow> 'b::{banach, second_countable_topology}) \<in> borel_measurable (count_space UNIV) \<Longrightarrow>
hoelzl@59000
   289
    (\<integral>x. f x \<partial>measure_pmf M) = (\<integral>x. f x \<partial>restrict_space M M)"
hoelzl@59000
   290
  by (auto intro!: integral_cong_AE simp add: integral_restrict_space AE_measure_pmf_iff)
hoelzl@59000
   291
hoelzl@58587
   292
lemma emeasure_pmf: "emeasure (M::'a pmf) M = 1"
hoelzl@58587
   293
proof -
hoelzl@58587
   294
  have "emeasure (M::'a pmf) M = emeasure (M::'a pmf) (space M)"
hoelzl@58587
   295
    by (intro emeasure_eq_AE) (simp_all add: AE_measure_pmf)
hoelzl@58587
   296
  then show ?thesis
hoelzl@58587
   297
    using measure_pmf.emeasure_space_1 by simp
hoelzl@58587
   298
qed
hoelzl@58587
   299
Andreas@59490
   300
lemma emeasure_pmf_UNIV [simp]: "emeasure (measure_pmf M) UNIV = 1"
Andreas@59490
   301
using measure_pmf.emeasure_space_1[of M] by simp
Andreas@59490
   302
Andreas@59023
   303
lemma in_null_sets_measure_pmfI:
Andreas@59023
   304
  "A \<inter> set_pmf p = {} \<Longrightarrow> A \<in> null_sets (measure_pmf p)"
Andreas@59023
   305
using emeasure_eq_0_AE[where ?P="\<lambda>x. x \<in> A" and M="measure_pmf p"]
Andreas@59023
   306
by(auto simp add: null_sets_def AE_measure_pmf_iff)
Andreas@59023
   307
hoelzl@59664
   308
lemma measure_subprob: "measure_pmf M \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59664
   309
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)
hoelzl@59664
   310
hoelzl@59664
   311
subsection \<open> Monad Interpretation \<close>
hoelzl@59664
   312
hoelzl@59664
   313
lemma measurable_measure_pmf[measurable]:
hoelzl@59664
   314
  "(\<lambda>x. measure_pmf (M x)) \<in> measurable (count_space UNIV) (subprob_algebra (count_space UNIV))"
hoelzl@59664
   315
  by (auto simp: space_subprob_algebra intro!: prob_space_imp_subprob_space) unfold_locales
hoelzl@59664
   316
hoelzl@59664
   317
lemma bind_measure_pmf_cong:
hoelzl@59664
   318
  assumes "\<And>x. A x \<in> space (subprob_algebra N)" "\<And>x. B x \<in> space (subprob_algebra N)"
hoelzl@59664
   319
  assumes "\<And>i. i \<in> set_pmf x \<Longrightarrow> A i = B i"
hoelzl@59664
   320
  shows "bind (measure_pmf x) A = bind (measure_pmf x) B"
hoelzl@59664
   321
proof (rule measure_eqI)
wenzelm@62026
   322
  show "sets (measure_pmf x \<bind> A) = sets (measure_pmf x \<bind> B)"
hoelzl@59664
   323
    using assms by (subst (1 2) sets_bind) (auto simp: space_subprob_algebra)
hoelzl@59664
   324
next
wenzelm@62026
   325
  fix X assume "X \<in> sets (measure_pmf x \<bind> A)"
hoelzl@59664
   326
  then have X: "X \<in> sets N"
hoelzl@59664
   327
    using assms by (subst (asm) sets_bind) (auto simp: space_subprob_algebra)
wenzelm@62026
   328
  show "emeasure (measure_pmf x \<bind> A) X = emeasure (measure_pmf x \<bind> B) X"
hoelzl@59664
   329
    using assms
hoelzl@59664
   330
    by (subst (1 2) emeasure_bind[where N=N, OF _ _ X])
hoelzl@59664
   331
       (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
hoelzl@59664
   332
qed
hoelzl@59664
   333
hoelzl@59664
   334
lift_definition bind_pmf :: "'a pmf \<Rightarrow> ('a \<Rightarrow> 'b pmf ) \<Rightarrow> 'b pmf" is bind
hoelzl@59664
   335
proof (clarify, intro conjI)
hoelzl@59664
   336
  fix f :: "'a measure" and g :: "'a \<Rightarrow> 'b measure"
hoelzl@59664
   337
  assume "prob_space f"
hoelzl@59664
   338
  then interpret f: prob_space f .
hoelzl@59664
   339
  assume "sets f = UNIV" and ae_f: "AE x in f. measure f {x} \<noteq> 0"
hoelzl@59664
   340
  then have s_f[simp]: "sets f = sets (count_space UNIV)"
hoelzl@59664
   341
    by simp
hoelzl@59664
   342
  assume g: "\<And>x. prob_space (g x) \<and> sets (g x) = UNIV \<and> (AE y in g x. measure (g x) {y} \<noteq> 0)"
hoelzl@59664
   343
  then have g: "\<And>x. prob_space (g x)" and s_g[simp]: "\<And>x. sets (g x) = sets (count_space UNIV)"
hoelzl@59664
   344
    and ae_g: "\<And>x. AE y in g x. measure (g x) {y} \<noteq> 0"
hoelzl@59664
   345
    by auto
hoelzl@59664
   346
hoelzl@59664
   347
  have [measurable]: "g \<in> measurable f (subprob_algebra (count_space UNIV))"
hoelzl@59664
   348
    by (auto simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space g)
lp15@59667
   349
wenzelm@62026
   350
  show "prob_space (f \<bind> g)"
hoelzl@59664
   351
    using g by (intro f.prob_space_bind[where S="count_space UNIV"]) auto
wenzelm@62026
   352
  then interpret fg: prob_space "f \<bind> g" .
wenzelm@62026
   353
  show [simp]: "sets (f \<bind> g) = UNIV"
hoelzl@59664
   354
    using sets_eq_imp_space_eq[OF s_f]
hoelzl@59664
   355
    by (subst sets_bind[where N="count_space UNIV"]) auto
wenzelm@62026
   356
  show "AE x in f \<bind> g. measure (f \<bind> g) {x} \<noteq> 0"
hoelzl@59664
   357
    apply (simp add: fg.prob_eq_0 AE_bind[where B="count_space UNIV"])
hoelzl@59664
   358
    using ae_f
hoelzl@59664
   359
    apply eventually_elim
hoelzl@59664
   360
    using ae_g
hoelzl@59664
   361
    apply eventually_elim
hoelzl@59664
   362
    apply (auto dest: AE_measure_singleton)
hoelzl@59664
   363
    done
hoelzl@59664
   364
qed
hoelzl@59664
   365
eberlm@63099
   366
adhoc_overloading Monad_Syntax.bind bind_pmf
eberlm@63099
   367
hoelzl@62975
   368
lemma ennreal_pmf_bind: "pmf (bind_pmf N f) i = (\<integral>\<^sup>+x. pmf (f x) i \<partial>measure_pmf N)"
hoelzl@59664
   369
  unfolding pmf.rep_eq bind_pmf.rep_eq
hoelzl@59664
   370
  by (auto simp: measure_pmf.measure_bind[where N="count_space UNIV"] measure_subprob measure_nonneg
hoelzl@59664
   371
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])
hoelzl@59664
   372
hoelzl@59664
   373
lemma pmf_bind: "pmf (bind_pmf N f) i = (\<integral>x. pmf (f x) i \<partial>measure_pmf N)"
hoelzl@62975
   374
  using ennreal_pmf_bind[of N f i]
hoelzl@59664
   375
  by (subst (asm) nn_integral_eq_integral)
hoelzl@62975
   376
     (auto simp: pmf_nonneg pmf_le_1 pmf_nonneg integral_nonneg
hoelzl@59664
   377
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])
hoelzl@59664
   378
hoelzl@59664
   379
lemma bind_pmf_const[simp]: "bind_pmf M (\<lambda>x. c) = c"
hoelzl@59664
   380
  by transfer (simp add: bind_const' prob_space_imp_subprob_space)
hoelzl@59664
   381
hoelzl@59665
   382
lemma set_bind_pmf[simp]: "set_pmf (bind_pmf M N) = (\<Union>M\<in>set_pmf M. set_pmf (N M))"
hoelzl@62975
   383
proof -
hoelzl@62975
   384
  have "set_pmf (bind_pmf M N) = {x. ennreal (pmf (bind_pmf M N) x) \<noteq> 0}"
hoelzl@62975
   385
    by (simp add: set_pmf_eq pmf_nonneg)
hoelzl@62975
   386
  also have "\<dots> = (\<Union>M\<in>set_pmf M. set_pmf (N M))"
hoelzl@62975
   387
    unfolding ennreal_pmf_bind
hoelzl@62975
   388
    by (subst nn_integral_0_iff_AE) (auto simp: AE_measure_pmf_iff pmf_nonneg set_pmf_eq)
hoelzl@62975
   389
  finally show ?thesis .
hoelzl@62975
   390
qed
hoelzl@59664
   391
eberlm@63099
   392
lemma bind_pmf_cong [fundef_cong]:
hoelzl@59664
   393
  assumes "p = q"
hoelzl@59664
   394
  shows "(\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> bind_pmf p f = bind_pmf q g"
wenzelm@61808
   395
  unfolding \<open>p = q\<close>[symmetric] measure_pmf_inject[symmetric] bind_pmf.rep_eq
hoelzl@59664
   396
  by (auto simp: AE_measure_pmf_iff Pi_iff space_subprob_algebra subprob_space_measure_pmf
hoelzl@59664
   397
                 sets_bind[where N="count_space UNIV"] emeasure_bind[where N="count_space UNIV"]
hoelzl@59664
   398
           intro!: nn_integral_cong_AE measure_eqI)
hoelzl@59664
   399
hoelzl@59664
   400
lemma bind_pmf_cong_simp:
hoelzl@59664
   401
  "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q =simp=> f x = g x) \<Longrightarrow> bind_pmf p f = bind_pmf q g"
hoelzl@59664
   402
  by (simp add: simp_implies_def cong: bind_pmf_cong)
hoelzl@59664
   403
wenzelm@62026
   404
lemma measure_pmf_bind: "measure_pmf (bind_pmf M f) = (measure_pmf M \<bind> (\<lambda>x. measure_pmf (f x)))"
hoelzl@59664
   405
  by transfer simp
hoelzl@59664
   406
hoelzl@59664
   407
lemma nn_integral_bind_pmf[simp]: "(\<integral>\<^sup>+x. f x \<partial>bind_pmf M N) = (\<integral>\<^sup>+x. \<integral>\<^sup>+y. f y \<partial>N x \<partial>M)"
hoelzl@59664
   408
  using measurable_measure_pmf[of N]
hoelzl@59664
   409
  unfolding measure_pmf_bind
hoelzl@59664
   410
  apply (intro nn_integral_bind[where B="count_space UNIV"])
hoelzl@59664
   411
  apply auto
hoelzl@59664
   412
  done
hoelzl@59664
   413
hoelzl@59664
   414
lemma emeasure_bind_pmf[simp]: "emeasure (bind_pmf M N) X = (\<integral>\<^sup>+x. emeasure (N x) X \<partial>M)"
hoelzl@59664
   415
  using measurable_measure_pmf[of N]
hoelzl@59664
   416
  unfolding measure_pmf_bind
hoelzl@59664
   417
  by (subst emeasure_bind[where N="count_space UNIV"]) auto
lp15@59667
   418
hoelzl@59664
   419
lift_definition return_pmf :: "'a \<Rightarrow> 'a pmf" is "return (count_space UNIV)"
hoelzl@59664
   420
  by (auto intro!: prob_space_return simp: AE_return measure_return)
hoelzl@59664
   421
hoelzl@59664
   422
lemma bind_return_pmf: "bind_pmf (return_pmf x) f = f x"
hoelzl@59664
   423
  by transfer
hoelzl@59664
   424
     (auto intro!: prob_space_imp_subprob_space bind_return[where N="count_space UNIV"]
hoelzl@59664
   425
           simp: space_subprob_algebra)
hoelzl@59664
   426
hoelzl@59665
   427
lemma set_return_pmf[simp]: "set_pmf (return_pmf x) = {x}"
hoelzl@59664
   428
  by transfer (auto simp add: measure_return split: split_indicator)
hoelzl@59664
   429
hoelzl@59664
   430
lemma bind_return_pmf': "bind_pmf N return_pmf = N"
hoelzl@59664
   431
proof (transfer, clarify)
wenzelm@62026
   432
  fix N :: "'a measure" assume "sets N = UNIV" then show "N \<bind> return (count_space UNIV) = N"
hoelzl@59664
   433
    by (subst return_sets_cong[where N=N]) (simp_all add: bind_return')
hoelzl@59664
   434
qed
hoelzl@59664
   435
hoelzl@59664
   436
lemma bind_assoc_pmf: "bind_pmf (bind_pmf A B) C = bind_pmf A (\<lambda>x. bind_pmf (B x) C)"
hoelzl@59664
   437
  by transfer
hoelzl@59664
   438
     (auto intro!: bind_assoc[where N="count_space UNIV" and R="count_space UNIV"]
hoelzl@59664
   439
           simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space)
hoelzl@59664
   440
hoelzl@59664
   441
definition "map_pmf f M = bind_pmf M (\<lambda>x. return_pmf (f x))"
hoelzl@59664
   442
hoelzl@59664
   443
lemma map_bind_pmf: "map_pmf f (bind_pmf M g) = bind_pmf M (\<lambda>x. map_pmf f (g x))"
hoelzl@59664
   444
  by (simp add: map_pmf_def bind_assoc_pmf)
hoelzl@59664
   445
hoelzl@59664
   446
lemma bind_map_pmf: "bind_pmf (map_pmf f M) g = bind_pmf M (\<lambda>x. g (f x))"
hoelzl@59664
   447
  by (simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)
hoelzl@59664
   448
hoelzl@59664
   449
lemma map_pmf_transfer[transfer_rule]:
nipkow@67399
   450
  "rel_fun (=) (rel_fun cr_pmf cr_pmf) (\<lambda>f M. distr M (count_space UNIV) f) map_pmf"
hoelzl@59664
   451
proof -
nipkow@67399
   452
  have "rel_fun (=) (rel_fun pmf_as_measure.cr_pmf pmf_as_measure.cr_pmf)
wenzelm@62026
   453
     (\<lambda>f M. M \<bind> (return (count_space UNIV) o f)) map_pmf"
lp15@59667
   454
    unfolding map_pmf_def[abs_def] comp_def by transfer_prover
hoelzl@59664
   455
  then show ?thesis
hoelzl@59664
   456
    by (force simp: rel_fun_def cr_pmf_def bind_return_distr)
hoelzl@59664
   457
qed
hoelzl@59664
   458
hoelzl@59664
   459
lemma map_pmf_rep_eq:
hoelzl@59664
   460
  "measure_pmf (map_pmf f M) = distr (measure_pmf M) (count_space UNIV) f"
hoelzl@59664
   461
  unfolding map_pmf_def bind_pmf.rep_eq comp_def return_pmf.rep_eq
hoelzl@59664
   462
  using bind_return_distr[of M f "count_space UNIV"] by (simp add: comp_def)
hoelzl@59664
   463
hoelzl@58587
   464
lemma map_pmf_id[simp]: "map_pmf id = id"
hoelzl@58587
   465
  by (rule, transfer) (auto simp: emeasure_distr measurable_def intro!: measure_eqI)
hoelzl@58587
   466
hoelzl@59053
   467
lemma map_pmf_ident[simp]: "map_pmf (\<lambda>x. x) = (\<lambda>x. x)"
hoelzl@59053
   468
  using map_pmf_id unfolding id_def .
hoelzl@59053
   469
hoelzl@58587
   470
lemma map_pmf_compose: "map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g"
lp15@59667
   471
  by (rule, transfer) (simp add: distr_distr[symmetric, where N="count_space UNIV"] measurable_def)
hoelzl@58587
   472
hoelzl@59000
   473
lemma map_pmf_comp: "map_pmf f (map_pmf g M) = map_pmf (\<lambda>x. f (g x)) M"
hoelzl@59000
   474
  using map_pmf_compose[of f g] by (simp add: comp_def)
hoelzl@59000
   475
hoelzl@59664
   476
lemma map_pmf_cong: "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g q"
hoelzl@59664
   477
  unfolding map_pmf_def by (rule bind_pmf_cong) auto
hoelzl@59664
   478
nipkow@67399
   479
lemma pmf_set_map: "set_pmf \<circ> map_pmf f = (`) f \<circ> set_pmf"
hoelzl@59665
   480
  by (auto simp add: comp_def fun_eq_iff map_pmf_def)
hoelzl@59664
   481
hoelzl@59665
   482
lemma set_map_pmf[simp]: "set_pmf (map_pmf f M) = f`set_pmf M"
hoelzl@59664
   483
  using pmf_set_map[of f] by (auto simp: comp_def fun_eq_iff)
hoelzl@58587
   484
hoelzl@59002
   485
lemma emeasure_map_pmf[simp]: "emeasure (map_pmf f M) X = emeasure M (f -` X)"
hoelzl@59664
   486
  unfolding map_pmf_rep_eq by (subst emeasure_distr) auto
hoelzl@59002
   487
Andreas@61634
   488
lemma measure_map_pmf[simp]: "measure (map_pmf f M) X = measure M (f -` X)"
hoelzl@62975
   489
using emeasure_map_pmf[of f M X] by(simp add: measure_pmf.emeasure_eq_measure measure_nonneg)
Andreas@61634
   490
hoelzl@59002
   491
lemma nn_integral_map_pmf[simp]: "(\<integral>\<^sup>+x. f x \<partial>map_pmf g M) = (\<integral>\<^sup>+x. f (g x) \<partial>M)"
hoelzl@59664
   492
  unfolding map_pmf_rep_eq by (intro nn_integral_distr) auto
hoelzl@59002
   493
hoelzl@62975
   494
lemma ennreal_pmf_map: "pmf (map_pmf f p) x = (\<integral>\<^sup>+ y. indicator (f -` {x}) y \<partial>measure_pmf p)"
hoelzl@59664
   495
proof (transfer fixing: f x)
Andreas@59023
   496
  fix p :: "'b measure"
Andreas@59023
   497
  presume "prob_space p"
Andreas@59023
   498
  then interpret prob_space p .
Andreas@59023
   499
  presume "sets p = UNIV"
hoelzl@62975
   500
  then show "ennreal (measure (distr p (count_space UNIV) f) {x}) = integral\<^sup>N p (indicator (f -` {x}))"
hoelzl@62975
   501
    by(simp add: measure_distr measurable_def emeasure_eq_measure)
hoelzl@62975
   502
qed simp_all
hoelzl@62975
   503
hoelzl@62975
   504
lemma pmf_map: "pmf (map_pmf f p) x = measure p (f -` {x})"
hoelzl@62975
   505
proof (transfer fixing: f x)
hoelzl@62975
   506
  fix p :: "'b measure"
hoelzl@62975
   507
  presume "prob_space p"
hoelzl@62975
   508
  then interpret prob_space p .
hoelzl@62975
   509
  presume "sets p = UNIV"
hoelzl@62975
   510
  then show "measure (distr p (count_space UNIV) f) {x} = measure p (f -` {x})"
Andreas@59023
   511
    by(simp add: measure_distr measurable_def emeasure_eq_measure)
Andreas@59023
   512
qed simp_all
Andreas@59023
   513
Andreas@59023
   514
lemma nn_integral_pmf: "(\<integral>\<^sup>+ x. pmf p x \<partial>count_space A) = emeasure (measure_pmf p) A"
Andreas@59023
   515
proof -
Andreas@59023
   516
  have "(\<integral>\<^sup>+ x. pmf p x \<partial>count_space A) = (\<integral>\<^sup>+ x. pmf p x \<partial>count_space (A \<inter> set_pmf p))"
Andreas@59023
   517
    by(auto simp add: nn_integral_count_space_indicator indicator_def set_pmf_iff intro: nn_integral_cong)
Andreas@59023
   518
  also have "\<dots> = emeasure (measure_pmf p) (\<Union>x\<in>A \<inter> set_pmf p. {x})"
Andreas@59023
   519
    by(subst emeasure_UN_countable)(auto simp add: emeasure_pmf_single disjoint_family_on_def)
Andreas@59023
   520
  also have "\<dots> = emeasure (measure_pmf p) ((\<Union>x\<in>A \<inter> set_pmf p. {x}) \<union> {x. x \<in> A \<and> x \<notin> set_pmf p})"
Andreas@59023
   521
    by(rule emeasure_Un_null_set[symmetric])(auto intro: in_null_sets_measure_pmfI)
Andreas@59023
   522
  also have "\<dots> = emeasure (measure_pmf p) A"
Andreas@59023
   523
    by(auto intro: arg_cong2[where f=emeasure])
Andreas@59023
   524
  finally show ?thesis .
Andreas@59023
   525
qed
Andreas@59023
   526
hoelzl@62975
   527
lemma integral_map_pmf[simp]:
hoelzl@62975
   528
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
hoelzl@62975
   529
  shows "integral\<^sup>L (map_pmf g p) f = integral\<^sup>L p (\<lambda>x. f (g x))"
hoelzl@62975
   530
  by (simp add: integral_distr map_pmf_rep_eq)
hoelzl@62975
   531
eberlm@66568
   532
lemma pmf_abs_summable [intro]: "pmf p abs_summable_on A"
lars@67486
   533
  by (rule abs_summable_on_subset[OF _ subset_UNIV])
eberlm@66568
   534
     (auto simp:  abs_summable_on_def integrable_iff_bounded nn_integral_pmf)
eberlm@66568
   535
eberlm@66568
   536
lemma measure_pmf_conv_infsetsum: "measure (measure_pmf p) A = infsetsum (pmf p) A"
lars@67486
   537
  unfolding infsetsum_def by (simp add: integral_eq_nn_integral nn_integral_pmf measure_def)
eberlm@66568
   538
eberlm@66568
   539
lemma infsetsum_pmf_eq_1:
eberlm@66568
   540
  assumes "set_pmf p \<subseteq> A"
eberlm@66568
   541
  shows   "infsetsum (pmf p) A = 1"
eberlm@66568
   542
proof -
eberlm@66568
   543
  have "infsetsum (pmf p) A = lebesgue_integral (count_space UNIV) (pmf p)"
lp15@67977
   544
    using assms unfolding infsetsum_altdef set_lebesgue_integral_def
eberlm@66568
   545
    by (intro Bochner_Integration.integral_cong) (auto simp: indicator_def set_pmf_eq)
eberlm@66568
   546
  also have "\<dots> = 1"
eberlm@66568
   547
    by (subst integral_eq_nn_integral) (auto simp: nn_integral_pmf)
eberlm@66568
   548
  finally show ?thesis .
eberlm@66568
   549
qed
eberlm@66568
   550
Andreas@60068
   551
lemma map_return_pmf [simp]: "map_pmf f (return_pmf x) = return_pmf (f x)"
hoelzl@59664
   552
  by transfer (simp add: distr_return)
hoelzl@59664
   553
hoelzl@59664
   554
lemma map_pmf_const[simp]: "map_pmf (\<lambda>_. c) M = return_pmf c"
hoelzl@59664
   555
  by transfer (auto simp: prob_space.distr_const)
hoelzl@59664
   556
Andreas@60068
   557
lemma pmf_return [simp]: "pmf (return_pmf x) y = indicator {y} x"
hoelzl@59664
   558
  by transfer (simp add: measure_return)
hoelzl@59664
   559
hoelzl@59664
   560
lemma nn_integral_return_pmf[simp]: "0 \<le> f x \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>return_pmf x) = f x"
hoelzl@59664
   561
  unfolding return_pmf.rep_eq by (intro nn_integral_return) auto
hoelzl@59664
   562
hoelzl@59664
   563
lemma emeasure_return_pmf[simp]: "emeasure (return_pmf x) X = indicator X x"
hoelzl@59664
   564
  unfolding return_pmf.rep_eq by (intro emeasure_return) auto
hoelzl@59664
   565
eberlm@63099
   566
lemma measure_return_pmf [simp]: "measure_pmf.prob (return_pmf x) A = indicator A x"
eberlm@63099
   567
proof -
hoelzl@63886
   568
  have "ennreal (measure_pmf.prob (return_pmf x) A) =
eberlm@63099
   569
          emeasure (measure_pmf (return_pmf x)) A"
eberlm@63099
   570
    by (simp add: measure_pmf.emeasure_eq_measure)
eberlm@63099
   571
  also have "\<dots> = ennreal (indicator A x)" by (simp add: ennreal_indicator)
eberlm@63099
   572
  finally show ?thesis by simp
eberlm@63099
   573
qed
eberlm@63099
   574
hoelzl@59664
   575
lemma return_pmf_inj[simp]: "return_pmf x = return_pmf y \<longleftrightarrow> x = y"
hoelzl@59664
   576
  by (metis insertI1 set_return_pmf singletonD)
hoelzl@59664
   577
hoelzl@59665
   578
lemma map_pmf_eq_return_pmf_iff:
hoelzl@59665
   579
  "map_pmf f p = return_pmf x \<longleftrightarrow> (\<forall>y \<in> set_pmf p. f y = x)"
hoelzl@59665
   580
proof
hoelzl@59665
   581
  assume "map_pmf f p = return_pmf x"
hoelzl@59665
   582
  then have "set_pmf (map_pmf f p) = set_pmf (return_pmf x)" by simp
hoelzl@59665
   583
  then show "\<forall>y \<in> set_pmf p. f y = x" by auto
hoelzl@59665
   584
next
hoelzl@59665
   585
  assume "\<forall>y \<in> set_pmf p. f y = x"
hoelzl@59665
   586
  then show "map_pmf f p = return_pmf x"
hoelzl@59665
   587
    unfolding map_pmf_const[symmetric, of _ p] by (intro map_pmf_cong) auto
hoelzl@59665
   588
qed
hoelzl@59665
   589
hoelzl@59664
   590
definition "pair_pmf A B = bind_pmf A (\<lambda>x. bind_pmf B (\<lambda>y. return_pmf (x, y)))"
hoelzl@59664
   591
hoelzl@59664
   592
lemma pmf_pair: "pmf (pair_pmf M N) (a, b) = pmf M a * pmf N b"
hoelzl@59664
   593
  unfolding pair_pmf_def pmf_bind pmf_return
hoelzl@64008
   594
  apply (subst integral_measure_pmf_real[where A="{b}"])
hoelzl@59664
   595
  apply (auto simp: indicator_eq_0_iff)
hoelzl@64008
   596
  apply (subst integral_measure_pmf_real[where A="{a}"])
nipkow@64267
   597
  apply (auto simp: indicator_eq_0_iff sum_nonneg_eq_0_iff pmf_nonneg)
hoelzl@59664
   598
  done
hoelzl@59664
   599
hoelzl@59665
   600
lemma set_pair_pmf[simp]: "set_pmf (pair_pmf A B) = set_pmf A \<times> set_pmf B"
hoelzl@59664
   601
  unfolding pair_pmf_def set_bind_pmf set_return_pmf by auto
hoelzl@59664
   602
hoelzl@59664
   603
lemma measure_pmf_in_subprob_space[measurable (raw)]:
hoelzl@59664
   604
  "measure_pmf M \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59664
   605
  by (simp add: space_subprob_algebra) intro_locales
hoelzl@59664
   606
hoelzl@59664
   607
lemma nn_integral_pair_pmf': "(\<integral>\<^sup>+x. f x \<partial>pair_pmf A B) = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. f (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   608
proof -
hoelzl@62975
   609
  have "(\<integral>\<^sup>+x. f x \<partial>pair_pmf A B) = (\<integral>\<^sup>+x. f x * indicator (A \<times> B) x \<partial>pair_pmf A B)"
hoelzl@62975
   610
    by (auto simp: AE_measure_pmf_iff intro!: nn_integral_cong_AE)
hoelzl@62975
   611
  also have "\<dots> = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. f (a, b) * indicator (A \<times> B) (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   612
    by (simp add: pair_pmf_def)
hoelzl@62975
   613
  also have "\<dots> = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. f (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   614
    by (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
hoelzl@62975
   615
  finally show ?thesis .
hoelzl@59664
   616
qed
hoelzl@59664
   617
hoelzl@59664
   618
lemma bind_pair_pmf:
hoelzl@59664
   619
  assumes M[measurable]: "M \<in> measurable (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) (subprob_algebra N)"
wenzelm@62026
   620
  shows "measure_pmf (pair_pmf A B) \<bind> M = (measure_pmf A \<bind> (\<lambda>x. measure_pmf B \<bind> (\<lambda>y. M (x, y))))"
hoelzl@59664
   621
    (is "?L = ?R")
hoelzl@59664
   622
proof (rule measure_eqI)
hoelzl@59664
   623
  have M'[measurable]: "M \<in> measurable (pair_pmf A B) (subprob_algebra N)"
hoelzl@59664
   624
    using M[THEN measurable_space] by (simp_all add: space_pair_measure)
hoelzl@59664
   625
hoelzl@59664
   626
  note measurable_bind[where N="count_space UNIV", measurable]
hoelzl@59664
   627
  note measure_pmf_in_subprob_space[simp]
hoelzl@59664
   628
hoelzl@59664
   629
  have sets_eq_N: "sets ?L = N"
hoelzl@59664
   630
    by (subst sets_bind[OF sets_kernel[OF M']]) auto
hoelzl@59664
   631
  show "sets ?L = sets ?R"
hoelzl@59664
   632
    using measurable_space[OF M]
hoelzl@59664
   633
    by (simp add: sets_eq_N space_pair_measure space_subprob_algebra)
hoelzl@59664
   634
  fix X assume "X \<in> sets ?L"
hoelzl@59664
   635
  then have X[measurable]: "X \<in> sets N"
hoelzl@59664
   636
    unfolding sets_eq_N .
hoelzl@59664
   637
  then show "emeasure ?L X = emeasure ?R X"
hoelzl@59664
   638
    apply (simp add: emeasure_bind[OF _ M' X])
hoelzl@59664
   639
    apply (simp add: nn_integral_bind[where B="count_space UNIV"] pair_pmf_def measure_pmf_bind[of A]
hoelzl@62975
   640
                     nn_integral_measure_pmf_finite)
hoelzl@59664
   641
    apply (subst emeasure_bind[OF _ _ X])
hoelzl@59664
   642
    apply measurable
hoelzl@59664
   643
    apply (subst emeasure_bind[OF _ _ X])
hoelzl@59664
   644
    apply measurable
hoelzl@59664
   645
    done
hoelzl@59664
   646
qed
hoelzl@59664
   647
hoelzl@59664
   648
lemma map_fst_pair_pmf: "map_pmf fst (pair_pmf A B) = A"
hoelzl@59664
   649
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
   650
hoelzl@59664
   651
lemma map_snd_pair_pmf: "map_pmf snd (pair_pmf A B) = B"
hoelzl@59664
   652
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
   653
hoelzl@59664
   654
lemma nn_integral_pmf':
hoelzl@59664
   655
  "inj_on f A \<Longrightarrow> (\<integral>\<^sup>+x. pmf p (f x) \<partial>count_space A) = emeasure p (f ` A)"
hoelzl@59664
   656
  by (subst nn_integral_bij_count_space[where g=f and B="f`A"])
hoelzl@59664
   657
     (auto simp: bij_betw_def nn_integral_pmf)
hoelzl@59664
   658
hoelzl@59664
   659
lemma pmf_le_0_iff[simp]: "pmf M p \<le> 0 \<longleftrightarrow> pmf M p = 0"
hoelzl@62975
   660
  using pmf_nonneg[of M p] by arith
hoelzl@59664
   661
hoelzl@59664
   662
lemma min_pmf_0[simp]: "min (pmf M p) 0 = 0" "min 0 (pmf M p) = 0"
hoelzl@62975
   663
  using pmf_nonneg[of M p] by arith+
hoelzl@59664
   664
hoelzl@59664
   665
lemma pmf_eq_0_set_pmf: "pmf M p = 0 \<longleftrightarrow> p \<notin> set_pmf M"
hoelzl@59664
   666
  unfolding set_pmf_iff by simp
hoelzl@59664
   667
hoelzl@59664
   668
lemma pmf_map_inj: "inj_on f (set_pmf M) \<Longrightarrow> x \<in> set_pmf M \<Longrightarrow> pmf (map_pmf f M) (f x) = pmf M x"
hoelzl@59664
   669
  by (auto simp: pmf.rep_eq map_pmf_rep_eq measure_distr AE_measure_pmf_iff inj_onD
hoelzl@59664
   670
           intro!: measure_pmf.finite_measure_eq_AE)
hoelzl@59664
   671
Andreas@60068
   672
lemma pmf_map_inj': "inj f \<Longrightarrow> pmf (map_pmf f M) (f x) = pmf M x"
Andreas@60068
   673
apply(cases "x \<in> set_pmf M")
Andreas@60068
   674
 apply(simp add: pmf_map_inj[OF subset_inj_on])
Andreas@60068
   675
apply(simp add: pmf_eq_0_set_pmf[symmetric])
Andreas@60068
   676
apply(auto simp add: pmf_eq_0_set_pmf dest: injD)
Andreas@60068
   677
done
Andreas@60068
   678
Andreas@60068
   679
lemma pmf_map_outside: "x \<notin> f ` set_pmf M \<Longrightarrow> pmf (map_pmf f M) x = 0"
hoelzl@64008
   680
  unfolding pmf_eq_0_set_pmf by simp
hoelzl@64008
   681
hoelzl@64008
   682
lemma measurable_set_pmf[measurable]: "Measurable.pred (count_space UNIV) (\<lambda>x. x \<in> set_pmf M)"
hoelzl@64008
   683
  by simp
Andreas@60068
   684
eberlm@65395
   685
hoelzl@59664
   686
subsection \<open> PMFs as function \<close>
hoelzl@59000
   687
hoelzl@58587
   688
context
hoelzl@58587
   689
  fixes f :: "'a \<Rightarrow> real"
hoelzl@58587
   690
  assumes nonneg: "\<And>x. 0 \<le> f x"
hoelzl@58587
   691
  assumes prob: "(\<integral>\<^sup>+x. f x \<partial>count_space UNIV) = 1"
hoelzl@58587
   692
begin
hoelzl@58587
   693
hoelzl@62975
   694
lift_definition embed_pmf :: "'a pmf" is "density (count_space UNIV) (ennreal \<circ> f)"
hoelzl@58587
   695
proof (intro conjI)
hoelzl@62975
   696
  have *[simp]: "\<And>x y. ennreal (f y) * indicator {x} y = ennreal (f x) * indicator {x} y"
hoelzl@58587
   697
    by (simp split: split_indicator)
hoelzl@62975
   698
  show "AE x in density (count_space UNIV) (ennreal \<circ> f).
hoelzl@62975
   699
    measure (density (count_space UNIV) (ennreal \<circ> f)) {x} \<noteq> 0"
hoelzl@59092
   700
    by (simp add: AE_density nonneg measure_def emeasure_density max_def)
hoelzl@62975
   701
  show "prob_space (density (count_space UNIV) (ennreal \<circ> f))"
wenzelm@61169
   702
    by standard (simp add: emeasure_density prob)
hoelzl@58587
   703
qed simp
hoelzl@58587
   704
hoelzl@58587
   705
lemma pmf_embed_pmf: "pmf embed_pmf x = f x"
hoelzl@58587
   706
proof transfer
hoelzl@62975
   707
  have *[simp]: "\<And>x y. ennreal (f y) * indicator {x} y = ennreal (f x) * indicator {x} y"
hoelzl@58587
   708
    by (simp split: split_indicator)
hoelzl@62975
   709
  fix x show "measure (density (count_space UNIV) (ennreal \<circ> f)) {x} = f x"
hoelzl@59092
   710
    by transfer (simp add: measure_def emeasure_density nonneg max_def)
hoelzl@58587
   711
qed
hoelzl@58587
   712
Andreas@60068
   713
lemma set_embed_pmf: "set_pmf embed_pmf = {x. f x \<noteq> 0}"
wenzelm@63092
   714
by(auto simp add: set_pmf_eq pmf_embed_pmf)
Andreas@60068
   715
hoelzl@58587
   716
end
hoelzl@58587
   717
hoelzl@58587
   718
lemma embed_pmf_transfer:
hoelzl@62975
   719
  "rel_fun (eq_onp (\<lambda>f. (\<forall>x. 0 \<le> f x) \<and> (\<integral>\<^sup>+x. ennreal (f x) \<partial>count_space UNIV) = 1)) pmf_as_measure.cr_pmf (\<lambda>f. density (count_space UNIV) (ennreal \<circ> f)) embed_pmf"
hoelzl@58587
   720
  by (auto simp: rel_fun_def eq_onp_def embed_pmf.transfer)
hoelzl@58587
   721
hoelzl@59000
   722
lemma measure_pmf_eq_density: "measure_pmf p = density (count_space UNIV) (pmf p)"
hoelzl@59000
   723
proof (transfer, elim conjE)
hoelzl@59000
   724
  fix M :: "'a measure" assume [simp]: "sets M = UNIV" and ae: "AE x in M. measure M {x} \<noteq> 0"
hoelzl@59000
   725
  assume "prob_space M" then interpret prob_space M .
hoelzl@62975
   726
  show "M = density (count_space UNIV) (\<lambda>x. ennreal (measure M {x}))"
hoelzl@59000
   727
  proof (rule measure_eqI)
hoelzl@59000
   728
    fix A :: "'a set"
hoelzl@62975
   729
    have "(\<integral>\<^sup>+ x. ennreal (measure M {x}) * indicator A x \<partial>count_space UNIV) =
hoelzl@59000
   730
      (\<integral>\<^sup>+ x. emeasure M {x} * indicator (A \<inter> {x. measure M {x} \<noteq> 0}) x \<partial>count_space UNIV)"
hoelzl@59000
   731
      by (auto intro!: nn_integral_cong simp: emeasure_eq_measure split: split_indicator)
hoelzl@59000
   732
    also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} \<partial>count_space (A \<inter> {x. measure M {x} \<noteq> 0}))"
hoelzl@59000
   733
      by (subst nn_integral_restrict_space[symmetric]) (auto simp: restrict_count_space)
hoelzl@59000
   734
    also have "\<dots> = emeasure M (\<Union>x\<in>(A \<inter> {x. measure M {x} \<noteq> 0}). {x})"
hoelzl@59000
   735
      by (intro emeasure_UN_countable[symmetric] countable_Int2 countable_support)
hoelzl@59000
   736
         (auto simp: disjoint_family_on_def)
hoelzl@59000
   737
    also have "\<dots> = emeasure M A"
hoelzl@59000
   738
      using ae by (intro emeasure_eq_AE) auto
hoelzl@62975
   739
    finally show " emeasure M A = emeasure (density (count_space UNIV) (\<lambda>x. ennreal (measure M {x}))) A"
hoelzl@59000
   740
      using emeasure_space_1 by (simp add: emeasure_density)
hoelzl@59000
   741
  qed simp
hoelzl@59000
   742
qed
hoelzl@59000
   743
hoelzl@58587
   744
lemma td_pmf_embed_pmf:
hoelzl@62975
   745
  "type_definition pmf embed_pmf {f::'a \<Rightarrow> real. (\<forall>x. 0 \<le> f x) \<and> (\<integral>\<^sup>+x. ennreal (f x) \<partial>count_space UNIV) = 1}"
hoelzl@58587
   746
  unfolding type_definition_def
hoelzl@58587
   747
proof safe
hoelzl@58587
   748
  fix p :: "'a pmf"
hoelzl@58587
   749
  have "(\<integral>\<^sup>+ x. 1 \<partial>measure_pmf p) = 1"
hoelzl@58587
   750
    using measure_pmf.emeasure_space_1[of p] by simp
hoelzl@62975
   751
  then show *: "(\<integral>\<^sup>+ x. ennreal (pmf p x) \<partial>count_space UNIV) = 1"
hoelzl@58587
   752
    by (simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg del: nn_integral_const)
hoelzl@58587
   753
hoelzl@58587
   754
  show "embed_pmf (pmf p) = p"
hoelzl@58587
   755
    by (intro measure_pmf_inject[THEN iffD1])
hoelzl@58587
   756
       (simp add: * embed_pmf.rep_eq pmf_nonneg measure_pmf_eq_density[of p] comp_def)
hoelzl@58587
   757
next
hoelzl@58587
   758
  fix f :: "'a \<Rightarrow> real" assume "\<forall>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>count_space UNIV) = 1"
hoelzl@58587
   759
  then show "pmf (embed_pmf f) = f"
hoelzl@58587
   760
    by (auto intro!: pmf_embed_pmf)
hoelzl@58587
   761
qed (rule pmf_nonneg)
hoelzl@58587
   762
hoelzl@58587
   763
end
hoelzl@58587
   764
hoelzl@62975
   765
lemma nn_integral_measure_pmf: "(\<integral>\<^sup>+ x. f x \<partial>measure_pmf p) = \<integral>\<^sup>+ x. ennreal (pmf p x) * f x \<partial>count_space UNIV"
Andreas@60068
   766
by(simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg)
Andreas@60068
   767
hoelzl@64008
   768
lemma integral_measure_pmf:
hoelzl@64008
   769
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
hoelzl@64008
   770
  assumes A: "finite A"
hoelzl@64008
   771
  shows "(\<And>a. a \<in> set_pmf M \<Longrightarrow> f a \<noteq> 0 \<Longrightarrow> a \<in> A) \<Longrightarrow> (LINT x|M. f x) = (\<Sum>a\<in>A. pmf M a *\<^sub>R f a)"
hoelzl@64008
   772
  unfolding measure_pmf_eq_density
hoelzl@64008
   773
  apply (simp add: integral_density)
hoelzl@64008
   774
  apply (subst lebesgue_integral_count_space_finite_support)
nipkow@64267
   775
  apply (auto intro!: finite_subset[OF _ \<open>finite A\<close>] sum.mono_neutral_left simp: pmf_eq_0_set_pmf)
hoelzl@64008
   776
  done
lars@67486
   777
eberlm@65395
   778
lemma expectation_return_pmf [simp]:
eberlm@65395
   779
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
eberlm@65395
   780
  shows "measure_pmf.expectation (return_pmf x) f = f x"
eberlm@65395
   781
  by (subst integral_measure_pmf[of "{x}"]) simp_all
eberlm@65395
   782
eberlm@65395
   783
lemma pmf_expectation_bind:
eberlm@65395
   784
  fixes p :: "'a pmf" and f :: "'a \<Rightarrow> 'b pmf"
eberlm@65395
   785
    and  h :: "'b \<Rightarrow> 'c::{banach, second_countable_topology}"
eberlm@65395
   786
  assumes "finite A" "\<And>x. x \<in> A \<Longrightarrow> finite (set_pmf (f x))" "set_pmf p \<subseteq> A"
eberlm@65395
   787
  shows "measure_pmf.expectation (p \<bind> f) h =
eberlm@65395
   788
           (\<Sum>a\<in>A. pmf p a *\<^sub>R measure_pmf.expectation (f a) h)"
eberlm@65395
   789
proof -
eberlm@65395
   790
  have "measure_pmf.expectation (p \<bind> f) h = (\<Sum>a\<in>(\<Union>x\<in>A. set_pmf (f x)). pmf (p \<bind> f) a *\<^sub>R h a)"
eberlm@65395
   791
    using assms by (intro integral_measure_pmf) auto
eberlm@65395
   792
  also have "\<dots> = (\<Sum>x\<in>(\<Union>x\<in>A. set_pmf (f x)). (\<Sum>a\<in>A. (pmf p a * pmf (f a) x) *\<^sub>R h x))"
eberlm@65395
   793
  proof (intro sum.cong refl, goal_cases)
eberlm@65395
   794
    case (1 x)
eberlm@65395
   795
    thus ?case
lars@67486
   796
      by (subst pmf_bind, subst integral_measure_pmf[of A])
eberlm@65395
   797
         (insert assms, auto simp: scaleR_sum_left)
eberlm@65395
   798
  qed
eberlm@65395
   799
  also have "\<dots> = (\<Sum>j\<in>A. pmf p j *\<^sub>R (\<Sum>i\<in>(\<Union>x\<in>A. set_pmf (f x)). pmf (f j) i *\<^sub>R h i))"
haftmann@66804
   800
    by (subst sum.swap) (simp add: scaleR_sum_right)
eberlm@65395
   801
  also have "\<dots> = (\<Sum>j\<in>A. pmf p j *\<^sub>R measure_pmf.expectation (f j) h)"
eberlm@65395
   802
  proof (intro sum.cong refl, goal_cases)
eberlm@65395
   803
    case (1 x)
eberlm@65395
   804
    thus ?case
lars@67486
   805
      by (subst integral_measure_pmf[of "(\<Union>x\<in>A. set_pmf (f x))"])
eberlm@65395
   806
         (insert assms, auto simp: scaleR_sum_left)
eberlm@65395
   807
  qed
eberlm@65395
   808
  finally show ?thesis .
eberlm@65395
   809
qed
hoelzl@64008
   810
wenzelm@67226
   811
lemma continuous_on_LINT_pmf: \<comment> \<open>This is dominated convergence!?\<close>
hoelzl@64008
   812
  fixes f :: "'i \<Rightarrow> 'a::topological_space \<Rightarrow> 'b::{banach, second_countable_topology}"
hoelzl@64008
   813
  assumes f: "\<And>i. i \<in> set_pmf M \<Longrightarrow> continuous_on A (f i)"
hoelzl@64008
   814
    and bnd: "\<And>a i. a \<in> A \<Longrightarrow> i \<in> set_pmf M \<Longrightarrow> norm (f i a) \<le> B"
hoelzl@64008
   815
  shows "continuous_on A (\<lambda>a. LINT i|M. f i a)"
hoelzl@64008
   816
proof cases
hoelzl@64008
   817
  assume "finite M" with f show ?thesis
hoelzl@64008
   818
    using integral_measure_pmf[OF \<open>finite M\<close>]
hoelzl@64008
   819
    by (subst integral_measure_pmf[OF \<open>finite M\<close>])
nipkow@64267
   820
       (auto intro!: continuous_on_sum continuous_on_scaleR continuous_on_const)
hoelzl@64008
   821
next
hoelzl@64008
   822
  assume "infinite M"
hoelzl@64008
   823
  let ?f = "\<lambda>i x. pmf (map_pmf (to_nat_on M) M) i *\<^sub>R f (from_nat_into M i) x"
hoelzl@64008
   824
hoelzl@64008
   825
  show ?thesis
hoelzl@64008
   826
  proof (rule uniform_limit_theorem)
hoelzl@64008
   827
    show "\<forall>\<^sub>F n in sequentially. continuous_on A (\<lambda>a. \<Sum>i<n. ?f i a)"
nipkow@64267
   828
      by (intro always_eventually allI continuous_on_sum continuous_on_scaleR continuous_on_const f
hoelzl@64008
   829
                from_nat_into set_pmf_not_empty)
hoelzl@64008
   830
    show "uniform_limit A (\<lambda>n a. \<Sum>i<n. ?f i a) (\<lambda>a. LINT i|M. f i a) sequentially"
hoelzl@64008
   831
    proof (subst uniform_limit_cong[where g="\<lambda>n a. \<Sum>i<n. ?f i a"])
hoelzl@64008
   832
      fix a assume "a \<in> A"
hoelzl@64008
   833
      have 1: "(LINT i|M. f i a) = (LINT i|map_pmf (to_nat_on M) M. f (from_nat_into M i) a)"
hoelzl@64008
   834
        by (auto intro!: integral_cong_AE AE_pmfI)
hoelzl@64008
   835
      have 2: "\<dots> = (LINT i|count_space UNIV. pmf (map_pmf (to_nat_on M) M) i *\<^sub>R f (from_nat_into M i) a)"
hoelzl@64008
   836
        by (simp add: measure_pmf_eq_density integral_density)
hoelzl@64008
   837
      have "(\<lambda>n. ?f n a) sums (LINT i|M. f i a)"
hoelzl@64008
   838
        unfolding 1 2
hoelzl@64008
   839
      proof (intro sums_integral_count_space_nat)
hoelzl@64008
   840
        have A: "integrable M (\<lambda>i. f i a)"
hoelzl@64008
   841
          using \<open>a\<in>A\<close> by (auto intro!: measure_pmf.integrable_const_bound AE_pmfI bnd)
hoelzl@64008
   842
        have "integrable (map_pmf (to_nat_on M) M) (\<lambda>i. f (from_nat_into M i) a)"
hoelzl@64008
   843
          by (auto simp add: map_pmf_rep_eq integrable_distr_eq intro!: AE_pmfI integrable_cong_AE_imp[OF A])
hoelzl@64008
   844
        then show "integrable (count_space UNIV) (\<lambda>n. ?f n a)"
hoelzl@64008
   845
          by (simp add: measure_pmf_eq_density integrable_density)
hoelzl@64008
   846
      qed
hoelzl@64008
   847
      then show "(LINT i|M. f i a) = (\<Sum> n. ?f n a)"
hoelzl@64008
   848
        by (simp add: sums_unique)
hoelzl@64008
   849
    next
hoelzl@64008
   850
      show "uniform_limit A (\<lambda>n a. \<Sum>i<n. ?f i a) (\<lambda>a. (\<Sum> n. ?f n a)) sequentially"
hoelzl@64008
   851
      proof (rule weierstrass_m_test)
hoelzl@64008
   852
        fix n a assume "a\<in>A"
hoelzl@64008
   853
        then show "norm (?f n a) \<le> pmf (map_pmf (to_nat_on M) M) n * B"
hoelzl@64008
   854
          using bnd by (auto intro!: mult_mono simp: from_nat_into set_pmf_not_empty)
hoelzl@64008
   855
      next
hoelzl@64008
   856
        have "integrable (map_pmf (to_nat_on M) M) (\<lambda>n. B)"
hoelzl@64008
   857
          by auto
hoelzl@64008
   858
        then show "summable (\<lambda>n. pmf (map_pmf (to_nat_on (set_pmf M)) M) n * B)"
hoelzl@64008
   859
          by (simp add: measure_pmf_eq_density integrable_density integrable_count_space_nat_iff summable_rabs_cancel)
hoelzl@64008
   860
      qed
hoelzl@64008
   861
    qed simp
hoelzl@64008
   862
  qed simp
hoelzl@64008
   863
qed
hoelzl@64008
   864
hoelzl@64008
   865
lemma continuous_on_LBINT:
hoelzl@64008
   866
  fixes f :: "real \<Rightarrow> real"
hoelzl@64008
   867
  assumes f: "\<And>b. a \<le> b \<Longrightarrow> set_integrable lborel {a..b} f"
hoelzl@64008
   868
  shows "continuous_on UNIV (\<lambda>b. LBINT x:{a..b}. f x)"
hoelzl@64008
   869
proof (subst set_borel_integral_eq_integral)
hoelzl@64008
   870
  { fix b :: real assume "a \<le> b"
hoelzl@64008
   871
    from f[OF this] have "continuous_on {a..b} (\<lambda>b. integral {a..b} f)"
lp15@66192
   872
      by (intro indefinite_integral_continuous_1 set_borel_integral_eq_integral) }
hoelzl@64008
   873
  note * = this
hoelzl@64008
   874
hoelzl@64008
   875
  have "continuous_on (\<Union>b\<in>{a..}. {a <..< b}) (\<lambda>b. integral {a..b} f)"
hoelzl@64008
   876
  proof (intro continuous_on_open_UN)
hoelzl@64008
   877
    show "b \<in> {a..} \<Longrightarrow> continuous_on {a<..<b} (\<lambda>b. integral {a..b} f)" for b
hoelzl@64008
   878
      using *[of b] by (rule continuous_on_subset) auto
hoelzl@64008
   879
  qed simp
hoelzl@64008
   880
  also have "(\<Union>b\<in>{a..}. {a <..< b}) = {a <..}"
hoelzl@64008
   881
    by (auto simp: lt_ex gt_ex less_imp_le) (simp add: Bex_def less_imp_le gt_ex cong: rev_conj_cong)
hoelzl@64008
   882
  finally have "continuous_on {a+1 ..} (\<lambda>b. integral {a..b} f)"
hoelzl@64008
   883
    by (rule continuous_on_subset) auto
hoelzl@64008
   884
  moreover have "continuous_on {a..a+1} (\<lambda>b. integral {a..b} f)"
hoelzl@64008
   885
    by (rule *) simp
hoelzl@64008
   886
  moreover
hoelzl@64008
   887
  have "x \<le> a \<Longrightarrow> {a..x} = (if a = x then {a} else {})" for x
hoelzl@64008
   888
    by auto
hoelzl@64008
   889
  then have "continuous_on {..a} (\<lambda>b. integral {a..b} f)"
hoelzl@64008
   890
    by (subst continuous_on_cong[OF refl, where g="\<lambda>x. 0"]) (auto intro!: continuous_on_const)
hoelzl@64008
   891
  ultimately have "continuous_on ({..a} \<union> {a..a+1} \<union> {a+1 ..}) (\<lambda>b. integral {a..b} f)"
hoelzl@64008
   892
    by (intro continuous_on_closed_Un) auto
hoelzl@64008
   893
  also have "{..a} \<union> {a..a+1} \<union> {a+1 ..} = UNIV"
hoelzl@64008
   894
    by auto
hoelzl@64008
   895
  finally show "continuous_on UNIV (\<lambda>b. integral {a..b} f)"
hoelzl@64008
   896
    by auto
hoelzl@64008
   897
next
hoelzl@64008
   898
  show "set_integrable lborel {a..b} f" for b
hoelzl@64008
   899
    using f by (cases "a \<le> b") auto
hoelzl@64008
   900
qed
hoelzl@64008
   901
hoelzl@58587
   902
locale pmf_as_function
hoelzl@58587
   903
begin
hoelzl@58587
   904
hoelzl@58587
   905
setup_lifting td_pmf_embed_pmf
hoelzl@58587
   906
lp15@59667
   907
lemma set_pmf_transfer[transfer_rule]:
hoelzl@58730
   908
  assumes "bi_total A"
lp15@59667
   909
  shows "rel_fun (pcr_pmf A) (rel_set A) (\<lambda>f. {x. f x \<noteq> 0}) set_pmf"
wenzelm@61808
   910
  using \<open>bi_total A\<close>
hoelzl@58730
   911
  by (auto simp: pcr_pmf_def cr_pmf_def rel_fun_def rel_set_def bi_total_def Bex_def set_pmf_iff)
hoelzl@58730
   912
     metis+
hoelzl@58730
   913
hoelzl@59000
   914
end
hoelzl@59000
   915
hoelzl@59000
   916
context
hoelzl@59000
   917
begin
hoelzl@59000
   918
hoelzl@59000
   919
interpretation pmf_as_function .
hoelzl@59000
   920
hoelzl@59000
   921
lemma pmf_eqI: "(\<And>i. pmf M i = pmf N i) \<Longrightarrow> M = N"
hoelzl@59000
   922
  by transfer auto
hoelzl@59000
   923
hoelzl@59000
   924
lemma pmf_eq_iff: "M = N \<longleftrightarrow> (\<forall>i. pmf M i = pmf N i)"
hoelzl@59000
   925
  by (auto intro: pmf_eqI)
hoelzl@59000
   926
eberlm@63099
   927
lemma pmf_neq_exists_less:
eberlm@63099
   928
  assumes "M \<noteq> N"
eberlm@63099
   929
  shows   "\<exists>x. pmf M x < pmf N x"
eberlm@63099
   930
proof (rule ccontr)
eberlm@63099
   931
  assume "\<not>(\<exists>x. pmf M x < pmf N x)"
eberlm@63099
   932
  hence ge: "pmf M x \<ge> pmf N x" for x by (auto simp: not_less)
eberlm@63099
   933
  from assms obtain x where "pmf M x \<noteq> pmf N x" by (auto simp: pmf_eq_iff)
eberlm@63099
   934
  with ge[of x] have gt: "pmf M x > pmf N x" by simp
eberlm@63099
   935
  have "1 = measure (measure_pmf M) UNIV" by simp
eberlm@63099
   936
  also have "\<dots> = measure (measure_pmf N) {x} + measure (measure_pmf N) (UNIV - {x})"
eberlm@63099
   937
    by (subst measure_pmf.finite_measure_Union [symmetric]) simp_all
hoelzl@63886
   938
  also from gt have "measure (measure_pmf N) {x} < measure (measure_pmf M) {x}"
eberlm@63099
   939
    by (simp add: measure_pmf_single)
eberlm@63099
   940
  also have "measure (measure_pmf N) (UNIV - {x}) \<le> measure (measure_pmf M) (UNIV - {x})"
hoelzl@63886
   941
    by (subst (1 2) integral_pmf [symmetric])
eberlm@63099
   942
       (intro integral_mono integrable_pmf, simp_all add: ge)
eberlm@63099
   943
  also have "measure (measure_pmf M) {x} + \<dots> = 1"
eberlm@63099
   944
    by (subst measure_pmf.finite_measure_Union [symmetric]) simp_all
eberlm@63099
   945
  finally show False by simp_all
eberlm@63099
   946
qed
eberlm@63099
   947
hoelzl@59664
   948
lemma bind_commute_pmf: "bind_pmf A (\<lambda>x. bind_pmf B (C x)) = bind_pmf B (\<lambda>y. bind_pmf A (\<lambda>x. C x y))"
hoelzl@59664
   949
  unfolding pmf_eq_iff pmf_bind
hoelzl@59664
   950
proof
hoelzl@59664
   951
  fix i
hoelzl@59664
   952
  interpret B: prob_space "restrict_space B B"
hoelzl@59664
   953
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
hoelzl@59664
   954
       (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   955
  interpret A: prob_space "restrict_space A A"
hoelzl@59664
   956
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
hoelzl@59664
   957
       (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   958
hoelzl@59664
   959
  interpret AB: pair_prob_space "restrict_space A A" "restrict_space B B"
hoelzl@59664
   960
    by unfold_locales
hoelzl@59664
   961
hoelzl@59664
   962
  have "(\<integral> x. \<integral> y. pmf (C x y) i \<partial>B \<partial>A) = (\<integral> x. (\<integral> y. pmf (C x y) i \<partial>restrict_space B B) \<partial>A)"
hoelzl@63886
   963
    by (rule Bochner_Integration.integral_cong) (auto intro!: integral_pmf_restrict)
hoelzl@59664
   964
  also have "\<dots> = (\<integral> x. (\<integral> y. pmf (C x y) i \<partial>restrict_space B B) \<partial>restrict_space A A)"
hoelzl@59664
   965
    by (intro integral_pmf_restrict B.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
hoelzl@59664
   966
              countable_set_pmf borel_measurable_count_space)
hoelzl@59664
   967
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>restrict_space A A \<partial>restrict_space B B)"
hoelzl@59664
   968
    by (rule AB.Fubini_integral[symmetric])
hoelzl@59664
   969
       (auto intro!: AB.integrable_const_bound[where B=1] measurable_pair_restrict_pmf2
hoelzl@59664
   970
             simp: pmf_nonneg pmf_le_1 measurable_restrict_space1)
hoelzl@59664
   971
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>restrict_space A A \<partial>B)"
hoelzl@59664
   972
    by (intro integral_pmf_restrict[symmetric] A.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
hoelzl@59664
   973
              countable_set_pmf borel_measurable_count_space)
hoelzl@59664
   974
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>A \<partial>B)"
hoelzl@63886
   975
    by (rule Bochner_Integration.integral_cong) (auto intro!: integral_pmf_restrict[symmetric])
hoelzl@59664
   976
  finally show "(\<integral> x. \<integral> y. pmf (C x y) i \<partial>B \<partial>A) = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>A \<partial>B)" .
hoelzl@59664
   977
qed
hoelzl@59664
   978
hoelzl@59664
   979
lemma pair_map_pmf1: "pair_pmf (map_pmf f A) B = map_pmf (apfst f) (pair_pmf A B)"
hoelzl@59664
   980
proof (safe intro!: pmf_eqI)
hoelzl@59664
   981
  fix a :: "'a" and b :: "'b"
hoelzl@62975
   982
  have [simp]: "\<And>c d. indicator (apfst f -` {(a, b)}) (c, d) = indicator (f -` {a}) c * (indicator {b} d::ennreal)"
hoelzl@59664
   983
    by (auto split: split_indicator)
hoelzl@59664
   984
hoelzl@62975
   985
  have "ennreal (pmf (pair_pmf (map_pmf f A) B) (a, b)) =
hoelzl@62975
   986
         ennreal (pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b))"
hoelzl@62975
   987
    unfolding pmf_pair ennreal_pmf_map
hoelzl@59664
   988
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_multc pmf_nonneg
hoelzl@62975
   989
                  emeasure_map_pmf[symmetric] ennreal_mult del: emeasure_map_pmf)
hoelzl@59664
   990
  then show "pmf (pair_pmf (map_pmf f A) B) (a, b) = pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b)"
hoelzl@62975
   991
    by (simp add: pmf_nonneg)
hoelzl@59664
   992
qed
hoelzl@59664
   993
hoelzl@59664
   994
lemma pair_map_pmf2: "pair_pmf A (map_pmf f B) = map_pmf (apsnd f) (pair_pmf A B)"
hoelzl@59664
   995
proof (safe intro!: pmf_eqI)
hoelzl@59664
   996
  fix a :: "'a" and b :: "'b"
hoelzl@62975
   997
  have [simp]: "\<And>c d. indicator (apsnd f -` {(a, b)}) (c, d) = indicator {a} c * (indicator (f -` {b}) d::ennreal)"
hoelzl@59664
   998
    by (auto split: split_indicator)
hoelzl@59664
   999
hoelzl@62975
  1000
  have "ennreal (pmf (pair_pmf A (map_pmf f B)) (a, b)) =
hoelzl@62975
  1001
         ennreal (pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b))"
hoelzl@62975
  1002
    unfolding pmf_pair ennreal_pmf_map
hoelzl@59664
  1003
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_cmult nn_integral_multc pmf_nonneg
hoelzl@62975
  1004
                  emeasure_map_pmf[symmetric] ennreal_mult del: emeasure_map_pmf)
hoelzl@59664
  1005
  then show "pmf (pair_pmf A (map_pmf f B)) (a, b) = pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b)"
hoelzl@62975
  1006
    by (simp add: pmf_nonneg)
hoelzl@59664
  1007
qed
hoelzl@59664
  1008
hoelzl@59664
  1009
lemma map_pair: "map_pmf (\<lambda>(a, b). (f a, g b)) (pair_pmf A B) = pair_pmf (map_pmf f A) (map_pmf g B)"
hoelzl@59664
  1010
  by (simp add: pair_map_pmf2 pair_map_pmf1 map_pmf_comp split_beta')
hoelzl@59664
  1011
hoelzl@59000
  1012
end
hoelzl@59000
  1013
Andreas@61634
  1014
lemma pair_return_pmf1: "pair_pmf (return_pmf x) y = map_pmf (Pair x) y"
Andreas@61634
  1015
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def)
Andreas@61634
  1016
Andreas@61634
  1017
lemma pair_return_pmf2: "pair_pmf x (return_pmf y) = map_pmf (\<lambda>x. (x, y)) x"
Andreas@61634
  1018
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def)
Andreas@61634
  1019
Andreas@61634
  1020
lemma pair_pair_pmf: "pair_pmf (pair_pmf u v) w = map_pmf (\<lambda>(x, (y, z)). ((x, y), z)) (pair_pmf u (pair_pmf v w))"
Andreas@61634
  1021
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def bind_assoc_pmf)
Andreas@61634
  1022
Andreas@61634
  1023
lemma pair_commute_pmf: "pair_pmf x y = map_pmf (\<lambda>(x, y). (y, x)) (pair_pmf y x)"
Andreas@61634
  1024
unfolding pair_pmf_def by(subst bind_commute_pmf)(simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)
Andreas@61634
  1025
Andreas@61634
  1026
lemma set_pmf_subset_singleton: "set_pmf p \<subseteq> {x} \<longleftrightarrow> p = return_pmf x"
Andreas@61634
  1027
proof(intro iffI pmf_eqI)
Andreas@61634
  1028
  fix i
Andreas@61634
  1029
  assume x: "set_pmf p \<subseteq> {x}"
Andreas@61634
  1030
  hence *: "set_pmf p = {x}" using set_pmf_not_empty[of p] by auto
hoelzl@62975
  1031
  have "ennreal (pmf p x) = \<integral>\<^sup>+ i. indicator {x} i \<partial>p" by(simp add: emeasure_pmf_single)
Andreas@61634
  1032
  also have "\<dots> = \<integral>\<^sup>+ i. 1 \<partial>p" by(rule nn_integral_cong_AE)(simp add: AE_measure_pmf_iff * )
Andreas@61634
  1033
  also have "\<dots> = 1" by simp
Andreas@61634
  1034
  finally show "pmf p i = pmf (return_pmf x) i" using x
Andreas@61634
  1035
    by(auto split: split_indicator simp add: pmf_eq_0_set_pmf)
Andreas@61634
  1036
qed auto
Andreas@61634
  1037
Andreas@61634
  1038
lemma bind_eq_return_pmf:
Andreas@61634
  1039
  "bind_pmf p f = return_pmf x \<longleftrightarrow> (\<forall>y\<in>set_pmf p. f y = return_pmf x)"
Andreas@61634
  1040
  (is "?lhs \<longleftrightarrow> ?rhs")
Andreas@61634
  1041
proof(intro iffI strip)
Andreas@61634
  1042
  fix y
Andreas@61634
  1043
  assume y: "y \<in> set_pmf p"
Andreas@61634
  1044
  assume "?lhs"
Andreas@61634
  1045
  hence "set_pmf (bind_pmf p f) = {x}" by simp
Andreas@61634
  1046
  hence "(\<Union>y\<in>set_pmf p. set_pmf (f y)) = {x}" by simp
Andreas@61634
  1047
  hence "set_pmf (f y) \<subseteq> {x}" using y by auto
Andreas@61634
  1048
  thus "f y = return_pmf x" by(simp add: set_pmf_subset_singleton)
Andreas@61634
  1049
next
Andreas@61634
  1050
  assume *: ?rhs
Andreas@61634
  1051
  show ?lhs
Andreas@61634
  1052
  proof(rule pmf_eqI)
Andreas@61634
  1053
    fix i
hoelzl@62975
  1054
    have "ennreal (pmf (bind_pmf p f) i) = \<integral>\<^sup>+ y. ennreal (pmf (f y) i) \<partial>p"
hoelzl@62975
  1055
      by (simp add: ennreal_pmf_bind)
hoelzl@62975
  1056
    also have "\<dots> = \<integral>\<^sup>+ y. ennreal (pmf (return_pmf x) i) \<partial>p"
Andreas@61634
  1057
      by(rule nn_integral_cong_AE)(simp add: AE_measure_pmf_iff * )
hoelzl@62975
  1058
    also have "\<dots> = ennreal (pmf (return_pmf x) i)"
hoelzl@62975
  1059
      by simp
hoelzl@62975
  1060
    finally show "pmf (bind_pmf p f) i = pmf (return_pmf x) i"
hoelzl@62975
  1061
      by (simp add: pmf_nonneg)
Andreas@61634
  1062
  qed
Andreas@61634
  1063
qed
Andreas@61634
  1064
Andreas@61634
  1065
lemma pmf_False_conv_True: "pmf p False = 1 - pmf p True"
Andreas@61634
  1066
proof -
Andreas@61634
  1067
  have "pmf p False + pmf p True = measure p {False} + measure p {True}"
Andreas@61634
  1068
    by(simp add: measure_pmf_single)
Andreas@61634
  1069
  also have "\<dots> = measure p ({False} \<union> {True})"
Andreas@61634
  1070
    by(subst measure_pmf.finite_measure_Union) simp_all
Andreas@61634
  1071
  also have "{False} \<union> {True} = space p" by auto
Andreas@61634
  1072
  finally show ?thesis by simp
Andreas@61634
  1073
qed
Andreas@61634
  1074
Andreas@61634
  1075
lemma pmf_True_conv_False: "pmf p True = 1 - pmf p False"
Andreas@61634
  1076
by(simp add: pmf_False_conv_True)
Andreas@61634
  1077
hoelzl@59664
  1078
subsection \<open> Conditional Probabilities \<close>
hoelzl@59664
  1079
hoelzl@59670
  1080
lemma measure_pmf_zero_iff: "measure (measure_pmf p) s = 0 \<longleftrightarrow> set_pmf p \<inter> s = {}"
hoelzl@59670
  1081
  by (subst measure_pmf.prob_eq_0) (auto simp: AE_measure_pmf_iff)
hoelzl@59670
  1082
hoelzl@59664
  1083
context
hoelzl@59664
  1084
  fixes p :: "'a pmf" and s :: "'a set"
hoelzl@59664
  1085
  assumes not_empty: "set_pmf p \<inter> s \<noteq> {}"
hoelzl@59664
  1086
begin
hoelzl@59664
  1087
hoelzl@59664
  1088
interpretation pmf_as_measure .
hoelzl@59664
  1089
hoelzl@59664
  1090
lemma emeasure_measure_pmf_not_zero: "emeasure (measure_pmf p) s \<noteq> 0"
hoelzl@59664
  1091
proof
hoelzl@59664
  1092
  assume "emeasure (measure_pmf p) s = 0"
hoelzl@59664
  1093
  then have "AE x in measure_pmf p. x \<notin> s"
hoelzl@59664
  1094
    by (rule AE_I[rotated]) auto
hoelzl@59664
  1095
  with not_empty show False
hoelzl@59664
  1096
    by (auto simp: AE_measure_pmf_iff)
hoelzl@59664
  1097
qed
hoelzl@59664
  1098
hoelzl@59664
  1099
lemma measure_measure_pmf_not_zero: "measure (measure_pmf p) s \<noteq> 0"
hoelzl@62975
  1100
  using emeasure_measure_pmf_not_zero by (simp add: measure_pmf.emeasure_eq_measure measure_nonneg)
hoelzl@59664
  1101
hoelzl@59664
  1102
lift_definition cond_pmf :: "'a pmf" is
hoelzl@59664
  1103
  "uniform_measure (measure_pmf p) s"
hoelzl@59664
  1104
proof (intro conjI)
hoelzl@59664
  1105
  show "prob_space (uniform_measure (measure_pmf p) s)"
hoelzl@59664
  1106
    by (intro prob_space_uniform_measure) (auto simp: emeasure_measure_pmf_not_zero)
hoelzl@59664
  1107
  show "AE x in uniform_measure (measure_pmf p) s. measure (uniform_measure (measure_pmf p) s) {x} \<noteq> 0"
hoelzl@59664
  1108
    by (simp add: emeasure_measure_pmf_not_zero measure_measure_pmf_not_zero AE_uniform_measure
hoelzl@62975
  1109
                  AE_measure_pmf_iff set_pmf.rep_eq less_top[symmetric])
hoelzl@59664
  1110
qed simp
hoelzl@59664
  1111
hoelzl@59664
  1112
lemma pmf_cond: "pmf cond_pmf x = (if x \<in> s then pmf p x / measure p s else 0)"
hoelzl@59664
  1113
  by transfer (simp add: emeasure_measure_pmf_not_zero pmf.rep_eq)
hoelzl@59664
  1114
hoelzl@59665
  1115
lemma set_cond_pmf[simp]: "set_pmf cond_pmf = set_pmf p \<inter> s"
nipkow@62390
  1116
  by (auto simp add: set_pmf_iff pmf_cond measure_measure_pmf_not_zero split: if_split_asm)
hoelzl@59664
  1117
hoelzl@59664
  1118
end
hoelzl@59664
  1119
eberlm@63099
  1120
lemma measure_pmf_posI: "x \<in> set_pmf p \<Longrightarrow> x \<in> A \<Longrightarrow> measure_pmf.prob p A > 0"
eberlm@63099
  1121
  using measure_measure_pmf_not_zero[of p A] by (subst zero_less_measure_iff) blast
eberlm@63099
  1122
hoelzl@59664
  1123
lemma cond_map_pmf:
hoelzl@59664
  1124
  assumes "set_pmf p \<inter> f -` s \<noteq> {}"
hoelzl@59664
  1125
  shows "cond_pmf (map_pmf f p) s = map_pmf f (cond_pmf p (f -` s))"
hoelzl@59664
  1126
proof -
hoelzl@59664
  1127
  have *: "set_pmf (map_pmf f p) \<inter> s \<noteq> {}"
hoelzl@59665
  1128
    using assms by auto
hoelzl@59664
  1129
  { fix x
hoelzl@62975
  1130
    have "ennreal (pmf (map_pmf f (cond_pmf p (f -` s))) x) =
hoelzl@59664
  1131
      emeasure p (f -` s \<inter> f -` {x}) / emeasure p (f -` s)"
hoelzl@62975
  1132
      unfolding ennreal_pmf_map cond_pmf.rep_eq[OF assms] by (simp add: nn_integral_uniform_measure)
hoelzl@59664
  1133
    also have "f -` s \<inter> f -` {x} = (if x \<in> s then f -` {x} else {})"
hoelzl@59664
  1134
      by auto
hoelzl@59664
  1135
    also have "emeasure p (if x \<in> s then f -` {x} else {}) / emeasure p (f -` s) =
hoelzl@62975
  1136
      ennreal (pmf (cond_pmf (map_pmf f p) s) x)"
hoelzl@59664
  1137
      using measure_measure_pmf_not_zero[OF *]
hoelzl@62975
  1138
      by (simp add: pmf_cond[OF *] ennreal_pmf_map measure_pmf.emeasure_eq_measure
hoelzl@62975
  1139
                    divide_ennreal pmf_nonneg measure_nonneg zero_less_measure_iff pmf_map)
hoelzl@62975
  1140
    finally have "ennreal (pmf (cond_pmf (map_pmf f p) s) x) = ennreal (pmf (map_pmf f (cond_pmf p (f -` s))) x)"
hoelzl@59664
  1141
      by simp }
hoelzl@59664
  1142
  then show ?thesis
hoelzl@62975
  1143
    by (intro pmf_eqI) (simp add: pmf_nonneg)
hoelzl@59664
  1144
qed
hoelzl@59664
  1145
hoelzl@59664
  1146
lemma bind_cond_pmf_cancel:
hoelzl@59670
  1147
  assumes [simp]: "\<And>x. x \<in> set_pmf p \<Longrightarrow> set_pmf q \<inter> {y. R x y} \<noteq> {}"
hoelzl@59670
  1148
  assumes [simp]: "\<And>y. y \<in> set_pmf q \<Longrightarrow> set_pmf p \<inter> {x. R x y} \<noteq> {}"
hoelzl@59670
  1149
  assumes [simp]: "\<And>x y. x \<in> set_pmf p \<Longrightarrow> y \<in> set_pmf q \<Longrightarrow> R x y \<Longrightarrow> measure q {y. R x y} = measure p {x. R x y}"
hoelzl@59670
  1150
  shows "bind_pmf p (\<lambda>x. cond_pmf q {y. R x y}) = q"
hoelzl@59664
  1151
proof (rule pmf_eqI)
hoelzl@59670
  1152
  fix i
hoelzl@62975
  1153
  have "ennreal (pmf (bind_pmf p (\<lambda>x. cond_pmf q {y. R x y})) i) =
hoelzl@62975
  1154
    (\<integral>\<^sup>+x. ennreal (pmf q i / measure p {x. R x i}) * ennreal (indicator {x. R x i} x) \<partial>p)"
hoelzl@62975
  1155
    by (auto simp add: ennreal_pmf_bind AE_measure_pmf_iff pmf_cond pmf_eq_0_set_pmf pmf_nonneg measure_nonneg
hoelzl@62975
  1156
             intro!: nn_integral_cong_AE)
hoelzl@59670
  1157
  also have "\<dots> = (pmf q i * measure p {x. R x i}) / measure p {x. R x i}"
hoelzl@62975
  1158
    by (simp add: pmf_nonneg measure_nonneg zero_ennreal_def[symmetric] ennreal_indicator
hoelzl@62975
  1159
                  nn_integral_cmult measure_pmf.emeasure_eq_measure ennreal_mult[symmetric])
hoelzl@59670
  1160
  also have "\<dots> = pmf q i"
hoelzl@62975
  1161
    by (cases "pmf q i = 0")
hoelzl@62975
  1162
       (simp_all add: pmf_eq_0_set_pmf measure_measure_pmf_not_zero pmf_nonneg)
hoelzl@59670
  1163
  finally show "pmf (bind_pmf p (\<lambda>x. cond_pmf q {y. R x y})) i = pmf q i"
hoelzl@62975
  1164
    by (simp add: pmf_nonneg)
hoelzl@59664
  1165
qed
hoelzl@59664
  1166
hoelzl@59664
  1167
subsection \<open> Relator \<close>
hoelzl@59664
  1168
hoelzl@59664
  1169
inductive rel_pmf :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf \<Rightarrow> bool"
hoelzl@59664
  1170
for R p q
hoelzl@59664
  1171
where
lp15@59667
  1172
  "\<lbrakk> \<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y;
hoelzl@59664
  1173
     map_pmf fst pq = p; map_pmf snd pq = q \<rbrakk>
hoelzl@59664
  1174
  \<Longrightarrow> rel_pmf R p q"
hoelzl@59664
  1175
hoelzl@59681
  1176
lemma rel_pmfI:
hoelzl@59681
  1177
  assumes R: "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
  1178
  assumes eq: "\<And>x y. x \<in> set_pmf p \<Longrightarrow> y \<in> set_pmf q \<Longrightarrow> R x y \<Longrightarrow>
hoelzl@59681
  1179
    measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1180
  shows "rel_pmf R p q"
hoelzl@59681
  1181
proof
hoelzl@59681
  1182
  let ?pq = "bind_pmf p (\<lambda>x. bind_pmf (cond_pmf q {y. R x y}) (\<lambda>y. return_pmf (x, y)))"
hoelzl@59681
  1183
  have "\<And>x. x \<in> set_pmf p \<Longrightarrow> set_pmf q \<inter> {y. R x y} \<noteq> {}"
hoelzl@59681
  1184
    using R by (auto simp: rel_set_def)
hoelzl@59681
  1185
  then show "\<And>x y. (x, y) \<in> set_pmf ?pq \<Longrightarrow> R x y"
hoelzl@59681
  1186
    by auto
hoelzl@59681
  1187
  show "map_pmf fst ?pq = p"
Andreas@60068
  1188
    by (simp add: map_bind_pmf bind_return_pmf')
hoelzl@59681
  1189
hoelzl@59681
  1190
  show "map_pmf snd ?pq = q"
hoelzl@59681
  1191
    using R eq
Andreas@60068
  1192
    apply (simp add: bind_cond_pmf_cancel map_bind_pmf bind_return_pmf')
hoelzl@59681
  1193
    apply (rule bind_cond_pmf_cancel)
hoelzl@59681
  1194
    apply (auto simp: rel_set_def)
hoelzl@59681
  1195
    done
hoelzl@59681
  1196
qed
hoelzl@59681
  1197
hoelzl@59681
  1198
lemma rel_pmf_imp_rel_set: "rel_pmf R p q \<Longrightarrow> rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
  1199
  by (force simp add: rel_pmf.simps rel_set_def)
hoelzl@59681
  1200
hoelzl@59681
  1201
lemma rel_pmfD_measure:
hoelzl@59681
  1202
  assumes rel_R: "rel_pmf R p q" and R: "\<And>a b. R a b \<Longrightarrow> R a y \<longleftrightarrow> R x b"
hoelzl@59681
  1203
  assumes "x \<in> set_pmf p" "y \<in> set_pmf q"
hoelzl@59681
  1204
  shows "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1205
proof -
hoelzl@59681
  1206
  from rel_R obtain pq where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59681
  1207
    and eq: "p = map_pmf fst pq" "q = map_pmf snd pq"
hoelzl@59681
  1208
    by (auto elim: rel_pmf.cases)
hoelzl@59681
  1209
  have "measure p {x. R x y} = measure pq {x. R (fst x) y}"
hoelzl@59681
  1210
    by (simp add: eq map_pmf_rep_eq measure_distr)
hoelzl@59681
  1211
  also have "\<dots> = measure pq {y. R x (snd y)}"
hoelzl@59681
  1212
    by (intro measure_pmf.finite_measure_eq_AE)
hoelzl@59681
  1213
       (auto simp: AE_measure_pmf_iff R dest!: pq)
hoelzl@59681
  1214
  also have "\<dots> = measure q {y. R x y}"
hoelzl@59681
  1215
    by (simp add: eq map_pmf_rep_eq measure_distr)
hoelzl@59681
  1216
  finally show "measure p {x. R x y} = measure q {y. R x y}" .
hoelzl@59681
  1217
qed
hoelzl@59681
  1218
Andreas@61634
  1219
lemma rel_pmf_measureD:
Andreas@61634
  1220
  assumes "rel_pmf R p q"
Andreas@61634
  1221
  shows "measure (measure_pmf p) A \<le> measure (measure_pmf q) {y. \<exists>x\<in>A. R x y}" (is "?lhs \<le> ?rhs")
Andreas@61634
  1222
using assms
Andreas@61634
  1223
proof cases
Andreas@61634
  1224
  fix pq
Andreas@61634
  1225
  assume R: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
Andreas@61634
  1226
    and p[symmetric]: "map_pmf fst pq = p"
Andreas@61634
  1227
    and q[symmetric]: "map_pmf snd pq = q"
Andreas@61634
  1228
  have "?lhs = measure (measure_pmf pq) (fst -` A)" by(simp add: p)
Andreas@61634
  1229
  also have "\<dots> \<le> measure (measure_pmf pq) {y. \<exists>x\<in>A. R x (snd y)}"
Andreas@61634
  1230
    by(rule measure_pmf.finite_measure_mono_AE)(auto 4 3 simp add: AE_measure_pmf_iff dest: R)
Andreas@61634
  1231
  also have "\<dots> = ?rhs" by(simp add: q)
Andreas@61634
  1232
  finally show ?thesis .
Andreas@61634
  1233
qed
Andreas@61634
  1234
hoelzl@59681
  1235
lemma rel_pmf_iff_measure:
hoelzl@59681
  1236
  assumes "symp R" "transp R"
hoelzl@59681
  1237
  shows "rel_pmf R p q \<longleftrightarrow>
hoelzl@59681
  1238
    rel_set R (set_pmf p) (set_pmf q) \<and>
hoelzl@59681
  1239
    (\<forall>x\<in>set_pmf p. \<forall>y\<in>set_pmf q. R x y \<longrightarrow> measure p {x. R x y} = measure q {y. R x y})"
hoelzl@59681
  1240
  by (safe intro!: rel_pmf_imp_rel_set rel_pmfI)
hoelzl@59681
  1241
     (auto intro!: rel_pmfD_measure dest: sympD[OF \<open>symp R\<close>] transpD[OF \<open>transp R\<close>])
hoelzl@59681
  1242
hoelzl@59681
  1243
lemma quotient_rel_set_disjoint:
hoelzl@59681
  1244
  "equivp R \<Longrightarrow> C \<in> UNIV // {(x, y). R x y} \<Longrightarrow> rel_set R A B \<Longrightarrow> A \<inter> C = {} \<longleftrightarrow> B \<inter> C = {}"
lp15@61609
  1245
  using in_quotient_imp_closed[of UNIV "{(x, y). R x y}" C]
hoelzl@59681
  1246
  by (auto 0 0 simp: equivp_equiv rel_set_def set_eq_iff elim: equivpE)
hoelzl@59681
  1247
     (blast dest: equivp_symp)+
hoelzl@59681
  1248
hoelzl@59681
  1249
lemma quotientD: "equiv X R \<Longrightarrow> A \<in> X // R \<Longrightarrow> x \<in> A \<Longrightarrow> A = R `` {x}"
hoelzl@59681
  1250
  by (metis Image_singleton_iff equiv_class_eq_iff quotientE)
hoelzl@59681
  1251
hoelzl@59681
  1252
lemma rel_pmf_iff_equivp:
hoelzl@59681
  1253
  assumes "equivp R"
hoelzl@59681
  1254
  shows "rel_pmf R p q \<longleftrightarrow> (\<forall>C\<in>UNIV // {(x, y). R x y}. measure p C = measure q C)"
hoelzl@59681
  1255
    (is "_ \<longleftrightarrow>   (\<forall>C\<in>_//?R. _)")
hoelzl@59681
  1256
proof (subst rel_pmf_iff_measure, safe)
hoelzl@59681
  1257
  show "symp R" "transp R"
hoelzl@59681
  1258
    using assms by (auto simp: equivp_reflp_symp_transp)
hoelzl@59681
  1259
next
hoelzl@59681
  1260
  fix C assume C: "C \<in> UNIV // ?R" and R: "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
  1261
  assume eq: "\<forall>x\<in>set_pmf p. \<forall>y\<in>set_pmf q. R x y \<longrightarrow> measure p {x. R x y} = measure q {y. R x y}"
lp15@61609
  1262
hoelzl@59681
  1263
  show "measure p C = measure q C"
wenzelm@63540
  1264
  proof (cases "p \<inter> C = {}")
wenzelm@63540
  1265
    case True
wenzelm@63540
  1266
    then have "q \<inter> C = {}"
hoelzl@59681
  1267
      using quotient_rel_set_disjoint[OF assms C R] by simp
wenzelm@63540
  1268
    with True show ?thesis
hoelzl@59681
  1269
      unfolding measure_pmf_zero_iff[symmetric] by simp
hoelzl@59681
  1270
  next
wenzelm@63540
  1271
    case False
wenzelm@63540
  1272
    then have "q \<inter> C \<noteq> {}"
hoelzl@59681
  1273
      using quotient_rel_set_disjoint[OF assms C R] by simp
wenzelm@63540
  1274
    with False obtain x y where in_set: "x \<in> set_pmf p" "y \<in> set_pmf q" and in_C: "x \<in> C" "y \<in> C"
hoelzl@59681
  1275
      by auto
hoelzl@59681
  1276
    then have "R x y"
hoelzl@59681
  1277
      using in_quotient_imp_in_rel[of UNIV ?R C x y] C assms
hoelzl@59681
  1278
      by (simp add: equivp_equiv)
hoelzl@59681
  1279
    with in_set eq have "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1280
      by auto
hoelzl@59681
  1281
    moreover have "{y. R x y} = C"
wenzelm@61808
  1282
      using assms \<open>x \<in> C\<close> C quotientD[of UNIV ?R C x] by (simp add: equivp_equiv)
hoelzl@59681
  1283
    moreover have "{x. R x y} = C"
wenzelm@61808
  1284
      using assms \<open>y \<in> C\<close> C quotientD[of UNIV "?R" C y] sympD[of R]
hoelzl@59681
  1285
      by (auto simp add: equivp_equiv elim: equivpE)
hoelzl@59681
  1286
    ultimately show ?thesis
hoelzl@59681
  1287
      by auto
hoelzl@59681
  1288
  qed
hoelzl@59681
  1289
next
hoelzl@59681
  1290
  assume eq: "\<forall>C\<in>UNIV // ?R. measure p C = measure q C"
hoelzl@59681
  1291
  show "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
  1292
    unfolding rel_set_def
hoelzl@59681
  1293
  proof safe
hoelzl@59681
  1294
    fix x assume x: "x \<in> set_pmf p"
hoelzl@59681
  1295
    have "{y. R x y} \<in> UNIV // ?R"
hoelzl@59681
  1296
      by (auto simp: quotient_def)
hoelzl@59681
  1297
    with eq have *: "measure q {y. R x y} = measure p {y. R x y}"
hoelzl@59681
  1298
      by auto
hoelzl@59681
  1299
    have "measure q {y. R x y} \<noteq> 0"
hoelzl@59681
  1300
      using x assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
hoelzl@59681
  1301
    then show "\<exists>y\<in>set_pmf q. R x y"
hoelzl@59681
  1302
      unfolding measure_pmf_zero_iff by auto
hoelzl@59681
  1303
  next
hoelzl@59681
  1304
    fix y assume y: "y \<in> set_pmf q"
hoelzl@59681
  1305
    have "{x. R x y} \<in> UNIV // ?R"
hoelzl@59681
  1306
      using assms by (auto simp: quotient_def dest: equivp_symp)
hoelzl@59681
  1307
    with eq have *: "measure p {x. R x y} = measure q {x. R x y}"
hoelzl@59681
  1308
      by auto
hoelzl@59681
  1309
    have "measure p {x. R x y} \<noteq> 0"
hoelzl@59681
  1310
      using y assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
hoelzl@59681
  1311
    then show "\<exists>x\<in>set_pmf p. R x y"
hoelzl@59681
  1312
      unfolding measure_pmf_zero_iff by auto
hoelzl@59681
  1313
  qed
hoelzl@59681
  1314
hoelzl@59681
  1315
  fix x y assume "x \<in> set_pmf p" "y \<in> set_pmf q" "R x y"
hoelzl@59681
  1316
  have "{y. R x y} \<in> UNIV // ?R" "{x. R x y} = {y. R x y}"
wenzelm@61808
  1317
    using assms \<open>R x y\<close> by (auto simp: quotient_def dest: equivp_symp equivp_transp)
hoelzl@59681
  1318
  with eq show "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1319
    by auto
hoelzl@59681
  1320
qed
hoelzl@59681
  1321
hoelzl@59664
  1322
bnf pmf: "'a pmf" map: map_pmf sets: set_pmf bd : "natLeq" rel: rel_pmf
hoelzl@59664
  1323
proof -
hoelzl@59664
  1324
  show "map_pmf id = id" by (rule map_pmf_id)
lp15@59667
  1325
  show "\<And>f g. map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g" by (rule map_pmf_compose)
hoelzl@59664
  1326
  show "\<And>f g::'a \<Rightarrow> 'b. \<And>p. (\<And>x. x \<in> set_pmf p \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g p"
hoelzl@59664
  1327
    by (intro map_pmf_cong refl)
hoelzl@59664
  1328
nipkow@67399
  1329
  show "\<And>f::'a \<Rightarrow> 'b. set_pmf \<circ> map_pmf f = (`) f \<circ> set_pmf"
hoelzl@59664
  1330
    by (rule pmf_set_map)
hoelzl@59664
  1331
wenzelm@60595
  1332
  show "(card_of (set_pmf p), natLeq) \<in> ordLeq" for p :: "'s pmf"
wenzelm@60595
  1333
  proof -
hoelzl@59664
  1334
    have "(card_of (set_pmf p), card_of (UNIV :: nat set)) \<in> ordLeq"
hoelzl@59664
  1335
      by (rule card_of_ordLeqI[where f="to_nat_on (set_pmf p)"])
hoelzl@59664
  1336
         (auto intro: countable_set_pmf)
hoelzl@59664
  1337
    also have "(card_of (UNIV :: nat set), natLeq) \<in> ordLeq"
hoelzl@59664
  1338
      by (metis Field_natLeq card_of_least natLeq_Well_order)
wenzelm@60595
  1339
    finally show ?thesis .
wenzelm@60595
  1340
  qed
hoelzl@59664
  1341
traytel@62324
  1342
  show "\<And>R. rel_pmf R = (\<lambda>x y. \<exists>z. set_pmf z \<subseteq> {(x, y). R x y} \<and>
traytel@62324
  1343
    map_pmf fst z = x \<and> map_pmf snd z = y)"
traytel@62324
  1344
     by (auto simp add: fun_eq_iff rel_pmf.simps)
hoelzl@59664
  1345
wenzelm@60595
  1346
  show "rel_pmf R OO rel_pmf S \<le> rel_pmf (R OO S)"
wenzelm@60595
  1347
    for R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and S :: "'b \<Rightarrow> 'c \<Rightarrow> bool"
wenzelm@60595
  1348
  proof -
wenzelm@60595
  1349
    { fix p q r
wenzelm@60595
  1350
      assume pq: "rel_pmf R p q"
wenzelm@60595
  1351
        and qr:"rel_pmf S q r"
wenzelm@60595
  1352
      from pq obtain pq where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
wenzelm@60595
  1353
        and p: "p = map_pmf fst pq" and q: "q = map_pmf snd pq" by cases auto
wenzelm@60595
  1354
      from qr obtain qr where qr: "\<And>y z. (y, z) \<in> set_pmf qr \<Longrightarrow> S y z"
wenzelm@60595
  1355
        and q': "q = map_pmf fst qr" and r: "r = map_pmf snd qr" by cases auto
lp15@61609
  1356
wenzelm@63040
  1357
      define pr where "pr =
wenzelm@63040
  1358
        bind_pmf pq (\<lambda>xy. bind_pmf (cond_pmf qr {yz. fst yz = snd xy})
wenzelm@63040
  1359
          (\<lambda>yz. return_pmf (fst xy, snd yz)))"
wenzelm@60595
  1360
      have pr_welldefined: "\<And>y. y \<in> q \<Longrightarrow> qr \<inter> {yz. fst yz = y} \<noteq> {}"
wenzelm@60595
  1361
        by (force simp: q')
lp15@61609
  1362
wenzelm@60595
  1363
      have "rel_pmf (R OO S) p r"
wenzelm@60595
  1364
      proof (rule rel_pmf.intros)
wenzelm@60595
  1365
        fix x z assume "(x, z) \<in> pr"
wenzelm@60595
  1366
        then have "\<exists>y. (x, y) \<in> pq \<and> (y, z) \<in> qr"
wenzelm@60595
  1367
          by (auto simp: q pr_welldefined pr_def split_beta)
wenzelm@60595
  1368
        with pq qr show "(R OO S) x z"
wenzelm@60595
  1369
          by blast
wenzelm@60595
  1370
      next
wenzelm@60595
  1371
        have "map_pmf snd pr = map_pmf snd (bind_pmf q (\<lambda>y. cond_pmf qr {yz. fst yz = y}))"
wenzelm@60595
  1372
          by (simp add: pr_def q split_beta bind_map_pmf map_pmf_def[symmetric] map_bind_pmf map_pmf_comp)
wenzelm@60595
  1373
        then show "map_pmf snd pr = r"
wenzelm@60595
  1374
          unfolding r q' bind_map_pmf by (subst (asm) bind_cond_pmf_cancel) (auto simp: eq_commute)
wenzelm@60595
  1375
      qed (simp add: pr_def map_bind_pmf split_beta map_pmf_def[symmetric] p map_pmf_comp)
wenzelm@60595
  1376
    }
wenzelm@60595
  1377
    then show ?thesis
wenzelm@60595
  1378
      by(auto simp add: le_fun_def)
wenzelm@60595
  1379
  qed
hoelzl@59664
  1380
qed (fact natLeq_card_order natLeq_cinfinite)+
hoelzl@59664
  1381
Andreas@61634
  1382
lemma map_pmf_idI: "(\<And>x. x \<in> set_pmf p \<Longrightarrow> f x = x) \<Longrightarrow> map_pmf f p = p"
Andreas@61634
  1383
by(simp cong: pmf.map_cong)
Andreas@61634
  1384
hoelzl@59665
  1385
lemma rel_pmf_conj[simp]:
hoelzl@59665
  1386
  "rel_pmf (\<lambda>x y. P \<and> Q x y) x y \<longleftrightarrow> P \<and> rel_pmf Q x y"
hoelzl@59665
  1387
  "rel_pmf (\<lambda>x y. Q x y \<and> P) x y \<longleftrightarrow> P \<and> rel_pmf Q x y"
hoelzl@59665
  1388
  using set_pmf_not_empty by (fastforce simp: pmf.in_rel subset_eq)+
hoelzl@59665
  1389
hoelzl@59665
  1390
lemma rel_pmf_top[simp]: "rel_pmf top = top"
hoelzl@59665
  1391
  by (auto simp: pmf.in_rel[abs_def] fun_eq_iff map_fst_pair_pmf map_snd_pair_pmf
hoelzl@59665
  1392
           intro: exI[of _ "pair_pmf x y" for x y])
hoelzl@59665
  1393
hoelzl@59664
  1394
lemma rel_pmf_return_pmf1: "rel_pmf R (return_pmf x) M \<longleftrightarrow> (\<forall>a\<in>M. R x a)"
hoelzl@59664
  1395
proof safe
hoelzl@59664
  1396
  fix a assume "a \<in> M" "rel_pmf R (return_pmf x) M"
hoelzl@59664
  1397
  then obtain pq where *: "\<And>a b. (a, b) \<in> set_pmf pq \<Longrightarrow> R a b"
hoelzl@59664
  1398
    and eq: "return_pmf x = map_pmf fst pq" "M = map_pmf snd pq"
hoelzl@59664
  1399
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1400
  moreover have "set_pmf (return_pmf x) = {x}"
hoelzl@59665
  1401
    by simp
wenzelm@61808
  1402
  with \<open>a \<in> M\<close> have "(x, a) \<in> pq"
hoelzl@59665
  1403
    by (force simp: eq)
hoelzl@59664
  1404
  with * show "R x a"
hoelzl@59664
  1405
    by auto
hoelzl@59664
  1406
qed (auto intro!: rel_pmf.intros[where pq="pair_pmf (return_pmf x) M"]
hoelzl@59665
  1407
          simp: map_fst_pair_pmf map_snd_pair_pmf)
hoelzl@59664
  1408
hoelzl@59664
  1409
lemma rel_pmf_return_pmf2: "rel_pmf R M (return_pmf x) \<longleftrightarrow> (\<forall>a\<in>M. R a x)"
hoelzl@59664
  1410
  by (subst pmf.rel_flip[symmetric]) (simp add: rel_pmf_return_pmf1)
hoelzl@59664
  1411
hoelzl@59664
  1412
lemma rel_return_pmf[simp]: "rel_pmf R (return_pmf x1) (return_pmf x2) = R x1 x2"
hoelzl@59664
  1413
  unfolding rel_pmf_return_pmf2 set_return_pmf by simp
hoelzl@59664
  1414
hoelzl@59664
  1415
lemma rel_pmf_False[simp]: "rel_pmf (\<lambda>x y. False) x y = False"
hoelzl@59664
  1416
  unfolding pmf.in_rel fun_eq_iff using set_pmf_not_empty by fastforce
hoelzl@59664
  1417
hoelzl@59664
  1418
lemma rel_pmf_rel_prod:
hoelzl@59664
  1419
  "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B') \<longleftrightarrow> rel_pmf R A B \<and> rel_pmf S A' B'"
hoelzl@59664
  1420
proof safe
hoelzl@59664
  1421
  assume "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
hoelzl@59664
  1422
  then obtain pq where pq: "\<And>a b c d. ((a, c), (b, d)) \<in> set_pmf pq \<Longrightarrow> R a b \<and> S c d"
hoelzl@59664
  1423
    and eq: "map_pmf fst pq = pair_pmf A A'" "map_pmf snd pq = pair_pmf B B'"
hoelzl@59664
  1424
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1425
  show "rel_pmf R A B"
hoelzl@59664
  1426
  proof (rule rel_pmf.intros)
hoelzl@59664
  1427
    let ?f = "\<lambda>(a, b). (fst a, fst b)"
hoelzl@59664
  1428
    have [simp]: "(\<lambda>x. fst (?f x)) = fst o fst" "(\<lambda>x. snd (?f x)) = fst o snd"
hoelzl@59664
  1429
      by auto
hoelzl@59664
  1430
hoelzl@59664
  1431
    show "map_pmf fst (map_pmf ?f pq) = A"
hoelzl@59664
  1432
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
hoelzl@59664
  1433
    show "map_pmf snd (map_pmf ?f pq) = B"
hoelzl@59664
  1434
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
hoelzl@59664
  1435
hoelzl@59664
  1436
    fix a b assume "(a, b) \<in> set_pmf (map_pmf ?f pq)"
hoelzl@59664
  1437
    then obtain c d where "((a, c), (b, d)) \<in> set_pmf pq"
hoelzl@59665
  1438
      by auto
hoelzl@59664
  1439
    from pq[OF this] show "R a b" ..
hoelzl@59664
  1440
  qed
hoelzl@59664
  1441
  show "rel_pmf S A' B'"
hoelzl@59664
  1442
  proof (rule rel_pmf.intros)
hoelzl@59664
  1443
    let ?f = "\<lambda>(a, b). (snd a, snd b)"
hoelzl@59664
  1444
    have [simp]: "(\<lambda>x. fst (?f x)) = snd o fst" "(\<lambda>x. snd (?f x)) = snd o snd"
hoelzl@59664
  1445
      by auto
hoelzl@59664
  1446
hoelzl@59664
  1447
    show "map_pmf fst (map_pmf ?f pq) = A'"
hoelzl@59664
  1448
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
hoelzl@59664
  1449
    show "map_pmf snd (map_pmf ?f pq) = B'"
hoelzl@59664
  1450
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
hoelzl@59664
  1451
hoelzl@59664
  1452
    fix c d assume "(c, d) \<in> set_pmf (map_pmf ?f pq)"
hoelzl@59664
  1453
    then obtain a b where "((a, c), (b, d)) \<in> set_pmf pq"
hoelzl@59665
  1454
      by auto
hoelzl@59664
  1455
    from pq[OF this] show "S c d" ..
hoelzl@59664
  1456
  qed
hoelzl@59664
  1457
next
hoelzl@59664
  1458
  assume "rel_pmf R A B" "rel_pmf S A' B'"
hoelzl@59664
  1459
  then obtain Rpq Spq
hoelzl@59664
  1460
    where Rpq: "\<And>a b. (a, b) \<in> set_pmf Rpq \<Longrightarrow> R a b"
hoelzl@59664
  1461
        "map_pmf fst Rpq = A" "map_pmf snd Rpq = B"
hoelzl@59664
  1462
      and Spq: "\<And>a b. (a, b) \<in> set_pmf Spq \<Longrightarrow> S a b"
hoelzl@59664
  1463
        "map_pmf fst Spq = A'" "map_pmf snd Spq = B'"
hoelzl@59664
  1464
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1465
hoelzl@59664
  1466
  let ?f = "(\<lambda>((a, c), (b, d)). ((a, b), (c, d)))"
hoelzl@59664
  1467
  let ?pq = "map_pmf ?f (pair_pmf Rpq Spq)"
hoelzl@59664
  1468
  have [simp]: "(\<lambda>x. fst (?f x)) = (\<lambda>(a, b). (fst a, fst b))" "(\<lambda>x. snd (?f x)) = (\<lambda>(a, b). (snd a, snd b))"
hoelzl@59664
  1469
    by auto
hoelzl@59664
  1470
hoelzl@59664
  1471
  show "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
hoelzl@59664
  1472
    by (rule rel_pmf.intros[where pq="?pq"])
hoelzl@59665
  1473
       (auto simp: map_snd_pair_pmf map_fst_pair_pmf map_pmf_comp Rpq Spq
hoelzl@59664
  1474
                   map_pair)
hoelzl@59664
  1475
qed
hoelzl@59664
  1476
lp15@59667
  1477
lemma rel_pmf_reflI:
hoelzl@59664
  1478
  assumes "\<And>x. x \<in> set_pmf p \<Longrightarrow> P x x"
hoelzl@59664
  1479
  shows "rel_pmf P p p"
hoelzl@59665
  1480
  by (rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. (x, x)) p"])
hoelzl@59665
  1481
     (auto simp add: pmf.map_comp o_def assms)
hoelzl@59664
  1482
Andreas@61634
  1483
lemma rel_pmf_bij_betw:
Andreas@61634
  1484
  assumes f: "bij_betw f (set_pmf p) (set_pmf q)"
Andreas@61634
  1485
  and eq: "\<And>x. x \<in> set_pmf p \<Longrightarrow> pmf p x = pmf q (f x)"
Andreas@61634
  1486
  shows "rel_pmf (\<lambda>x y. f x = y) p q"
Andreas@61634
  1487
proof(rule rel_pmf.intros)
Andreas@61634
  1488
  let ?pq = "map_pmf (\<lambda>x. (x, f x)) p"
Andreas@61634
  1489
  show "map_pmf fst ?pq = p" by(simp add: pmf.map_comp o_def)
Andreas@61634
  1490
Andreas@61634
  1491
  have "map_pmf f p = q"
Andreas@61634
  1492
  proof(rule pmf_eqI)
Andreas@61634
  1493
    fix i
Andreas@61634
  1494
    show "pmf (map_pmf f p) i = pmf q i"
Andreas@61634
  1495
    proof(cases "i \<in> set_pmf q")
Andreas@61634
  1496
      case True
Andreas@61634
  1497
      with f obtain j where "i = f j" "j \<in> set_pmf p"
Andreas@61634
  1498
        by(auto simp add: bij_betw_def image_iff)
Andreas@61634
  1499
      thus ?thesis using f by(simp add: bij_betw_def pmf_map_inj eq)
Andreas@61634
  1500
    next
Andreas@61634
  1501
      case False thus ?thesis
Andreas@61634
  1502
        by(subst pmf_map_outside)(auto simp add: set_pmf_iff eq[symmetric])
Andreas@61634
  1503
    qed
Andreas@61634
  1504
  qed
Andreas@61634
  1505
  then show "map_pmf snd ?pq = q" by(simp add: pmf.map_comp o_def)
Andreas@61634
  1506
qed auto
Andreas@61634
  1507
hoelzl@59664
  1508
context
hoelzl@59664
  1509
begin
hoelzl@59664
  1510
hoelzl@59664
  1511
interpretation pmf_as_measure .
hoelzl@59664
  1512
hoelzl@59664
  1513
definition "join_pmf M = bind_pmf M (\<lambda>x. x)"
hoelzl@59664
  1514
hoelzl@59664
  1515
lemma bind_eq_join_pmf: "bind_pmf M f = join_pmf (map_pmf f M)"
hoelzl@59664
  1516
  unfolding join_pmf_def bind_map_pmf ..
hoelzl@59664
  1517
hoelzl@59664
  1518
lemma join_eq_bind_pmf: "join_pmf M = bind_pmf M id"
hoelzl@59664
  1519
  by (simp add: join_pmf_def id_def)
hoelzl@59664
  1520
hoelzl@59664
  1521
lemma pmf_join: "pmf (join_pmf N) i = (\<integral>M. pmf M i \<partial>measure_pmf N)"
hoelzl@59664
  1522
  unfolding join_pmf_def pmf_bind ..
hoelzl@59664
  1523
hoelzl@62975
  1524
lemma ennreal_pmf_join: "ennreal (pmf (join_pmf N) i) = (\<integral>\<^sup>+M. pmf M i \<partial>measure_pmf N)"
hoelzl@62975
  1525
  unfolding join_pmf_def ennreal_pmf_bind ..
hoelzl@59664
  1526
hoelzl@59665
  1527
lemma set_pmf_join_pmf[simp]: "set_pmf (join_pmf f) = (\<Union>p\<in>set_pmf f. set_pmf p)"
hoelzl@59665
  1528
  by (simp add: join_pmf_def)
hoelzl@59664
  1529
hoelzl@59664
  1530
lemma join_return_pmf: "join_pmf (return_pmf M) = M"
hoelzl@59664
  1531
  by (simp add: integral_return pmf_eq_iff pmf_join return_pmf.rep_eq)
hoelzl@59664
  1532
hoelzl@59664
  1533
lemma map_join_pmf: "map_pmf f (join_pmf AA) = join_pmf (map_pmf (map_pmf f) AA)"
hoelzl@59664
  1534
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf)
hoelzl@59664
  1535
hoelzl@59664
  1536
lemma join_map_return_pmf: "join_pmf (map_pmf return_pmf A) = A"
hoelzl@59664
  1537
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
  1538
hoelzl@59664
  1539
end
hoelzl@59664
  1540
hoelzl@59664
  1541
lemma rel_pmf_joinI:
hoelzl@59664
  1542
  assumes "rel_pmf (rel_pmf P) p q"
hoelzl@59664
  1543
  shows "rel_pmf P (join_pmf p) (join_pmf q)"
hoelzl@59664
  1544
proof -
hoelzl@59664
  1545
  from assms obtain pq where p: "p = map_pmf fst pq"
hoelzl@59664
  1546
    and q: "q = map_pmf snd pq"
hoelzl@59664
  1547
    and P: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> rel_pmf P x y"
hoelzl@59664
  1548
    by cases auto
lp15@59667
  1549
  from P obtain PQ
hoelzl@59664
  1550
    where PQ: "\<And>x y a b. \<lbrakk> (x, y) \<in> set_pmf pq; (a, b) \<in> set_pmf (PQ x y) \<rbrakk> \<Longrightarrow> P a b"
hoelzl@59664
  1551
    and x: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf fst (PQ x y) = x"
hoelzl@59664
  1552
    and y: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf snd (PQ x y) = y"
hoelzl@59664
  1553
    by(metis rel_pmf.simps)
hoelzl@59664
  1554
hoelzl@59664
  1555
  let ?r = "bind_pmf pq (\<lambda>(x, y). PQ x y)"
hoelzl@59665
  1556
  have "\<And>a b. (a, b) \<in> set_pmf ?r \<Longrightarrow> P a b" by (auto intro: PQ)
hoelzl@59664
  1557
  moreover have "map_pmf fst ?r = join_pmf p" "map_pmf snd ?r = join_pmf q"
hoelzl@59664
  1558
    by (simp_all add: p q x y join_pmf_def map_bind_pmf bind_map_pmf split_def cong: bind_pmf_cong)
hoelzl@59664
  1559
  ultimately show ?thesis ..
hoelzl@59664
  1560
qed
hoelzl@59664
  1561
hoelzl@59664
  1562
lemma rel_pmf_bindI:
hoelzl@59664
  1563
  assumes pq: "rel_pmf R p q"
hoelzl@59664
  1564
  and fg: "\<And>x y. R x y \<Longrightarrow> rel_pmf P (f x) (g y)"
hoelzl@59664
  1565
  shows "rel_pmf P (bind_pmf p f) (bind_pmf q g)"
hoelzl@59664
  1566
  unfolding bind_eq_join_pmf
hoelzl@59664
  1567
  by (rule rel_pmf_joinI)
hoelzl@59664
  1568
     (auto simp add: pmf.rel_map intro: pmf.rel_mono[THEN le_funD, THEN le_funD, THEN le_boolD, THEN mp, OF _ pq] fg)
hoelzl@59664
  1569
wenzelm@61808
  1570
text \<open>
hoelzl@59664
  1571
  Proof that @{const rel_pmf} preserves orders.
lp15@59667
  1572
  Antisymmetry proof follows Thm. 1 in N. Saheb-Djahromi, Cpo's of measures for nondeterminism,
lp15@59667
  1573
  Theoretical Computer Science 12(1):19--37, 1980,
lars@67601
  1574
  \<^url>\<open>https://doi.org/10.1016/0304-3975(80)90003-1\<close>
wenzelm@61808
  1575
\<close>
hoelzl@59664
  1576
lp15@59667
  1577
lemma
hoelzl@59664
  1578
  assumes *: "rel_pmf R p q"
hoelzl@59664
  1579
  and refl: "reflp R" and trans: "transp R"
hoelzl@59664
  1580
  shows measure_Ici: "measure p {y. R x y} \<le> measure q {y. R x y}" (is ?thesis1)
hoelzl@59664
  1581
  and measure_Ioi: "measure p {y. R x y \<and> \<not> R y x} \<le> measure q {y. R x y \<and> \<not> R y x}" (is ?thesis2)
hoelzl@59664
  1582
proof -
hoelzl@59664
  1583
  from * obtain pq
hoelzl@59664
  1584
    where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59664
  1585
    and p: "p = map_pmf fst pq"
hoelzl@59664
  1586
    and q: "q = map_pmf snd pq"
hoelzl@59664
  1587
    by cases auto
hoelzl@59664
  1588
  show ?thesis1 ?thesis2 unfolding p q map_pmf_rep_eq using refl trans
hoelzl@59664
  1589
    by(auto 4 3 simp add: measure_distr reflpD AE_measure_pmf_iff intro!: measure_pmf.finite_measure_mono_AE dest!: pq elim: transpE)
hoelzl@59664
  1590
qed
hoelzl@59664
  1591
hoelzl@59664
  1592
lemma rel_pmf_inf:
hoelzl@59664
  1593
  fixes p q :: "'a pmf"
hoelzl@59664
  1594
  assumes 1: "rel_pmf R p q"
hoelzl@59664
  1595
  assumes 2: "rel_pmf R q p"
hoelzl@59664
  1596
  and refl: "reflp R" and trans: "transp R"
hoelzl@59664
  1597
  shows "rel_pmf (inf R R\<inverse>\<inverse>) p q"
hoelzl@59681
  1598
proof (subst rel_pmf_iff_equivp, safe)
hoelzl@59681
  1599
  show "equivp (inf R R\<inverse>\<inverse>)"
hoelzl@59681
  1600
    using trans refl by (auto simp: equivp_reflp_symp_transp intro: sympI transpI reflpI dest: transpD reflpD)
lp15@61609
  1601
hoelzl@59681
  1602
  fix C assume "C \<in> UNIV // {(x, y). inf R R\<inverse>\<inverse> x y}"
hoelzl@59681
  1603
  then obtain x where C: "C = {y. R x y \<and> R y x}"
hoelzl@59681
  1604
    by (auto elim: quotientE)
hoelzl@59681
  1605
hoelzl@59670
  1606
  let ?R = "\<lambda>x y. R x y \<and> R y x"
hoelzl@59670
  1607
  let ?\<mu>R = "\<lambda>y. measure q {x. ?R x y}"
hoelzl@59681
  1608
  have "measure p {y. ?R x y} = measure p ({y. R x y} - {y. R x y \<and> \<not> R y x})"
hoelzl@59681
  1609
    by(auto intro!: arg_cong[where f="measure p"])
hoelzl@59681
  1610
  also have "\<dots> = measure p {y. R x y} - measure p {y. R x y \<and> \<not> R y x}"
hoelzl@59681
  1611
    by (rule measure_pmf.finite_measure_Diff) auto
hoelzl@59681
  1612
  also have "measure p {y. R x y \<and> \<not> R y x} = measure q {y. R x y \<and> \<not> R y x}"
hoelzl@59681
  1613
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ioi)
hoelzl@59681
  1614
  also have "measure p {y. R x y} = measure q {y. R x y}"
hoelzl@59681
  1615
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ici)
hoelzl@59681
  1616
  also have "measure q {y. R x y} - measure q {y. R x y \<and> \<not> R y x} =
hoelzl@59681
  1617
    measure q ({y. R x y} - {y. R x y \<and> \<not> R y x})"
hoelzl@59681
  1618
    by(rule measure_pmf.finite_measure_Diff[symmetric]) auto
hoelzl@59681
  1619
  also have "\<dots> = ?\<mu>R x"
hoelzl@59681
  1620
    by(auto intro!: arg_cong[where f="measure q"])
hoelzl@59681
  1621
  finally show "measure p C = measure q C"
hoelzl@59681
  1622
    by (simp add: C conj_commute)
hoelzl@59664
  1623
qed
hoelzl@59664
  1624
hoelzl@59664
  1625
lemma rel_pmf_antisym:
hoelzl@59664
  1626
  fixes p q :: "'a pmf"
hoelzl@59664
  1627
  assumes 1: "rel_pmf R p q"
hoelzl@59664
  1628
  assumes 2: "rel_pmf R q p"
haftmann@64634
  1629
  and refl: "reflp R" and trans: "transp R" and antisym: "antisymp R"
hoelzl@59664
  1630
  shows "p = q"
hoelzl@59664
  1631
proof -
hoelzl@59664
  1632
  from 1 2 refl trans have "rel_pmf (inf R R\<inverse>\<inverse>) p q" by(rule rel_pmf_inf)
nipkow@67399
  1633
  also have "inf R R\<inverse>\<inverse> = (=)"
haftmann@64634
  1634
    using refl antisym by (auto intro!: ext simp add: reflpD dest: antisympD)
hoelzl@59664
  1635
  finally show ?thesis unfolding pmf.rel_eq .
hoelzl@59664
  1636
qed
hoelzl@59664
  1637
hoelzl@59664
  1638
lemma reflp_rel_pmf: "reflp R \<Longrightarrow> reflp (rel_pmf R)"
haftmann@64634
  1639
  by (fact pmf.rel_reflp)
hoelzl@59664
  1640
haftmann@64634
  1641
lemma antisymp_rel_pmf:
haftmann@64634
  1642
  "\<lbrakk> reflp R; transp R; antisymp R \<rbrakk>
haftmann@64634
  1643
  \<Longrightarrow> antisymp (rel_pmf R)"
haftmann@64634
  1644
by(rule antisympI)(blast intro: rel_pmf_antisym)
hoelzl@59664
  1645
hoelzl@59664
  1646
lemma transp_rel_pmf:
hoelzl@59664
  1647
  assumes "transp R"
hoelzl@59664
  1648
  shows "transp (rel_pmf R)"
haftmann@64634
  1649
  using assms by (fact pmf.rel_transp)
hoelzl@59664
  1650
lars@67486
  1651
hoelzl@59664
  1652
subsection \<open> Distributions \<close>
hoelzl@59664
  1653
hoelzl@59000
  1654
context
hoelzl@59000
  1655
begin
hoelzl@59000
  1656
hoelzl@59000
  1657
interpretation pmf_as_function .
hoelzl@59000
  1658
hoelzl@59093
  1659
subsubsection \<open> Bernoulli Distribution \<close>
hoelzl@59093
  1660
hoelzl@59000
  1661
lift_definition bernoulli_pmf :: "real \<Rightarrow> bool pmf" is
hoelzl@59000
  1662
  "\<lambda>p b. ((\<lambda>p. if b then p else 1 - p) \<circ> min 1 \<circ> max 0) p"
hoelzl@59000
  1663
  by (auto simp: nn_integral_count_space_finite[where A="{False, True}"] UNIV_bool
hoelzl@59000
  1664
           split: split_max split_min)
hoelzl@59000
  1665
hoelzl@59000
  1666
lemma pmf_bernoulli_True[simp]: "0 \<le> p \<Longrightarrow> p \<le> 1 \<Longrightarrow> pmf (bernoulli_pmf p) True = p"
hoelzl@59000
  1667
  by transfer simp
hoelzl@59000
  1668
hoelzl@59000
  1669
lemma pmf_bernoulli_False[simp]: "0 \<le> p \<Longrightarrow> p \<le> 1 \<Longrightarrow> pmf (bernoulli_pmf p) False = 1 - p"
hoelzl@59000
  1670
  by transfer simp
hoelzl@59000
  1671
hoelzl@62975
  1672
lemma set_pmf_bernoulli[simp]: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (bernoulli_pmf p) = UNIV"
hoelzl@59000
  1673
  by (auto simp add: set_pmf_iff UNIV_bool)
hoelzl@59000
  1674
lp15@59667
  1675
lemma nn_integral_bernoulli_pmf[simp]:
hoelzl@59002
  1676
  assumes [simp]: "0 \<le> p" "p \<le> 1" "\<And>x. 0 \<le> f x"
hoelzl@59002
  1677
  shows "(\<integral>\<^sup>+x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
hoelzl@59002
  1678
  by (subst nn_integral_measure_pmf_support[of UNIV])
hoelzl@59002
  1679
     (auto simp: UNIV_bool field_simps)
hoelzl@59002
  1680
lp15@59667
  1681
lemma integral_bernoulli_pmf[simp]:
hoelzl@59002
  1682
  assumes [simp]: "0 \<le> p" "p \<le> 1"
hoelzl@59002
  1683
  shows "(\<integral>x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
hoelzl@59002
  1684
  by (subst integral_measure_pmf[of UNIV]) (auto simp: UNIV_bool)
hoelzl@59002
  1685
Andreas@59525
  1686
lemma pmf_bernoulli_half [simp]: "pmf (bernoulli_pmf (1 / 2)) x = 1 / 2"
Andreas@59525
  1687
by(cases x) simp_all
Andreas@59525
  1688
Andreas@59525
  1689
lemma measure_pmf_bernoulli_half: "measure_pmf (bernoulli_pmf (1 / 2)) = uniform_count_measure UNIV"
hoelzl@62975
  1690
  by (rule measure_eqI)
hoelzl@62975
  1691
     (simp_all add: nn_integral_pmf[symmetric] emeasure_uniform_count_measure ennreal_divide_numeral[symmetric]
hoelzl@62975
  1692
                    nn_integral_count_space_finite sets_uniform_count_measure divide_ennreal_def mult_ac
hoelzl@62975
  1693
                    ennreal_of_nat_eq_real_of_nat)
Andreas@59525
  1694
hoelzl@59093
  1695
subsubsection \<open> Geometric Distribution \<close>
hoelzl@59093
  1696
hoelzl@60602
  1697
context
hoelzl@60602
  1698
  fixes p :: real assumes p[arith]: "0 < p" "p \<le> 1"
hoelzl@60602
  1699
begin
hoelzl@60602
  1700
hoelzl@60602
  1701
lift_definition geometric_pmf :: "nat pmf" is "\<lambda>n. (1 - p)^n * p"
hoelzl@59000
  1702
proof
hoelzl@62975
  1703
  have "(\<Sum>i. ennreal (p * (1 - p) ^ i)) = ennreal (p * (1 / (1 - (1 - p))))"
hoelzl@62975
  1704
    by (intro suminf_ennreal_eq sums_mult geometric_sums) auto
hoelzl@62975
  1705
  then show "(\<integral>\<^sup>+ x. ennreal ((1 - p)^x * p) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1706
    by (simp add: nn_integral_count_space_nat field_simps)
hoelzl@59000
  1707
qed simp
hoelzl@59000
  1708
hoelzl@60602
  1709
lemma pmf_geometric[simp]: "pmf geometric_pmf n = (1 - p)^n * p"
hoelzl@59000
  1710
  by transfer rule
hoelzl@59000
  1711
hoelzl@60602
  1712
end
hoelzl@60602
  1713
hoelzl@60602
  1714
lemma set_pmf_geometric: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (geometric_pmf p) = UNIV"
lp15@61609
  1715
  by (auto simp: set_pmf_iff)
hoelzl@59000
  1716
hoelzl@59093
  1717
subsubsection \<open> Uniform Multiset Distribution \<close>
hoelzl@59093
  1718
hoelzl@59000
  1719
context
hoelzl@59000
  1720
  fixes M :: "'a multiset" assumes M_not_empty: "M \<noteq> {#}"
hoelzl@59000
  1721
begin
hoelzl@59000
  1722
hoelzl@59000
  1723
lift_definition pmf_of_multiset :: "'a pmf" is "\<lambda>x. count M x / size M"
hoelzl@59000
  1724
proof
hoelzl@62975
  1725
  show "(\<integral>\<^sup>+ x. ennreal (real (count M x) / real (size M)) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1726
    using M_not_empty
hoelzl@59000
  1727
    by (simp add: zero_less_divide_iff nn_integral_count_space nonempty_has_size
nipkow@64267
  1728
                  sum_divide_distrib[symmetric])
nipkow@64267
  1729
       (auto simp: size_multiset_overloaded_eq intro!: sum.cong)
hoelzl@59000
  1730
qed simp
hoelzl@59000
  1731
hoelzl@59000
  1732
lemma pmf_of_multiset[simp]: "pmf pmf_of_multiset x = count M x / size M"
hoelzl@59000
  1733
  by transfer rule
hoelzl@59000
  1734
nipkow@60495
  1735
lemma set_pmf_of_multiset[simp]: "set_pmf pmf_of_multiset = set_mset M"
hoelzl@59000
  1736
  by (auto simp: set_pmf_iff)
hoelzl@59000
  1737
hoelzl@59000
  1738
end
hoelzl@59000
  1739
hoelzl@59093
  1740
subsubsection \<open> Uniform Distribution \<close>
hoelzl@59093
  1741
hoelzl@59000
  1742
context
hoelzl@59000
  1743
  fixes S :: "'a set" assumes S_not_empty: "S \<noteq> {}" and S_finite: "finite S"
hoelzl@59000
  1744
begin
hoelzl@59000
  1745
hoelzl@59000
  1746
lift_definition pmf_of_set :: "'a pmf" is "\<lambda>x. indicator S x / card S"
hoelzl@59000
  1747
proof
hoelzl@62975
  1748
  show "(\<integral>\<^sup>+ x. ennreal (indicator S x / real (card S)) \<partial>count_space UNIV) = 1"
hoelzl@62975
  1749
    using S_not_empty S_finite
hoelzl@62975
  1750
    by (subst nn_integral_count_space'[of S])
hoelzl@62975
  1751
       (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_mult[symmetric])
hoelzl@59000
  1752
qed simp
hoelzl@59000
  1753
hoelzl@59000
  1754
lemma pmf_of_set[simp]: "pmf pmf_of_set x = indicator S x / card S"
hoelzl@59000
  1755
  by transfer rule
hoelzl@59000
  1756
hoelzl@59000
  1757
lemma set_pmf_of_set[simp]: "set_pmf pmf_of_set = S"
hoelzl@59000
  1758
  using S_finite S_not_empty by (auto simp: set_pmf_iff)
hoelzl@59000
  1759
Andreas@61634
  1760
lemma emeasure_pmf_of_set_space[simp]: "emeasure pmf_of_set S = 1"
hoelzl@59002
  1761
  by (rule measure_pmf.emeasure_eq_1_AE) (auto simp: AE_measure_pmf_iff)
hoelzl@59002
  1762
nipkow@64267
  1763
lemma nn_integral_pmf_of_set: "nn_integral (measure_pmf pmf_of_set) f = sum f S / card S"
hoelzl@62975
  1764
  by (subst nn_integral_measure_pmf_finite)
nipkow@64267
  1765
     (simp_all add: sum_distrib_right[symmetric] card_gt_0_iff S_not_empty S_finite divide_ennreal_def
hoelzl@62975
  1766
                divide_ennreal[symmetric] ennreal_of_nat_eq_real_of_nat[symmetric] ennreal_times_divide)
Andreas@60068
  1767
nipkow@64267
  1768
lemma integral_pmf_of_set: "integral\<^sup>L (measure_pmf pmf_of_set) f = sum f S / card S"
nipkow@64267
  1769
  by (subst integral_measure_pmf[of S]) (auto simp: S_finite sum_divide_distrib)
Andreas@60068
  1770
hoelzl@62975
  1771
lemma emeasure_pmf_of_set: "emeasure (measure_pmf pmf_of_set) A = card (S \<inter> A) / card S"
hoelzl@62975
  1772
  by (subst nn_integral_indicator[symmetric], simp)
nipkow@64267
  1773
     (simp add: S_finite S_not_empty card_gt_0_iff indicator_def sum.If_cases divide_ennreal
hoelzl@62975
  1774
                ennreal_of_nat_eq_real_of_nat nn_integral_pmf_of_set)
Andreas@60068
  1775
hoelzl@62975
  1776
lemma measure_pmf_of_set: "measure (measure_pmf pmf_of_set) A = card (S \<inter> A) / card S"
wenzelm@63092
  1777
  using emeasure_pmf_of_set[of A]
hoelzl@62975
  1778
  by (simp add: measure_nonneg measure_pmf.emeasure_eq_measure)
Andreas@61634
  1779
hoelzl@59000
  1780
end
lars@67486
  1781
eberlm@65395
  1782
lemma pmf_expectation_bind_pmf_of_set:
eberlm@65395
  1783
  fixes A :: "'a set" and f :: "'a \<Rightarrow> 'b pmf"
eberlm@65395
  1784
    and  h :: "'b \<Rightarrow> 'c::{banach, second_countable_topology}"
eberlm@65395
  1785
  assumes "A \<noteq> {}" "finite A" "\<And>x. x \<in> A \<Longrightarrow> finite (set_pmf (f x))"
eberlm@65395
  1786
  shows "measure_pmf.expectation (pmf_of_set A \<bind> f) h =
eberlm@65395
  1787
           (\<Sum>a\<in>A. measure_pmf.expectation (f a) h /\<^sub>R real (card A))"
eberlm@65395
  1788
  using assms by (subst pmf_expectation_bind[of A]) (auto simp: divide_simps)
hoelzl@59000
  1789
eberlm@63099
  1790
lemma map_pmf_of_set:
eberlm@63099
  1791
  assumes "finite A" "A \<noteq> {}"
hoelzl@63886
  1792
  shows   "map_pmf f (pmf_of_set A) = pmf_of_multiset (image_mset f (mset_set A))"
eberlm@63099
  1793
    (is "?lhs = ?rhs")
eberlm@63099
  1794
proof (intro pmf_eqI)
eberlm@63099
  1795
  fix x
eberlm@63099
  1796
  from assms have "ennreal (pmf ?lhs x) = ennreal (pmf ?rhs x)"
eberlm@63099
  1797
    by (subst ennreal_pmf_map)
eberlm@63099
  1798
       (simp_all add: emeasure_pmf_of_set mset_set_empty_iff count_image_mset Int_commute)
eberlm@63099
  1799
  thus "pmf ?lhs x = pmf ?rhs x" by simp
eberlm@63099
  1800
qed
eberlm@63099
  1801
eberlm@63099
  1802
lemma pmf_bind_pmf_of_set:
eberlm@63099
  1803
  assumes "A \<noteq> {}" "finite A"
hoelzl@63886
  1804
  shows   "pmf (bind_pmf (pmf_of_set A) f) x =
eberlm@63099
  1805
             (\<Sum>xa\<in>A. pmf (f xa) x) / real_of_nat (card A)" (is "?lhs = ?rhs")
eberlm@63099
  1806
proof -
eberlm@63099
  1807
  from assms have "card A > 0" by auto
eberlm@63099
  1808
  with assms have "ennreal ?lhs = ennreal ?rhs"
hoelzl@63886
  1809
    by (subst ennreal_pmf_bind)
hoelzl@63886
  1810
       (simp_all add: nn_integral_pmf_of_set max_def pmf_nonneg divide_ennreal [symmetric]
nipkow@64267
  1811
        sum_nonneg ennreal_of_nat_eq_real_of_nat)
nipkow@64267
  1812
  thus ?thesis by (subst (asm) ennreal_inj) (auto intro!: sum_nonneg divide_nonneg_nonneg)
eberlm@63099
  1813
qed
eberlm@63099
  1814
Andreas@60068
  1815
lemma pmf_of_set_singleton: "pmf_of_set {x} = return_pmf x"
Andreas@60068
  1816
by(rule pmf_eqI)(simp add: indicator_def)
Andreas@60068
  1817
lp15@61609
  1818
lemma map_pmf_of_set_inj:
Andreas@60068
  1819
  assumes f: "inj_on f A"
Andreas@60068
  1820
  and [simp]: "A \<noteq> {}" "finite A"
Andreas@60068
  1821
  shows "map_pmf f (pmf_of_set A) = pmf_of_set (f ` A)" (is "?lhs = ?rhs")
Andreas@60068
  1822
proof(rule pmf_eqI)
Andreas@60068
  1823
  fix i
Andreas@60068
  1824
  show "pmf ?lhs i = pmf ?rhs i"
Andreas@60068
  1825
  proof(cases "i \<in> f ` A")
Andreas@60068
  1826
    case True
Andreas@60068
  1827
    then obtain i' where "i = f i'" "i' \<in> A" by auto
Andreas@60068
  1828
    thus ?thesis using f by(simp add: card_image pmf_map_inj)
Andreas@60068
  1829
  next
Andreas@60068
  1830
    case False
Andreas@60068
  1831
    hence "pmf ?lhs i = 0" by(simp add: pmf_eq_0_set_pmf set_map_pmf)
Andreas@60068
  1832
    moreover have "pmf ?rhs i = 0" using False by simp
Andreas@60068
  1833
    ultimately show ?thesis by simp
Andreas@60068
  1834
  qed
Andreas@60068
  1835
qed
Andreas@60068
  1836
eberlm@65395
  1837
lemma map_pmf_of_set_bij_betw:
eberlm@65395
  1838
  assumes "bij_betw f A B" "A \<noteq> {}" "finite A"
eberlm@65395
  1839
  shows   "map_pmf f (pmf_of_set A) = pmf_of_set B"
eberlm@65395
  1840
proof -
eberlm@65395
  1841
  have "map_pmf f (pmf_of_set A) = pmf_of_set (f ` A)"
eberlm@65395
  1842
    by (intro map_pmf_of_set_inj assms bij_betw_imp_inj_on[OF assms(1)])
eberlm@65395
  1843
  also from assms have "f ` A = B" by (simp add: bij_betw_def)
eberlm@65395
  1844
  finally show ?thesis .
eberlm@65395
  1845
qed
eberlm@65395
  1846
eberlm@63099
  1847
text \<open>
hoelzl@63886
  1848
  Choosing an element uniformly at random from the union of a disjoint family
hoelzl@63886
  1849
  of finite non-empty sets with the same size is the same as first choosing a set
hoelzl@63886
  1850
  from the family uniformly at random and then choosing an element from the chosen set
hoelzl@63886
  1851
  uniformly at random.
eberlm@63099
  1852
\<close>
eberlm@63099
  1853
lemma pmf_of_set_UN:
haftmann@69313
  1854
  assumes "finite (\<Union>(f ` A))" "A \<noteq> {}" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> {}"
eberlm@63099
  1855
          "\<And>x. x \<in> A \<Longrightarrow> card (f x) = n" "disjoint_family_on f A"
haftmann@69313
  1856
  shows   "pmf_of_set (\<Union>(f ` A)) = do {x \<leftarrow> pmf_of_set A; pmf_of_set (f x)}"
eberlm@63099
  1857
            (is "?lhs = ?rhs")
eberlm@63099
  1858
proof (intro pmf_eqI)
eberlm@63099
  1859
  fix x
eberlm@63099
  1860
  from assms have [simp]: "finite A"
eberlm@63099
  1861
    using infinite_disjoint_family_imp_infinite_UNION[of A f] by blast
haftmann@69313
  1862
  from assms have "ereal (pmf (pmf_of_set (\<Union>(f ` A))) x) =
eberlm@63099
  1863
    ereal (indicator (\<Union>x\<in>A. f x) x / real (card (\<Union>x\<in>A. f x)))"
eberlm@63099
  1864
    by (subst pmf_of_set) auto
eberlm@63099
  1865
  also from assms have "card (\<Union>x\<in>A. f x) = card A * n"
eberlm@63099
  1866
    by (subst card_UN_disjoint) (auto simp: disjoint_family_on_def)
hoelzl@63886
  1867
  also from assms
hoelzl@63886
  1868
    have "indicator (\<Union>x\<in>A. f x) x / real \<dots> =
eberlm@63099
  1869
              indicator (\<Union>x\<in>A. f x) x / (n * real (card A))"
nipkow@64267
  1870
      by (simp add: sum_divide_distrib [symmetric] mult_ac)
eberlm@63099
  1871
  also from assms have "indicator (\<Union>x\<in>A. f x) x = (\<Sum>y\<in>A. indicator (f y) x)"
eberlm@63099
  1872
    by (intro indicator_UN_disjoint) simp_all
eberlm@63099
  1873
  also from assms have "ereal ((\<Sum>y\<in>A. indicator (f y) x) / (real n * real (card A))) =
eberlm@63099
  1874
                          ereal (pmf ?rhs x)"
nipkow@64267
  1875
    by (subst pmf_bind_pmf_of_set) (simp_all add: sum_divide_distrib)
eberlm@63099
  1876
  finally show "pmf ?lhs x = pmf ?rhs x" by simp
eberlm@63099
  1877
qed
eberlm@63099
  1878
Andreas@60068
  1879
lemma bernoulli_pmf_half_conv_pmf_of_set: "bernoulli_pmf (1 / 2) = pmf_of_set UNIV"
hoelzl@62975
  1880
  by (rule pmf_eqI) simp_all
Andreas@61634
  1881
hoelzl@59093
  1882
subsubsection \<open> Poisson Distribution \<close>
hoelzl@59093
  1883
hoelzl@59093
  1884
context
hoelzl@59093
  1885
  fixes rate :: real assumes rate_pos: "0 < rate"
hoelzl@59093
  1886
begin
hoelzl@59093
  1887
hoelzl@59093
  1888
lift_definition poisson_pmf :: "nat pmf" is "\<lambda>k. rate ^ k / fact k * exp (-rate)"
lp15@59730
  1889
proof  (* by Manuel Eberl *)
hoelzl@59093
  1890
  have summable: "summable (\<lambda>x::nat. rate ^ x / fact x)" using summable_exp
haftmann@59557
  1891
    by (simp add: field_simps divide_inverse [symmetric])
hoelzl@59093
  1892
  have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x * exp (-rate) \<partial>count_space UNIV) =
hoelzl@59093
  1893
          exp (-rate) * (\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV)"
hoelzl@62975
  1894
    by (simp add: field_simps nn_integral_cmult[symmetric] ennreal_mult'[symmetric])
hoelzl@59093
  1895
  also from rate_pos have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV) = (\<Sum>x. rate ^ x / fact x)"
hoelzl@62975
  1896
    by (simp_all add: nn_integral_count_space_nat suminf_ennreal summable ennreal_suminf_neq_top)
hoelzl@59093
  1897
  also have "... = exp rate" unfolding exp_def
lp15@59730
  1898
    by (simp add: field_simps divide_inverse [symmetric])
hoelzl@62975
  1899
  also have "ennreal (exp (-rate)) * ennreal (exp rate) = 1"
hoelzl@62975
  1900
    by (simp add: mult_exp_exp ennreal_mult[symmetric])
hoelzl@62975
  1901
  finally show "(\<integral>\<^sup>+ x. ennreal (rate ^ x / (fact x) * exp (- rate)) \<partial>count_space UNIV) = 1" .
hoelzl@59093
  1902
qed (simp add: rate_pos[THEN less_imp_le])
hoelzl@59093
  1903
hoelzl@59093
  1904
lemma pmf_poisson[simp]: "pmf poisson_pmf k = rate ^ k / fact k * exp (-rate)"
hoelzl@59093
  1905
  by transfer rule
hoelzl@59093
  1906
hoelzl@59093
  1907
lemma set_pmf_poisson[simp]: "set_pmf poisson_pmf = UNIV"
hoelzl@59093
  1908
  using rate_pos by (auto simp: set_pmf_iff)
hoelzl@59093
  1909
hoelzl@59000
  1910
end
hoelzl@59000
  1911
hoelzl@59093
  1912
subsubsection \<open> Binomial Distribution \<close>
hoelzl@59093
  1913
hoelzl@59093
  1914
context
hoelzl@59093
  1915
  fixes n :: nat and p :: real assumes p_nonneg: "0 \<le> p" and p_le_1: "p \<le> 1"
hoelzl@59093
  1916
begin
hoelzl@59093
  1917
hoelzl@59093
  1918
lift_definition binomial_pmf :: "nat pmf" is "\<lambda>k. (n choose k) * p^k * (1 - p)^(n - k)"
hoelzl@59093
  1919
proof
hoelzl@62975
  1920
  have "(\<integral>\<^sup>+k. ennreal (real (n choose k) * p ^ k * (1 - p) ^ (n - k)) \<partial>count_space UNIV) =
hoelzl@62975
  1921
    ennreal (\<Sum>k\<le>n. real (n choose k) * p ^ k * (1 - p) ^ (n - k))"
hoelzl@59093
  1922
    using p_le_1 p_nonneg by (subst nn_integral_count_space') auto
hoelzl@59093
  1923
  also have "(\<Sum>k\<le>n. real (n choose k) * p ^ k * (1 - p) ^ (n - k)) = (p + (1 - p)) ^ n"
lp15@61609
  1924
    by (subst binomial_ring) (simp add: atLeast0AtMost)
hoelzl@62975
  1925
  finally show "(\<integral>\<^sup>+ x. ennreal (real (n choose x) * p ^ x * (1 - p) ^ (n - x)) \<partial>count_space UNIV) = 1"
hoelzl@59093
  1926
    by simp
hoelzl@59093
  1927
qed (insert p_nonneg p_le_1, simp)
hoelzl@59093
  1928
hoelzl@59093
  1929
lemma pmf_binomial[simp]: "pmf binomial_pmf k = (n choose k) * p^k * (1 - p)^(n - k)"
hoelzl@59093
  1930
  by transfer rule
hoelzl@59093
  1931
hoelzl@59093
  1932
lemma set_pmf_binomial_eq: "set_pmf binomial_pmf = (if p = 0 then {0} else if p = 1 then {n} else {.. n})"
hoelzl@59093
  1933
  using p_nonneg p_le_1 unfolding set_eq_iff set_pmf_iff pmf_binomial by (auto simp: set_pmf_iff)
hoelzl@59093
  1934
hoelzl@59093
  1935
end
hoelzl@59093
  1936
hoelzl@59093
  1937
end
hoelzl@59093
  1938
hoelzl@59093
  1939
lemma set_pmf_binomial_0[simp]: "set_pmf (binomial_pmf n 0) = {0}"
hoelzl@59093
  1940
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1941
hoelzl@59093
  1942
lemma set_pmf_binomial_1[simp]: "set_pmf (binomial_pmf n 1) = {n}"
hoelzl@59093
  1943
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1944
hoelzl@59093
  1945
lemma set_pmf_binomial[simp]: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (binomial_pmf n p) = {..n}"
hoelzl@59093
  1946
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1947
wenzelm@63343
  1948
context includes lifting_syntax
wenzelm@63343
  1949
begin
Andreas@61634
  1950
Andreas@61634
  1951
lemma bind_pmf_parametric [transfer_rule]:
Andreas@61634
  1952
  "(rel_pmf A ===> (A ===> rel_pmf B) ===> rel_pmf B) bind_pmf bind_pmf"
Andreas@61634
  1953
by(blast intro: rel_pmf_bindI dest: rel_funD)
Andreas@61634
  1954
Andreas@61634
  1955
lemma return_pmf_parametric [transfer_rule]: "(A ===> rel_pmf A) return_pmf return_pmf"
Andreas@61634
  1956
by(rule rel_funI) simp
Andreas@61634
  1957
hoelzl@59000
  1958
end
Andreas@61634
  1959
eberlm@63099
  1960
eberlm@63194
  1961
primrec replicate_pmf :: "nat \<Rightarrow> 'a pmf \<Rightarrow> 'a list pmf" where
eberlm@63194
  1962
  "replicate_pmf 0 _ = return_pmf []"
eberlm@63194
  1963
| "replicate_pmf (Suc n) p = do {x \<leftarrow> p; xs \<leftarrow> replicate_pmf n p; return_pmf (x#xs)}"
eberlm@63194
  1964
eberlm@63194
  1965
lemma replicate_pmf_1: "replicate_pmf 1 p = map_pmf (\<lambda>x. [x]) p"
eberlm@63194
  1966
  by (simp add: map_pmf_def bind_return_pmf)
hoelzl@63886
  1967
hoelzl@63886
  1968
lemma set_replicate_pmf:
eberlm@63194
  1969
  "set_pmf (replicate_pmf n p) = {xs\<in>lists (set_pmf p). length xs = n}"
eberlm@63194
  1970
  by (induction n) (auto simp: length_Suc_conv)
eberlm@63194
  1971
eberlm@63194
  1972
lemma replicate_pmf_distrib:
hoelzl@63886
  1973
  "replicate_pmf (m + n) p =
eberlm@63194
  1974
     do {xs \<leftarrow> replicate_pmf m p; ys \<leftarrow> replicate_pmf n p; return_pmf (xs @ ys)}"
eberlm@63194
  1975
  by (induction m) (simp_all add: bind_return_pmf bind_return_pmf' bind_assoc_pmf)
eberlm@63194
  1976
hoelzl@63886
  1977
lemma power_diff':
eberlm@63194
  1978
  assumes "b \<le> a"
eberlm@63194
  1979
  shows   "x ^ (a - b) = (if x = 0 \<and> a = b then 1 else x ^ a / (x::'a::field) ^ b)"
eberlm@63194
  1980
proof (cases "x = 0")
eberlm@63194
  1981
  case True
eberlm@63194
  1982
  with assms show ?thesis by (cases "a - b") simp_all
eberlm@63194
  1983
qed (insert assms, simp_all add: power_diff)
eberlm@63194
  1984
hoelzl@63886
  1985
eberlm@63194
  1986
lemma binomial_pmf_Suc:
eberlm@63194
  1987
  assumes "p \<in> {0..1}"
hoelzl@63886
  1988
  shows   "binomial_pmf (Suc n) p =
hoelzl@63886
  1989
             do {b \<leftarrow> bernoulli_pmf p;
hoelzl@63886
  1990
                 k \<leftarrow> binomial_pmf n p;
eberlm@63194
  1991
                 return_pmf ((if b then 1 else 0) + k)}" (is "_ = ?rhs")
eberlm@63194
  1992
proof (intro pmf_eqI)
eberlm@63194
  1993
  fix k
eberlm@63194
  1994
  have A: "indicator {Suc a} (Suc b) = indicator {a} b" for a b
eberlm@63194
  1995
    by (simp add: indicator_def)
eberlm@63194
  1996
  show "pmf (binomial_pmf (Suc n) p) k = pmf ?rhs k"
eberlm@63194
  1997
    by (cases k; cases "k > n")
eberlm@63194
  1998
       (insert assms, auto simp: pmf_bind measure_pmf_single A divide_simps algebra_simps
eberlm@63194
  1999
          not_less less_eq_Suc_le [symmetric] power_diff')
eberlm@63194
  2000
qed
eberlm@63194
  2001
eberlm@63194
  2002
lemma binomial_pmf_0: "p \<in> {0..1} \<Longrightarrow> binomial_pmf 0 p = return_pmf 0"
eberlm@63194
  2003
  by (rule pmf_eqI) (simp_all add: indicator_def)
eberlm@63194
  2004
eberlm@63194
  2005
lemma binomial_pmf_altdef:
eberlm@63194
  2006
  assumes "p \<in> {0..1}"
eberlm@63194
  2007
  shows   "binomial_pmf n p = map_pmf (length \<circ> filter id) (replicate_pmf n (bernoulli_pmf p))"
hoelzl@63886
  2008
  by (induction n)
hoelzl@63886
  2009
     (insert assms, auto simp: binomial_pmf_Suc map_pmf_def bind_return_pmf bind_assoc_pmf
eberlm@63194
  2010
        bind_return_pmf' binomial_pmf_0 intro!: bind_pmf_cong)
eberlm@63194
  2011
eberlm@63194
  2012
lars@67486
  2013
subsection \<open>PMFs from association lists\<close>
eberlm@63099
  2014
hoelzl@63886
  2015
definition pmf_of_list ::" ('a \<times> real) list \<Rightarrow> 'a pmf" where
nipkow@63882
  2016
  "pmf_of_list xs = embed_pmf (\<lambda>x. sum_list (map snd (filter (\<lambda>z. fst z = x) xs)))"
eberlm@63099
  2017
eberlm@63099
  2018
definition pmf_of_list_wf where
nipkow@63882
  2019
  "pmf_of_list_wf xs \<longleftrightarrow> (\<forall>x\<in>set (map snd xs) . x \<ge> 0) \<and> sum_list (map snd xs) = 1"
eberlm@63099
  2020
eberlm@63099
  2021
lemma pmf_of_list_wfI:
nipkow@63882
  2022
  "(\<And>x. x \<in> set (map snd xs) \<Longrightarrow> x \<ge> 0) \<Longrightarrow> sum_list (map snd xs) = 1 \<Longrightarrow> pmf_of_list_wf xs"
eberlm@63099
  2023
  unfolding pmf_of_list_wf_def by simp
eberlm@63099
  2024
eberlm@63099
  2025
context
eberlm@63099
  2026
begin
eberlm@63099
  2027
eberlm@63099
  2028
private lemma pmf_of_list_aux:
eberlm@63099
  2029
  assumes "\<And>x. x \<in> set (map snd xs) \<Longrightarrow> x \<ge> 0"
nipkow@63882
  2030
  assumes "sum_list (map snd xs) = 1"
nipkow@68386
  2031
  shows "(\<integral>\<^sup>+ x. ennreal (sum_list (map snd [z\<leftarrow>xs . fst z = x])) \<partial>count_space UNIV) = 1"
eberlm@63099
  2032
proof -
nipkow@63882
  2033
  have "(\<integral>\<^sup>+ x. ennreal (sum_list (map snd (filter (\<lambda>z. fst z = x) xs))) \<partial>count_space UNIV) =
nipkow@63882
  2034
            (\<integral>\<^sup>+ x. ennreal (sum_list (map (\<lambda>(x',p). indicator {x'} x * p) xs)) \<partial>count_space UNIV)"
lars@67486
  2035
    apply (intro nn_integral_cong ennreal_cong, subst sum_list_map_filter')
lars@67486
  2036
    apply (rule arg_cong[where f = sum_list])
lars@67486
  2037
    apply (auto cong: map_cong)
lars@67486
  2038
    done
eberlm@63099
  2039
  also have "\<dots> = (\<Sum>(x',p)\<leftarrow>xs. (\<integral>\<^sup>+ x. ennreal (indicator {x'} x * p) \<partial>count_space UNIV))"
eberlm@63099
  2040
    using assms(1)
eberlm@63099
  2041
  proof (induction xs)
eberlm@63099
  2042
    case (Cons x xs)
eberlm@63099
  2043
    from Cons.prems have "snd x \<ge> 0" by simp
eberlm@63099
  2044
    moreover have "b \<ge> 0" if "(a,b) \<in> set xs" for a b
eberlm@63099
  2045
      using Cons.prems[of b] that by force
hoelzl@63886
  2046
    ultimately have "(\<integral>\<^sup>+ y. ennreal (\<Sum>(x', p)\<leftarrow>x # xs. indicator {x'} y * p) \<partial>count_space UNIV) =
hoelzl@63886
  2047
            (\<integral>\<^sup>+ y. ennreal (indicator {fst x} y * snd x) +
eberlm@63099
  2048
            ennreal (\<Sum>(x', p)\<leftarrow>xs. indicator {x'} y * p) \<partial>count_space UNIV)"
hoelzl@63886
  2049
      by (intro nn_integral_cong, subst ennreal_plus [symmetric])
nipkow@63882
  2050
         (auto simp: case_prod_unfold indicator_def intro!: sum_list_nonneg)
hoelzl@63886
  2051
    also have "\<dots> = (\<integral>\<^sup>+ y. ennreal (indicator {fst x} y * snd x) \<partial>count_space UNIV) +
eberlm@63099
  2052
                      (\<integral>\<^sup>+ y. ennreal (\<Sum>(x', p)\<leftarrow>xs. indicator {x'} y * p) \<partial>count_space UNIV)"
eberlm@63099
  2053
      by (intro nn_integral_add)
nipkow@63882
  2054
         (force intro!: sum_list_nonneg AE_I2 intro: Cons simp: indicator_def)+
eberlm@63099
  2055
    also have "(\<integral>\<^sup>+ y. ennreal (\<Sum>(x', p)\<leftarrow>xs. indicator {x'} y * p) \<partial>count_space UNIV) =
eberlm@63099
  2056
               (\<Sum>(x', p)\<leftarrow>xs. (\<integral>\<^sup>+ y. ennreal (indicator {x'} y * p) \<partial>count_space UNIV))"
eberlm@63099
  2057
      using Cons(1) by (intro Cons) simp_all
eberlm@63099
  2058
    finally show ?case by (simp add: case_prod_unfold)
eberlm@63099
  2059
  qed simp
eberlm@63099
  2060
  also have "\<dots> = (\<Sum>(x',p)\<leftarrow>xs. ennreal p * (\<integral>\<^sup>+ x. indicator {x'} x \<partial>count_space UNIV))"
eberlm@63099
  2061
    using assms(1)
lars@67489
  2062
    by (simp cong: map_cong only: case_prod_unfold, subst nn_integral_cmult [symmetric])
eberlm@63099
  2063
       (auto intro!: assms(1) simp: max_def times_ereal.simps [symmetric] mult_ac ereal_indicator
eberlm@63099
  2064
             simp del: times_ereal.simps)+
nipkow@63882
  2065
  also from assms have "\<dots> = sum_list (map snd xs)" by (simp add: case_prod_unfold sum_list_ennreal)
eberlm@63099
  2066
  also have "\<dots> = 1" using assms(2) by simp
eberlm@63099
  2067
  finally show ?thesis .
eberlm@63099
  2068
qed
eberlm@63099
  2069
eberlm@63099
  2070
lemma pmf_pmf_of_list:
eberlm@63099
  2071
  assumes "pmf_of_list_wf xs"
nipkow@63882
  2072
  shows   "pmf (pmf_of_list xs) x = sum_list (map snd (filter (\<lambda>z. fst z = x) xs))"
eberlm@63099
  2073
  using assms pmf_of_list_aux[of xs] unfolding pmf_of_list_def pmf_of_list_wf_def
nipkow@63882
  2074
  by (subst pmf_embed_pmf) (auto intro!: sum_list_nonneg)
eberlm@63099
  2075
Andreas@61634
  2076
end
eberlm@63099
  2077
eberlm@63099
  2078
lemma set_pmf_of_list:
eberlm@63099
  2079
  assumes "pmf_of_list_wf xs"
eberlm@63099
  2080
  shows   "set_pmf (pmf_of_list xs) \<subseteq> set (map fst xs)"
eberlm@63099
  2081
proof clarify
eberlm@63099
  2082
  fix x assume A: "x \<in> set_pmf (pmf_of_list xs)"
eberlm@63099
  2083
  show "x \<in> set (map fst xs)"
eberlm@63099
  2084
  proof (rule ccontr)
eberlm@63099
  2085
    assume "x \<notin> set (map fst xs)"
nipkow@68386
  2086
    hence "[z\<leftarrow>xs . fst z = x] = []" by (auto simp: filter_empty_conv)
eberlm@63099
  2087
    with A assms show False by (simp add: pmf_pmf_of_list set_pmf_eq)
eberlm@63099
  2088
  qed
eberlm@63099
  2089
qed
eberlm@63099
  2090
eberlm@63099
  2091
lemma finite_set_pmf_of_list:
eberlm@63099
  2092
  assumes "pmf_of_list_wf xs"
eberlm@63099
  2093
  shows   "finite (set_pmf (pmf_of_list xs))"
eberlm@63099
  2094
  using assms by (rule finite_subset[OF set_pmf_of_list]) simp_all
eberlm@63099
  2095
eberlm@63099
  2096
lemma emeasure_Int_set_pmf:
eberlm@63099
  2097
  "emeasure (measure_pmf p) (A \<inter> set_pmf p) = emeasure (measure_pmf p) A"
eberlm@63099
  2098
  by (rule emeasure_eq_AE) (auto simp: AE_measure_pmf_iff)
eberlm@63099
  2099
eberlm@63099
  2100
lemma measure_Int_set_pmf:
eberlm@63099
  2101
  "measure (measure_pmf p) (A \<inter> set_pmf p) = measure (measure_pmf p) A"
eberlm@63099
  2102
  using emeasure_Int_set_pmf[of p A] by (simp add: Sigma_Algebra.measure_def)
eberlm@63099
  2103
eberlm@66568
  2104
lemma measure_prob_cong_0:
eberlm@66568
  2105
  assumes "\<And>x. x \<in> A - B \<Longrightarrow> pmf p x = 0"
eberlm@66568
  2106
  assumes "\<And>x. x \<in> B - A \<Longrightarrow> pmf p x = 0"
eberlm@66568
  2107
  shows   "measure (measure_pmf p) A = measure (measure_pmf p) B"
eberlm@66568
  2108
proof -
eberlm@66568
  2109
  have "measure_pmf.prob p A = measure_pmf.prob p (A \<inter> set_pmf p)"
eberlm@66568
  2110
    by (simp add: measure_Int_set_pmf)
eberlm@66568
  2111
  also have "A \<inter> set_pmf p = B \<inter> set_pmf p"
eberlm@66568
  2112
    using assms by (auto simp: set_pmf_eq)
eberlm@66568
  2113
  also have "measure_pmf.prob p \<dots> = measure_pmf.prob p B"
eberlm@66568
  2114
    by (simp add: measure_Int_set_pmf)
eberlm@66568
  2115
  finally show ?thesis .
eberlm@66568
  2116
qed
eberlm@66568
  2117
eberlm@63099
  2118
lemma emeasure_pmf_of_list:
eberlm@63099
  2119
  assumes "pmf_of_list_wf xs"
nipkow@63882
  2120
  shows   "emeasure (pmf_of_list xs) A = ennreal (sum_list (map snd (filter (\<lambda>x. fst x \<in> A) xs)))"
eberlm@63099
  2121
proof -
eberlm@63099
  2122
  have "emeasure (pmf_of_list xs) A = nn_integral (measure_pmf (pmf_of_list xs)) (indicator A)"
eberlm@63099
  2123
    by simp
hoelzl@63886
  2124
  also from assms
nipkow@68386
  2125
    have "\<dots> = (\<Sum>x\<in>set_pmf (pmf_of_list xs) \<inter> A. ennreal (sum_list (map snd [z\<leftarrow>xs . fst z = x])))"
hoelzl@63973
  2126
    by (subst nn_integral_measure_pmf_finite) (simp_all add: finite_set_pmf_of_list pmf_pmf_of_list Int_def)
hoelzl@63886
  2127
  also from assms
nipkow@68386
  2128
    have "\<dots> = ennreal (\<Sum>x\<in>set_pmf (pmf_of_list xs) \<inter> A. sum_list (map snd [z\<leftarrow>xs . fst z = x]))"
nipkow@64267
  2129
    by (subst sum_ennreal) (auto simp: pmf_of_list_wf_def intro!: sum_list_nonneg)
hoelzl@63886
  2130
  also have "\<dots> = ennreal (\<Sum>x\<in>set_pmf (pmf_of_list xs) \<inter> A.
eberlm@63099
  2131
      indicator A x * pmf (pmf_of_list xs) x)" (is "_ = ennreal ?S")
nipkow@64267
  2132
    using assms by (intro ennreal_cong sum.cong) (auto simp: pmf_pmf_of_list)
eberlm@63099
  2133
  also have "?S = (\<Sum>x\<in>set_pmf (pmf_of_list xs). indicator A x * pmf (pmf_of_list xs) x)"
nipkow@64267
  2134
    using assms by (intro sum.mono_neutral_left set_pmf_of_list finite_set_pmf_of_list) auto
eberlm@63099
  2135
  also have "\<dots> = (\<Sum>x\<in>set (map fst xs). indicator A x * pmf (pmf_of_list xs) x)"
nipkow@64267
  2136
    using assms by (intro sum.mono_neutral_left set_pmf_of_list) (auto simp: set_pmf_eq)
hoelzl@63886
  2137
  also have "\<dots> = (\<Sum>x\<in>set (map fst xs). indicator A x *
nipkow@63882
  2138
                      sum_list (map snd (filter (\<lambda>z. fst z = x) xs)))"
eberlm@63099
  2139
    using assms by (simp add: pmf_pmf_of_list)
nipkow@63882
  2140
  also have "\<dots> = (\<Sum>x\<in>set (map fst xs). sum_list (map snd (filter (\<lambda>z. fst z = x \<and> x \<in> A) xs)))"
nipkow@64267
  2141
    by (intro sum.cong) (auto simp: indicator_def)
eberlm@63099
  2142
  also have "\<dots> = (\<Sum>x\<in>set (map fst xs). (\<Sum>xa = 0..<length xs.
eberlm@63099
  2143
                     if fst (xs ! xa) = x \<and> x \<in> A then snd (xs ! xa) else 0))"
nipkow@64267
  2144
    by (intro sum.cong refl, subst sum_list_map_filter', subst sum_list_sum_nth) simp
hoelzl@63886
  2145
  also have "\<dots> = (\<Sum>xa = 0..<length xs. (\<Sum>x\<in>set (map fst xs).
eberlm@63099
  2146
                     if fst (xs ! xa) = x \<and> x \<in> A then snd (xs ! xa) else 0))"
haftmann@66804
  2147
    by (rule sum.swap)
hoelzl@63886
  2148
  also have "\<dots> = (\<Sum>xa = 0..<length xs. if fst (xs ! xa) \<in> A then
eberlm@63099
  2149
                     (\<Sum>x\<in>set (map fst xs). if x = fst (xs ! xa) then snd (xs ! xa) else 0) else 0)"
lp15@66089
  2150
    by (auto intro!: sum.cong sum.neutral simp del: sum.delta)
eberlm@63099
  2151
  also have "\<dots> = (\<Sum>xa = 0..<length xs. if fst (xs ! xa) \<in> A then snd (xs ! xa) else 0)"
nipkow@64267
  2152
    by (intro sum.cong refl) (simp_all add: sum.delta)
nipkow@63882
  2153
  also have "\<dots> = sum_list (map snd (filter (\<lambda>x. fst x \<in> A) xs))"
nipkow@64267
  2154
    by (subst sum_list_map_filter', subst sum_list_sum_nth) simp_all
hoelzl@63886
  2155
  finally show ?thesis .
eberlm@63099
  2156
qed
eberlm@63099
  2157
eberlm@63099
  2158
lemma measure_pmf_of_list:
eberlm@63099
  2159
  assumes "pmf_of_list_wf xs"
nipkow@63882
  2160
  shows   "measure (pmf_of_list xs) A = sum_list (map snd (filter (\<lambda>x. fst x \<in> A) xs))"
eberlm@63099
  2161
  using assms unfolding pmf_of_list_wf_def Sigma_Algebra.measure_def
nipkow@63882
  2162
  by (subst emeasure_pmf_of_list [OF assms], subst enn2real_ennreal) (auto intro!: sum_list_nonneg)
eberlm@63099
  2163
eberlm@63194
  2164
(* TODO Move? *)
nipkow@63882
  2165
lemma sum_list_nonneg_eq_zero_iff:
eberlm@63194
  2166
  fixes xs :: "'a :: linordered_ab_group_add list"
nipkow@63882
  2167
  shows "(\<And>x. x \<in> set xs \<Longrightarrow> x \<ge> 0) \<Longrightarrow> sum_list xs = 0 \<longleftrightarrow> set xs \<subseteq> {0}"
eberlm@63194
  2168
proof (induction xs)
eberlm@63194
  2169
  case (Cons x xs)
nipkow@63882
  2170
  from Cons.prems have "sum_list (x#xs) = 0 \<longleftrightarrow> x = 0 \<and> sum_list xs = 0"
nipkow@63882
  2171
    unfolding sum_list_simps by (subst add_nonneg_eq_0_iff) (auto intro: sum_list_nonneg)
eberlm@63194
  2172
  with Cons.IH Cons.prems show ?case by simp
eberlm@63194
  2173
qed simp_all
eberlm@63194
  2174
nipkow@63882
  2175
lemma sum_list_filter_nonzero:
nipkow@63882
  2176
  "sum_list (filter (\<lambda>x. x \<noteq> 0) xs) = sum_list xs"
eberlm@63194
  2177
  by (induction xs) simp_all
eberlm@63194
  2178
(* END MOVE *)
hoelzl@63886
  2179
eberlm@63194
  2180
lemma set_pmf_of_list_eq:
eberlm@63194
  2181
  assumes "pmf_of_list_wf xs" "\<And>x. x \<in> snd ` set xs \<Longrightarrow> x > 0"
eberlm@63194
  2182
  shows   "set_pmf (pmf_of_list xs) = fst ` set xs"
eberlm@63194
  2183
proof
eberlm@63194
  2184
  {
eberlm@63194
  2185
    fix x assume A: "x \<in> fst ` set xs" and B: "x \<notin> set_pmf (pmf_of_list xs)"
eberlm@63194
  2186
    then obtain y where y: "(x, y) \<in> set xs" by auto
nipkow@68386
  2187
    from B have "sum_list (map snd [z\<leftarrow>xs. fst z = x]) = 0"
eberlm@63194
  2188
      by (simp add: pmf_pmf_of_list[OF assms(1)] set_pmf_eq)
eberlm@63194
  2189
    moreover from y have "y \<in> snd ` {xa \<in> set xs. fst xa = x}" by force
hoelzl@63886
  2190
    ultimately have "y = 0" using assms(1)
nipkow@63882
  2191
      by (subst (asm) sum_list_nonneg_eq_zero_iff) (auto simp: pmf_of_list_wf_def)
eberlm@63194
  2192
    with assms(2) y have False by force
eberlm@63194
  2193
  }
eberlm@63194
  2194
  thus "fst ` set xs \<subseteq> set_pmf (pmf_of_list xs)" by blast
eberlm@63194
  2195
qed (insert set_pmf_of_list[OF assms(1)], simp_all)
hoelzl@63886
  2196
eberlm@63194
  2197
lemma pmf_of_list_remove_zeros:
eberlm@63194
  2198
  assumes "pmf_of_list_wf xs"
eberlm@63194
  2199
  defines "xs' \<equiv> filter (\<lambda>z. snd z \<noteq> 0) xs"
eberlm@63194
  2200
  shows   "pmf_of_list_wf xs'" "pmf_of_list xs' = pmf_of_list xs"
eberlm@63194
  2201
proof -
nipkow@68386
  2202
  have "map snd [z\<leftarrow>xs . snd z \<noteq> 0] = filter (\<lambda>x. x \<noteq> 0) (map snd xs)"
eberlm@63194
  2203
    by (induction xs) simp_all
eberlm@63194
  2204
  with assms(1) show wf: "pmf_of_list_wf xs'"
nipkow@63882
  2205
    by (auto simp: pmf_of_list_wf_def xs'_def sum_list_filter_nonzero)
nipkow@68386
  2206
  have "sum_list (map snd [z\<leftarrow>xs' . fst z = i]) = sum_list (map snd [z\<leftarrow>xs . fst z = i])" for i
eberlm@63194
  2207
    unfolding xs'_def by (induction xs) simp_all
eberlm@63194
  2208
  with assms(1) wf show "pmf_of_list xs' = pmf_of_list xs"
eberlm@63194
  2209
    by (intro pmf_eqI) (simp_all add: pmf_pmf_of_list)
eberlm@63194
  2210
qed
eberlm@63194
  2211
eberlm@63099
  2212
end