src/HOL/Tools/Meson/meson.ML
author blanchet
Mon Oct 11 18:03:18 2010 +0700 (2010-10-11)
changeset 39979 b13515940b53
parent 39953 aa54f347e5e2
child 40262 8403085384eb
permissions -rw-r--r--
added "trace_meson" configuration option, replacing old-fashioned reference
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@39941
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
blanchet@39979
    11
  val trace : bool Config.T
blanchet@39979
    12
  val max_clauses : int Config.T
wenzelm@24300
    13
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    14
  val size_of_subgoals: thm -> int
blanchet@39269
    15
  val has_too_many_clauses: Proof.context -> term -> bool
paulson@24937
    16
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    17
  val finish_cnf: thm list -> thm list
blanchet@38089
    18
  val presimplify: thm -> thm
wenzelm@32262
    19
  val make_nnf: Proof.context -> thm -> thm
blanchet@39950
    20
  val choice_theorems : theory -> thm list
blanchet@39950
    21
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@39904
    22
  val skolemize : Proof.context -> thm -> thm
wenzelm@24300
    23
  val is_fol_term: theory -> term -> bool
blanchet@35869
    24
  val make_clauses_unsorted: thm list -> thm list
wenzelm@24300
    25
  val make_clauses: thm list -> thm list
wenzelm@24300
    26
  val make_horns: thm list -> thm list
wenzelm@24300
    27
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    28
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    29
  val gocls: thm list -> thm list
blanchet@39900
    30
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    31
  val MESON:
blanchet@39269
    32
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    33
    -> int -> tactic
wenzelm@32262
    34
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    35
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    36
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    37
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    38
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    39
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    40
  val make_meta_clause: thm -> thm
wenzelm@24300
    41
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    42
  val meson_tac: Proof.context -> thm list -> int -> tactic
blanchet@39979
    43
  val setup : theory -> theory
paulson@15579
    44
end
paulson@9840
    45
blanchet@39901
    46
structure Meson : MESON =
paulson@15579
    47
struct
paulson@9840
    48
blanchet@39979
    49
val (trace, trace_setup) = Attrib.config_bool "trace_meson" (K false)
blanchet@39979
    50
blanchet@39979
    51
fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
wenzelm@32955
    52
blanchet@39979
    53
val max_clauses_default = 60
blanchet@39979
    54
val (max_clauses, max_clauses_setup) =
blanchet@39979
    55
  Attrib.config_int "meson_max_clauses" (K max_clauses_default)
paulson@26562
    56
wenzelm@38802
    57
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    58
val iter_deepen_limit = 50;
wenzelm@38802
    59
haftmann@31454
    60
val disj_forward = @{thm disj_forward};
haftmann@31454
    61
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    62
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    63
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    64
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    65
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    66
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    67
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    68
val conj_forward = @{thm conj_forward};
haftmann@31454
    69
val all_forward = @{thm all_forward};
haftmann@31454
    70
val ex_forward = @{thm ex_forward};
haftmann@31454
    71
blanchet@39953
    72
val not_conjD = @{thm not_conjD};
blanchet@39953
    73
val not_disjD = @{thm not_disjD};
blanchet@39953
    74
val not_notD = @{thm not_notD};
blanchet@39953
    75
val not_allD = @{thm not_allD};
blanchet@39953
    76
val not_exD = @{thm not_exD};
blanchet@39953
    77
val imp_to_disjD = @{thm imp_to_disjD};
blanchet@39953
    78
val not_impD = @{thm not_impD};
blanchet@39953
    79
val iff_to_disjD = @{thm iff_to_disjD};
blanchet@39953
    80
val not_iffD = @{thm not_iffD};
blanchet@39953
    81
val conj_exD1 = @{thm conj_exD1};
blanchet@39953
    82
val conj_exD2 = @{thm conj_exD2};
blanchet@39953
    83
val disj_exD = @{thm disj_exD};
blanchet@39953
    84
val disj_exD1 = @{thm disj_exD1};
blanchet@39953
    85
val disj_exD2 = @{thm disj_exD2};
blanchet@39953
    86
val disj_assoc = @{thm disj_assoc};
blanchet@39953
    87
val disj_comm = @{thm disj_comm};
blanchet@39953
    88
val disj_FalseD1 = @{thm disj_FalseD1};
blanchet@39953
    89
val disj_FalseD2 = @{thm disj_FalseD2};
paulson@9840
    90
paulson@9840
    91
paulson@15579
    92
(**** Operators for forward proof ****)
paulson@15579
    93
paulson@20417
    94
paulson@20417
    95
(** First-order Resolution **)
paulson@20417
    96
paulson@20417
    97
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    98
paulson@20417
    99
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
   100
fun first_order_resolve thA thB =
wenzelm@32262
   101
  (case
wenzelm@32262
   102
    try (fn () =>
wenzelm@32262
   103
      let val thy = theory_of_thm thA
wenzelm@32262
   104
          val tmA = concl_of thA
wenzelm@32262
   105
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   106
          val tenv =
blanchet@37410
   107
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   108
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   109
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   110
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   111
    SOME th => th
blanchet@37398
   112
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   113
blanchet@39904
   114
(* Applying "choice" swaps the bound variable names. We tweak
blanchet@39904
   115
   "Thm.rename_boundvars"'s input to get the desired names. *)
blanchet@39930
   116
fun fix_bounds (_ $ (Const (@{const_name Ex}, _)
blanchet@39930
   117
                     $ Abs (_, _, Const (@{const_name All}, _) $ _)))
blanchet@39930
   118
               (t0 $ (Const (@{const_name All}, T1)
blanchet@39930
   119
                      $ Abs (a1, T1', Const (@{const_name Ex}, T2)
blanchet@39930
   120
                                      $ Abs (a2, T2', t')))) =
blanchet@39904
   121
    t0 $ (Const (@{const_name All}, T1)
blanchet@39904
   122
          $ Abs (a2, T1', Const (@{const_name Ex}, T2) $ Abs (a1, T2', t')))
blanchet@39930
   123
  | fix_bounds _ t = t
blanchet@39930
   124
blanchet@39930
   125
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@39930
   126
   "rename_bvs_RS" below, because of a clash. *)
blanchet@39930
   127
val protect_prefix = "_"
blanchet@39930
   128
blanchet@39930
   129
fun protect_bounds (t $ u) = protect_bounds t $ protect_bounds u
blanchet@39930
   130
  | protect_bounds (Abs (s, T, t')) =
blanchet@39930
   131
    Abs (protect_prefix ^ s, T, protect_bounds t')
blanchet@39930
   132
  | protect_bounds t = t
blanchet@39904
   133
blanchet@39904
   134
(* Forward proof while preserving bound variables names*)
paulson@24937
   135
fun rename_bvs_RS th rl =
blanchet@39904
   136
  let
blanchet@39904
   137
    val t = concl_of th
blanchet@39930
   138
    val r = concl_of rl
blanchet@39930
   139
    val th' = th RS Thm.rename_boundvars r (protect_bounds r) rl
blanchet@39904
   140
    val t' = concl_of th'
blanchet@39930
   141
  in Thm.rename_boundvars t' (fix_bounds t' t) th' end
paulson@24937
   142
paulson@24937
   143
(*raises exception if no rules apply*)
wenzelm@24300
   144
fun tryres (th, rls) =
paulson@18141
   145
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@24937
   146
        | tryall (rl::rls) = (rename_bvs_RS th rl handle THM _ => tryall rls)
paulson@18141
   147
  in  tryall rls  end;
wenzelm@24300
   148
paulson@21050
   149
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   150
  e.g. from conj_forward, should have the form
paulson@21050
   151
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   152
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   153
fun forward_res ctxt nf st =
paulson@21050
   154
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   155
        | forward_tacf prems =
wenzelm@32091
   156
            error (cat_lines
wenzelm@32091
   157
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   158
                Display.string_of_thm ctxt st ::
wenzelm@32262
   159
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   160
  in
wenzelm@37781
   161
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   162
    of SOME(th,_) => th
paulson@21050
   163
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   164
  end;
paulson@15579
   165
paulson@20134
   166
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   167
fun has_conns bs =
blanchet@39328
   168
  let fun has (Const _) = false
haftmann@38557
   169
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   170
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   171
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   172
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   173
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   174
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   175
        | has _ = false
paulson@15579
   176
  in  has  end;
wenzelm@24300
   177
paulson@9840
   178
paulson@15579
   179
(**** Clause handling ****)
paulson@9840
   180
haftmann@38557
   181
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   182
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   183
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   184
  | literals P = [(true,P)];
paulson@9840
   185
paulson@15579
   186
(*number of literals in a term*)
paulson@15579
   187
val nliterals = length o literals;
paulson@9840
   188
paulson@18389
   189
paulson@18389
   190
(*** Tautology Checking ***)
paulson@18389
   191
haftmann@38795
   192
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   193
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   194
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   195
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   196
paulson@18389
   197
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   198
paulson@18389
   199
(*Literals like X=X are tautologous*)
haftmann@38864
   200
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   201
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   202
  | taut_poslit _ = false;
paulson@18389
   203
paulson@18389
   204
fun is_taut th =
paulson@18389
   205
  let val (poslits,neglits) = signed_lits th
paulson@18389
   206
  in  exists taut_poslit poslits
paulson@18389
   207
      orelse
wenzelm@20073
   208
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   209
  end
wenzelm@24300
   210
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   211
paulson@18389
   212
paulson@18389
   213
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   214
paulson@18389
   215
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   216
  injectivity equivalences*)
wenzelm@24300
   217
blanchet@39953
   218
val not_refl_disj_D = @{thm not_refl_disj_D};
paulson@18389
   219
paulson@20119
   220
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   221
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   222
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   223
  | eliminable _ = false;
paulson@20119
   224
paulson@18389
   225
fun refl_clause_aux 0 th = th
paulson@18389
   226
  | refl_clause_aux n th =
paulson@18389
   227
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   228
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   229
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   230
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   231
            if eliminable(t,u)
wenzelm@24300
   232
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   233
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   234
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   235
        | _ => (*not a disjunction*) th;
paulson@18389
   236
haftmann@38795
   237
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   238
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   239
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   240
  | notequal_lits_count _ = 0;
paulson@18389
   241
paulson@18389
   242
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   243
fun refl_clause th =
paulson@18389
   244
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   245
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   246
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   247
paulson@18389
   248
paulson@24937
   249
(*** Removal of duplicate literals ***)
paulson@24937
   250
paulson@24937
   251
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   252
fun forward_res2 nf hyps st =
paulson@24937
   253
  case Seq.pull
paulson@24937
   254
        (REPEAT
wenzelm@37781
   255
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   256
         st)
paulson@24937
   257
  of SOME(th,_) => th
paulson@24937
   258
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   259
paulson@24937
   260
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   261
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   262
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   263
    handle THM _ => tryres(th,rls)
blanchet@39328
   264
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   265
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   266
    handle THM _ => th;
paulson@24937
   267
paulson@24937
   268
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   269
fun nodups ctxt th =
paulson@24937
   270
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   271
    then nodups_aux ctxt [] th
paulson@24937
   272
    else th;
paulson@24937
   273
paulson@24937
   274
paulson@18389
   275
(*** The basic CNF transformation ***)
paulson@18389
   276
blanchet@39328
   277
fun estimated_num_clauses bound t =
paulson@26562
   278
 let
blanchet@39269
   279
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   280
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   281
  
paulson@26562
   282
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   283
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   284
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   285
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   286
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   287
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   288
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   289
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   290
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   291
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   292
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   293
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   294
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   295
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   296
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   297
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   298
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   299
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   300
        else 1
haftmann@38557
   301
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   302
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   303
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   304
 in signed_nclauses true t end
blanchet@39269
   305
blanchet@39269
   306
fun has_too_many_clauses ctxt t =
blanchet@39269
   307
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   308
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   309
  end
paulson@19894
   310
paulson@15579
   311
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   312
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   313
local  
paulson@24937
   314
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   315
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   316
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   317
in  
paulson@24937
   318
  fun freeze_spec th ctxt =
paulson@24937
   319
    let
paulson@24937
   320
      val cert = Thm.cterm_of (ProofContext.theory_of ctxt);
paulson@24937
   321
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   322
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   323
    in (th RS spec', ctxt') end
paulson@24937
   324
end;
paulson@9840
   325
paulson@15998
   326
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   327
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   328
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   329
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   330
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   331
blanchet@39037
   332
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   333
   and "Pure.term"? *)
haftmann@38557
   334
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   335
blanchet@37410
   336
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   337
  let
blanchet@37410
   338
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   339
      | tryall (rl :: rls) =
blanchet@37398
   340
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   341
  in tryall rls end
paulson@22515
   342
blanchet@37410
   343
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   344
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   345
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@39886
   346
fun cnf old_skolem_ths ctxt (th, ths) =
wenzelm@33222
   347
  let val ctxtr = Unsynchronized.ref ctxt   (* FIXME ??? *)
paulson@24937
   348
      fun cnf_aux (th,ths) =
wenzelm@24300
   349
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   350
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
wenzelm@32262
   351
        then nodups ctxt th :: ths (*no work to do, terminate*)
wenzelm@24300
   352
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   353
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   354
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   355
          | Const (@{const_name All}, _) => (*universal quantifier*)
paulson@24937
   356
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   357
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
haftmann@38557
   358
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   359
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   360
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   361
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   362
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   363
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   364
              let val tac =
wenzelm@37781
   365
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   366
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   367
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
wenzelm@32262
   368
          | _ => nodups ctxt th :: ths  (*no work to do*)
paulson@19154
   369
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   370
      val cls =
blanchet@39269
   371
            if has_too_many_clauses ctxt (concl_of th)
blanchet@39979
   372
            then (trace_msg ctxt (fn () => "cnf is ignoring: " ^ Display.string_of_thm ctxt th); ths)
wenzelm@32960
   373
            else cnf_aux (th,ths)
paulson@24937
   374
  in  (cls, !ctxtr)  end;
paulson@22515
   375
blanchet@39886
   376
fun make_cnf old_skolem_ths th ctxt = cnf old_skolem_ths ctxt (th, [])
paulson@20417
   377
paulson@20417
   378
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   379
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   380
paulson@9840
   381
paulson@15579
   382
(**** Generation of contrapositives ****)
paulson@9840
   383
haftmann@38557
   384
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   385
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   386
  | is_left _ = false;
wenzelm@24300
   387
paulson@15579
   388
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   389
fun assoc_right th =
paulson@21102
   390
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   391
  else th;
paulson@9840
   392
paulson@15579
   393
(*Must check for negative literal first!*)
paulson@15579
   394
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   395
paulson@15579
   396
(*For ordinary resolution. *)
paulson@15579
   397
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   398
paulson@15579
   399
(*Create a goal or support clause, conclusing False*)
paulson@15579
   400
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   401
    make_goal (tryres(th, clause_rules))
paulson@15579
   402
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   403
paulson@15579
   404
(*Sort clauses by number of literals*)
paulson@15579
   405
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   406
paulson@18389
   407
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   408
blanchet@38099
   409
fun has_bool @{typ bool} = true
blanchet@38099
   410
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   411
  | has_bool _ = false
blanchet@38099
   412
blanchet@38099
   413
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   414
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   415
  | has_fun _ = false
wenzelm@24300
   416
wenzelm@24300
   417
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   418
  since this code expects to be called on a clause form.*)
wenzelm@19875
   419
val is_conn = member (op =)
haftmann@38795
   420
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   421
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   422
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   423
wenzelm@24300
   424
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   425
  of any argument contains bool.*)
wenzelm@24300
   426
val has_bool_arg_const =
paulson@15613
   427
    exists_Const
blanchet@38099
   428
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   429
wenzelm@24300
   430
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   431
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   432
fun higher_inst_const thy (c,T) =
paulson@22381
   433
  case binder_types T of
paulson@22381
   434
      [] => false (*not a function type, OK*)
paulson@22381
   435
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   436
paulson@24742
   437
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   438
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   439
fun is_fol_term thy t =
haftmann@38557
   440
    Term.is_first_order ["all", @{const_name All}, @{const_name Ex}] t andalso
blanchet@38099
   441
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@38099
   442
                           | _ => false) t orelse
blanchet@38099
   443
         has_bool_arg_const t orelse
wenzelm@24300
   444
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   445
         has_meta_conn t);
paulson@19204
   446
paulson@21102
   447
fun rigid t = not (is_Var (head_of t));
paulson@21102
   448
haftmann@38795
   449
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   450
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   451
  | ok4horn _ = false;
paulson@21102
   452
paulson@15579
   453
(*Create a meta-level Horn clause*)
wenzelm@24300
   454
fun make_horn crules th =
wenzelm@24300
   455
  if ok4horn (concl_of th)
paulson@21102
   456
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   457
  else th;
paulson@9840
   458
paulson@16563
   459
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   460
  is a HOL disjunction.*)
wenzelm@33339
   461
fun add_contras crules th hcs =
blanchet@39328
   462
  let fun rots (0,_) = hcs
wenzelm@24300
   463
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   464
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   465
  in case nliterals(prop_of th) of
wenzelm@24300
   466
        1 => th::hcs
paulson@15579
   467
      | n => rots(n, assoc_right th)
paulson@15579
   468
  end;
paulson@9840
   469
paulson@15579
   470
(*Use "theorem naming" to label the clauses*)
paulson@15579
   471
fun name_thms label =
wenzelm@33339
   472
    let fun name1 th (k, ths) =
wenzelm@27865
   473
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   474
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   475
paulson@16563
   476
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   477
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   478
wenzelm@33317
   479
val neg_clauses = filter is_negative;
paulson@9840
   480
paulson@9840
   481
paulson@15579
   482
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   483
haftmann@38557
   484
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   485
           As) = rhyps(phi, A::As)
paulson@15579
   486
  | rhyps (_, As) = As;
paulson@9840
   487
paulson@15579
   488
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   489
paulson@15579
   490
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   491
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   492
paulson@15579
   493
(*detects repetitions in a list of terms*)
paulson@15579
   494
fun has_reps [] = false
paulson@15579
   495
  | has_reps [_] = false
paulson@15579
   496
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   497
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   498
paulson@15579
   499
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   500
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   501
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   502
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   503
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   504
paulson@18508
   505
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   506
paulson@15579
   507
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   508
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   509
fun check_tac st =
paulson@15579
   510
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   511
  then  Seq.empty  else  Seq.single st;
paulson@9840
   512
paulson@9840
   513
paulson@15579
   514
(* net_resolve_tac actually made it slower... *)
paulson@15579
   515
fun prolog_step_tac horns i =
paulson@15579
   516
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   517
    TRYALL_eq_assume_tac;
paulson@9840
   518
paulson@9840
   519
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   520
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   521
wenzelm@33339
   522
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   523
paulson@9840
   524
paulson@9840
   525
(*Negation Normal Form*)
paulson@9840
   526
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   527
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   528
haftmann@38557
   529
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   530
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   531
  | ok4nnf _ = false;
paulson@21102
   532
wenzelm@32262
   533
fun make_nnf1 ctxt th =
wenzelm@24300
   534
  if ok4nnf (concl_of th)
wenzelm@32262
   535
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   536
    handle THM ("tryres", _, _) =>
wenzelm@32262
   537
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   538
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   539
    handle THM ("tryres", _, _) => th
blanchet@38608
   540
  else th
paulson@9840
   541
wenzelm@24300
   542
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   543
  nnf_ss also includes the one-point simprocs,
paulson@18405
   544
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   545
val nnf_simps =
blanchet@37539
   546
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   547
         if_eq_cancel cases_simp}
blanchet@37539
   548
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   549
paulson@18405
   550
val nnf_ss =
wenzelm@24300
   551
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@24040
   552
    addsimprocs [defALL_regroup,defEX_regroup, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   553
blanchet@38089
   554
val presimplify =
blanchet@39900
   555
  rewrite_rule (map safe_mk_meta_eq nnf_simps) #> simplify nnf_ss
blanchet@38089
   556
wenzelm@32262
   557
fun make_nnf ctxt th = case prems_of th of
blanchet@38606
   558
    [] => th |> presimplify |> make_nnf1 ctxt
paulson@21050
   559
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   560
blanchet@39950
   561
fun choice_theorems thy =
blanchet@39950
   562
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@39950
   563
blanchet@39900
   564
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   565
   clauses that arise from a subgoal. *)
blanchet@39950
   566
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@39900
   567
  let
blanchet@39900
   568
    fun aux th =
blanchet@39900
   569
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   570
        th
blanchet@39900
   571
      else
blanchet@39901
   572
        tryres (th, choice_ths @
blanchet@39900
   573
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   574
        |> aux
blanchet@39900
   575
        handle THM ("tryres", _, _) =>
blanchet@39900
   576
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   577
               |> forward_res ctxt aux
blanchet@39900
   578
               |> aux
blanchet@39900
   579
               handle THM ("tryres", _, _) =>
blanchet@39900
   580
                      rename_bvs_RS th ex_forward
blanchet@39900
   581
                      |> forward_res ctxt aux
blanchet@39900
   582
  in aux o make_nnf ctxt end
paulson@29684
   583
blanchet@39950
   584
fun skolemize ctxt =
blanchet@39950
   585
  let val thy = ProofContext.theory_of ctxt in
blanchet@39950
   586
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@39950
   587
  end
blanchet@39904
   588
blanchet@39900
   589
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@39900
   590
fun try_skolemize ctxt th =
blanchet@39904
   591
  try (skolemize ctxt) th
blanchet@39979
   592
  |> tap (fn NONE => trace_msg ctxt (fn () => "Failed to skolemize " ^
blanchet@39979
   593
                                              Display.string_of_thm ctxt th)
blanchet@39900
   594
           | _ => ())
paulson@25694
   595
wenzelm@33339
   596
fun add_clauses th cls =
wenzelm@36603
   597
  let val ctxt0 = Variable.global_thm_context th
wenzelm@33339
   598
      val (cnfs, ctxt) = make_cnf [] th ctxt0
paulson@24937
   599
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   600
paulson@9840
   601
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   602
  The resulting clauses are HOL disjunctions.*)
wenzelm@39235
   603
fun make_clauses_unsorted ths = fold_rev add_clauses ths [];
blanchet@35869
   604
val make_clauses = sort_clauses o make_clauses_unsorted;
quigley@15773
   605
paulson@16563
   606
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   607
fun make_horns ths =
paulson@9840
   608
    name_thms "Horn#"
wenzelm@33339
   609
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   610
paulson@9840
   611
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   612
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   613
wenzelm@9869
   614
fun best_prolog_tac sizef horns =
paulson@9840
   615
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   616
wenzelm@9869
   617
fun depth_prolog_tac horns =
paulson@9840
   618
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   619
paulson@9840
   620
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   621
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   622
wenzelm@32262
   623
fun skolemize_prems_tac ctxt prems =
blanchet@39900
   624
  cut_facts_tac (map_filter (try_skolemize ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   625
paulson@22546
   626
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   627
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   628
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   629
  SELECT_GOAL
wenzelm@35625
   630
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   631
            rtac ccontr 1,
blanchet@39269
   632
            preskolem_tac,
wenzelm@32283
   633
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   634
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   635
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   636
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   637
blanchet@39037
   638
paulson@9840
   639
(** Best-first search versions **)
paulson@9840
   640
paulson@16563
   641
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   642
fun best_meson_tac sizef =
blanchet@39269
   643
  MESON all_tac make_clauses
paulson@22546
   644
    (fn cls =>
paulson@9840
   645
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   646
                         (has_fewer_prems 1, sizef)
paulson@9840
   647
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   648
paulson@9840
   649
(*First, breaks the goal into independent units*)
wenzelm@32262
   650
fun safe_best_meson_tac ctxt =
wenzelm@32262
   651
     SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN
wenzelm@32262
   652
                  TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   653
paulson@9840
   654
(** Depth-first search version **)
paulson@9840
   655
paulson@9840
   656
val depth_meson_tac =
blanchet@39269
   657
  MESON all_tac make_clauses
paulson@22546
   658
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   659
paulson@9840
   660
paulson@9840
   661
(** Iterative deepening version **)
paulson@9840
   662
paulson@9840
   663
(*This version does only one inference per call;
paulson@9840
   664
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   665
fun prolog_step_tac' horns =
blanchet@39328
   666
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   667
            take_prefix Thm.no_prems horns
paulson@9840
   668
        val nrtac = net_resolve_tac horns
paulson@9840
   669
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   670
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   671
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   672
    end;
paulson@9840
   673
wenzelm@9869
   674
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   675
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   676
blanchet@39269
   677
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac make_clauses
wenzelm@32091
   678
  (fn cls =>
wenzelm@32091
   679
    (case (gocls (cls @ ths)) of
wenzelm@32091
   680
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   681
    | goes =>
wenzelm@32091
   682
        let
wenzelm@32091
   683
          val horns = make_horns (cls @ ths)
blanchet@39979
   684
          val _ = trace_msg ctxt (fn () =>
wenzelm@32091
   685
            cat_lines ("meson method called:" ::
wenzelm@32262
   686
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   687
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   688
        in
wenzelm@38802
   689
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   690
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   691
        end));
paulson@9840
   692
wenzelm@32262
   693
fun meson_tac ctxt ths =
wenzelm@32262
   694
  SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   695
wenzelm@9869
   696
paulson@14813
   697
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   698
wenzelm@24300
   699
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   700
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   701
paulson@14744
   702
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   703
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   704
  prevents a double negation.*)
wenzelm@27239
   705
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   706
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   707
wenzelm@24300
   708
fun negated_asm_of_head th =
paulson@14744
   709
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   710
paulson@26066
   711
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   712
fun make_meta_clause th =
wenzelm@33832
   713
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   714
  in  
wenzelm@35845
   715
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   716
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   717
  end;
wenzelm@24300
   718
paulson@14744
   719
fun make_meta_clauses ths =
paulson@14744
   720
    name_thms "MClause#"
wenzelm@22360
   721
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   722
blanchet@39979
   723
val setup =
blanchet@39979
   724
  trace_setup
blanchet@39979
   725
  #> max_clauses_setup
blanchet@39979
   726
paulson@9840
   727
end;