src/Pure/library.ML
author berghofe
Wed Oct 31 19:37:04 2001 +0100 (2001-10-31)
changeset 11998 b14e7686ce84
parent 11853 651650b717e1
child 12136 74156e7bb22e
permissions -rw-r--r--
- enter_thmx -> enter_thms
- improved naming of theorems: enter_thms now takes functions pre_name and post_name
as arguments
wenzelm@41
     1
(*  Title:      Pure/library.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@233
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@8806
     4
    Author:	Markus Wenzel, TU Munich
wenzelm@8806
     5
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
clasohm@0
     6
wenzelm@233
     7
Basic library: functions, options, pairs, booleans, lists, integers,
wenzelm@4212
     8
strings, lists as sets, association lists, generic tables, balanced
wenzelm@4621
     9
trees, orders, I/O and diagnostics, timing, misc.
clasohm@0
    10
*)
clasohm@0
    11
wenzelm@8418
    12
infix |> |>> |>>> ~~ \ \\ ins ins_string ins_int orf andf prefix upto downto
wenzelm@4212
    13
  mem mem_int mem_string union union_int union_string inter inter_int
wenzelm@4212
    14
  inter_string subset subset_int subset_string;
clasohm@1364
    15
wenzelm@6510
    16
infix 3 oo ooo oooo;
wenzelm@5893
    17
wenzelm@4621
    18
signature LIBRARY =
wenzelm@4621
    19
sig
wenzelm@4621
    20
  (*functions*)
wenzelm@4621
    21
  val curry: ('a * 'b -> 'c) -> 'a -> 'b -> 'c
wenzelm@4621
    22
  val uncurry: ('a -> 'b -> 'c) -> 'a * 'b -> 'c
wenzelm@4621
    23
  val I: 'a -> 'a
wenzelm@4621
    24
  val K: 'a -> 'b -> 'a
wenzelm@4621
    25
  val |> : 'a * ('a -> 'b) -> 'b
wenzelm@8418
    26
  val |>> : ('a * 'b) * ('a -> 'c) -> 'c * 'b
wenzelm@8418
    27
  val |>>> : ('a * 'b) * ('a -> 'c * 'd) -> 'c * ('b * 'd)
wenzelm@4621
    28
  val apl: 'a * ('a * 'b -> 'c) -> 'b -> 'c
wenzelm@4621
    29
  val apr: ('a * 'b -> 'c) * 'b -> 'a -> 'c
wenzelm@4621
    30
  val funpow: int -> ('a -> 'a) -> 'a -> 'a
wenzelm@5893
    31
  val oo: ('a -> 'b) * ('c -> 'd -> 'a) -> 'c -> 'd -> 'b
wenzelm@5893
    32
  val ooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'a) -> 'c -> 'd -> 'e -> 'b
wenzelm@6510
    33
  val oooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'f -> 'a) -> 'c -> 'd -> 'e -> 'f -> 'b
clasohm@1364
    34
wenzelm@4621
    35
  (*stamps*)
wenzelm@4621
    36
  type stamp
wenzelm@4621
    37
  val stamp: unit -> stamp
wenzelm@4621
    38
wenzelm@4621
    39
  (*options*)
wenzelm@4621
    40
  datatype 'a option = None | Some of 'a
wenzelm@4621
    41
  exception OPTION
wenzelm@4621
    42
  val the: 'a option -> 'a
wenzelm@4621
    43
  val if_none: 'a option -> 'a -> 'a
wenzelm@4621
    44
  val is_some: 'a option -> bool
wenzelm@4621
    45
  val is_none: 'a option -> bool
wenzelm@4621
    46
  val apsome: ('a -> 'b) -> 'a option -> 'b option
wenzelm@6959
    47
  val try: ('a -> 'b) -> 'a -> 'b option
wenzelm@4621
    48
  val can: ('a -> 'b) -> 'a -> bool
wenzelm@4621
    49
wenzelm@4621
    50
  (*pairs*)
wenzelm@4621
    51
  val pair: 'a -> 'b -> 'a * 'b
wenzelm@4621
    52
  val rpair: 'a -> 'b -> 'b * 'a
wenzelm@4621
    53
  val fst: 'a * 'b -> 'a
wenzelm@4621
    54
  val snd: 'a * 'b -> 'b
wenzelm@4621
    55
  val eq_fst: (''a * 'b) * (''a * 'c) -> bool
wenzelm@4621
    56
  val eq_snd: ('a * ''b) * ('c * ''b) -> bool
wenzelm@4621
    57
  val swap: 'a * 'b -> 'b * 'a
wenzelm@4621
    58
  val apfst: ('a -> 'b) -> 'a * 'c -> 'b * 'c
wenzelm@4621
    59
  val apsnd: ('a -> 'b) -> 'c * 'a -> 'c * 'b
wenzelm@4621
    60
  val pairself: ('a -> 'b) -> 'a * 'a -> 'b * 'b
wenzelm@4621
    61
wenzelm@4621
    62
  (*booleans*)
wenzelm@4621
    63
  val equal: ''a -> ''a -> bool
wenzelm@4621
    64
  val not_equal: ''a -> ''a -> bool
wenzelm@4621
    65
  val orf: ('a -> bool) * ('a -> bool) -> 'a -> bool
wenzelm@4621
    66
  val andf: ('a -> bool) * ('a -> bool) -> 'a -> bool
wenzelm@4621
    67
  val exists: ('a -> bool) -> 'a list -> bool
wenzelm@4621
    68
  val forall: ('a -> bool) -> 'a list -> bool
wenzelm@4621
    69
  val set: bool ref -> bool
wenzelm@4621
    70
  val reset: bool ref -> bool
wenzelm@4621
    71
  val toggle: bool ref -> bool
wenzelm@9118
    72
  val change: 'a ref -> ('a -> 'a) -> unit
wenzelm@4621
    73
  val setmp: 'a ref -> 'a -> ('b -> 'c) -> 'b -> 'c
wenzelm@11853
    74
  val conditional: bool -> (unit -> unit) -> unit
wenzelm@4621
    75
wenzelm@4621
    76
  (*lists*)
wenzelm@4621
    77
  exception LIST of string
wenzelm@4621
    78
  val null: 'a list -> bool
wenzelm@4621
    79
  val hd: 'a list -> 'a
wenzelm@4621
    80
  val tl: 'a list -> 'a list
wenzelm@4621
    81
  val cons: 'a -> 'a list -> 'a list
wenzelm@5285
    82
  val single: 'a -> 'a list
wenzelm@4629
    83
  val append: 'a list -> 'a list -> 'a list
wenzelm@5904
    84
  val apply: ('a -> 'a) list -> 'a -> 'a
wenzelm@4621
    85
  val foldl: ('a * 'b -> 'a) -> 'a * 'b list -> 'a
wenzelm@4621
    86
  val foldr: ('a * 'b -> 'b) -> 'a list * 'b -> 'b
wenzelm@4621
    87
  val foldr1: ('a * 'a -> 'a) -> 'a list -> 'a
wenzelm@4956
    88
  val foldl_map: ('a * 'b -> 'a * 'c) -> 'a * 'b list -> 'a * 'c list
oheimb@11002
    89
  val foldln: ('a * int -> 'b -> 'b) -> 'a list -> 'b -> 'b
wenzelm@4621
    90
  val length: 'a list -> int
wenzelm@4621
    91
  val take: int * 'a list -> 'a list
wenzelm@4621
    92
  val drop: int * 'a list -> 'a list
nipkow@4713
    93
  val dropwhile: ('a -> bool) -> 'a list -> 'a list
wenzelm@4621
    94
  val nth_elem: int * 'a list -> 'a
wenzelm@11773
    95
  val map_nth_elem: int -> ('a -> 'a) -> 'a list -> 'a list
wenzelm@4621
    96
  val last_elem: 'a list -> 'a
wenzelm@4621
    97
  val split_last: 'a list -> 'a list * 'a
wenzelm@4893
    98
  val nth_update: 'a -> int * 'a list -> 'a list
wenzelm@4621
    99
  val find_index: ('a -> bool) -> 'a list -> int
wenzelm@4621
   100
  val find_index_eq: ''a -> ''a list -> int
wenzelm@4621
   101
  val find_first: ('a -> bool) -> 'a list -> 'a option
wenzelm@4916
   102
  val get_first: ('a -> 'b option) -> 'a list -> 'b option
wenzelm@4621
   103
  val flat: 'a list list -> 'a list
wenzelm@4621
   104
  val seq: ('a -> unit) -> 'a list -> unit
wenzelm@4621
   105
  val separate: 'a -> 'a list -> 'a list
wenzelm@4621
   106
  val replicate: int -> 'a -> 'a list
wenzelm@4621
   107
  val multiply: 'a list * 'a list list -> 'a list list
wenzelm@4621
   108
  val filter: ('a -> bool) -> 'a list -> 'a list
wenzelm@4621
   109
  val filter_out: ('a -> bool) -> 'a list -> 'a list
wenzelm@4621
   110
  val mapfilter: ('a -> 'b option) -> 'a list -> 'b list
wenzelm@4621
   111
  val map2: ('a * 'b -> 'c) -> 'a list * 'b list -> 'c list
wenzelm@4621
   112
  val exists2: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4621
   113
  val forall2: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4956
   114
  val seq2: ('a * 'b -> unit) -> 'a list * 'b list -> unit
wenzelm@4621
   115
  val ~~ : 'a list * 'b list -> ('a * 'b) list
wenzelm@4621
   116
  val split_list: ('a * 'b) list -> 'a list * 'b list
wenzelm@7468
   117
  val equal_lists: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4621
   118
  val prefix: ''a list * ''a list -> bool
wenzelm@4621
   119
  val take_prefix: ('a -> bool) -> 'a list -> 'a list * 'a list
wenzelm@4621
   120
  val take_suffix: ('a -> bool) -> 'a list -> 'a list * 'a list
wenzelm@4621
   121
wenzelm@4621
   122
  (*integers*)
nipkow@10692
   123
  val gcd: int * int -> int
nipkow@10692
   124
  val lcm: int * int -> int
wenzelm@4621
   125
  val inc: int ref -> int
wenzelm@4621
   126
  val dec: int ref -> int
wenzelm@4621
   127
  val upto: int * int -> int list
wenzelm@4621
   128
  val downto: int * int -> int list
wenzelm@4621
   129
  val downto0: int list * int -> bool
wenzelm@4621
   130
  val radixpand: int * int -> int list
wenzelm@4621
   131
  val radixstring: int * string * int -> string
wenzelm@4621
   132
  val string_of_int: int -> string
wenzelm@4621
   133
  val string_of_indexname: string * int -> string
wenzelm@4621
   134
nipkow@10692
   135
  (*rational numbers*)
nipkow@10692
   136
  type rat
nipkow@10692
   137
  val rep_rat: rat -> int * int
nipkow@10692
   138
  val ratadd: rat * rat -> rat
nipkow@10692
   139
  val ratmul: rat * rat -> rat
nipkow@10692
   140
  val ratinv: rat -> rat
nipkow@10692
   141
  val int_ratdiv: int * int -> rat
nipkow@10692
   142
  val ratneg: rat -> rat
nipkow@10692
   143
  val rat_of_int: int -> rat
nipkow@10692
   144
wenzelm@4621
   145
  (*strings*)
wenzelm@6312
   146
  val nth_elem_string: int * string -> string
wenzelm@6282
   147
  val foldl_string: ('a * string -> 'a) -> 'a * string -> 'a
wenzelm@6312
   148
  val exists_string: (string -> bool) -> string -> bool
wenzelm@4621
   149
  val enclose: string -> string -> string -> string
wenzelm@6642
   150
  val unenclose: string -> string
wenzelm@4621
   151
  val quote: string -> string
wenzelm@4621
   152
  val space_implode: string -> string list -> string
wenzelm@4621
   153
  val commas: string list -> string
wenzelm@4621
   154
  val commas_quote: string list -> string
wenzelm@4621
   155
  val cat_lines: string list -> string
wenzelm@4621
   156
  val space_explode: string -> string -> string list
wenzelm@5942
   157
  val std_output: string -> unit
wenzelm@11853
   158
  val std_error: string -> unit
wenzelm@5942
   159
  val prefix_lines: string -> string -> string
wenzelm@4621
   160
  val split_lines: string -> string list
wenzelm@7712
   161
  val untabify: string list -> string list
wenzelm@5285
   162
  val suffix: string -> string -> string
wenzelm@5285
   163
  val unsuffix: string -> string -> string
wenzelm@10951
   164
  val replicate_string: int -> string -> string
wenzelm@4621
   165
wenzelm@4621
   166
  (*lists as sets*)
wenzelm@4621
   167
  val mem: ''a * ''a list -> bool
wenzelm@4621
   168
  val mem_int: int * int list -> bool
wenzelm@4621
   169
  val mem_string: string * string list -> bool
wenzelm@4621
   170
  val gen_mem: ('a * 'b -> bool) -> 'a * 'b list -> bool
wenzelm@4621
   171
  val ins: ''a * ''a list -> ''a list
wenzelm@4621
   172
  val ins_int: int * int list -> int list
wenzelm@4621
   173
  val ins_string: string * string list -> string list
wenzelm@4621
   174
  val gen_ins: ('a * 'a -> bool) -> 'a * 'a list -> 'a list
wenzelm@4621
   175
  val union: ''a list * ''a list -> ''a list
wenzelm@4621
   176
  val union_int: int list * int list -> int list
wenzelm@4621
   177
  val union_string: string list * string list -> string list
wenzelm@4621
   178
  val gen_union: ('a * 'a -> bool) -> 'a list * 'a list -> 'a list
paulson@7090
   179
  val gen_inter: ('a * 'b -> bool) -> 'a list * 'b list -> 'a list
wenzelm@4621
   180
  val inter: ''a list * ''a list -> ''a list
wenzelm@4621
   181
  val inter_int: int list * int list -> int list
wenzelm@4621
   182
  val inter_string: string list * string list -> string list
wenzelm@4621
   183
  val subset: ''a list * ''a list -> bool
wenzelm@4621
   184
  val subset_int: int list * int list -> bool
wenzelm@4621
   185
  val subset_string: string list * string list -> bool
wenzelm@4621
   186
  val eq_set: ''a list * ''a list -> bool
wenzelm@4621
   187
  val eq_set_string: string list * string list -> bool
wenzelm@4621
   188
  val gen_subset: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4621
   189
  val \ : ''a list * ''a -> ''a list
wenzelm@4621
   190
  val \\ : ''a list * ''a list -> ''a list
wenzelm@4621
   191
  val gen_rem: ('a * 'b -> bool) -> 'a list * 'b -> 'a list
wenzelm@4621
   192
  val gen_rems: ('a * 'b -> bool) -> 'a list * 'b list -> 'a list
wenzelm@4621
   193
  val gen_distinct: ('a * 'a -> bool) -> 'a list -> 'a list
wenzelm@4621
   194
  val distinct: ''a list -> ''a list
wenzelm@4621
   195
  val findrep: ''a list -> ''a list
wenzelm@4621
   196
  val gen_duplicates: ('a * 'a -> bool) -> 'a list -> 'a list
wenzelm@4621
   197
  val duplicates: ''a list -> ''a list
wenzelm@4621
   198
wenzelm@4621
   199
  (*association lists*)
wenzelm@4621
   200
  val assoc: (''a * 'b) list * ''a -> 'b option
wenzelm@4621
   201
  val assoc_int: (int * 'a) list * int -> 'a option
wenzelm@4621
   202
  val assoc_string: (string * 'a) list * string -> 'a option
wenzelm@4621
   203
  val assoc_string_int: ((string * int) * 'a) list * (string * int) -> 'a option
wenzelm@4621
   204
  val assocs: (''a * 'b list) list -> ''a -> 'b list
wenzelm@4621
   205
  val assoc2: (''a * (''b * 'c) list) list * (''a * ''b) -> 'c option
wenzelm@4621
   206
  val gen_assoc: ('a * 'b -> bool) -> ('b * 'c) list * 'a -> 'c option
wenzelm@4621
   207
  val overwrite: (''a * 'b) list * (''a * 'b) -> (''a * 'b) list
nipkow@9721
   208
  val overwrite_warn: (''a * 'b) list * (''a * 'b) -> string -> (''a * 'b) list
wenzelm@4621
   209
  val gen_overwrite: ('a * 'a -> bool) -> ('a * 'b) list * ('a * 'b) -> ('a * 'b) list
wenzelm@4621
   210
wenzelm@4621
   211
  (*generic tables*)
wenzelm@4621
   212
  val generic_extend: ('a * 'a -> bool)
wenzelm@4621
   213
    -> ('b -> 'a list) -> ('a list -> 'b) -> 'b -> 'a list -> 'b
wenzelm@4621
   214
  val generic_merge: ('a * 'a -> bool) -> ('b -> 'a list) -> ('a list -> 'b) -> 'b -> 'b -> 'b
wenzelm@4621
   215
  val extend_list: ''a list -> ''a list -> ''a list
wenzelm@4621
   216
  val merge_lists: ''a list -> ''a list -> ''a list
wenzelm@4692
   217
  val merge_alists: (''a * 'b) list -> (''a * 'b) list -> (''a * 'b) list
wenzelm@4621
   218
  val merge_rev_lists: ''a list -> ''a list -> ''a list
wenzelm@4621
   219
wenzelm@4621
   220
  (*balanced trees*)
wenzelm@4621
   221
  exception Balance
wenzelm@4621
   222
  val fold_bal: ('a * 'a -> 'a) -> 'a list -> 'a
wenzelm@4621
   223
  val access_bal: ('a -> 'a) * ('a -> 'a) * 'a -> int -> int -> 'a
wenzelm@4621
   224
  val accesses_bal: ('a -> 'a) * ('a -> 'a) * 'a -> int -> 'a list
wenzelm@4621
   225
wenzelm@4621
   226
  (*orders*)
paulson@8043
   227
  datatype order = LESS | EQUAL | GREATER
wenzelm@4621
   228
  val rev_order: order -> order
wenzelm@4621
   229
  val make_ord: ('a * 'a -> bool) -> 'a * 'a -> order
wenzelm@4621
   230
  val int_ord: int * int -> order
wenzelm@4621
   231
  val string_ord: string * string -> order
wenzelm@4621
   232
  val prod_ord: ('a * 'b -> order) -> ('c * 'd -> order) -> ('a * 'c) * ('b * 'd) -> order
wenzelm@4621
   233
  val dict_ord: ('a * 'b -> order) -> 'a list * 'b list -> order
wenzelm@4621
   234
  val list_ord: ('a * 'b -> order) -> 'a list * 'b list -> order
wenzelm@4621
   235
  val sort: ('a * 'a -> order) -> 'a list -> 'a list
wenzelm@4621
   236
  val sort_strings: string list -> string list
wenzelm@4621
   237
  val sort_wrt: ('a -> string) -> 'a list -> 'a list
berghofe@11514
   238
  val unique_strings: string list -> string list
wenzelm@4621
   239
wenzelm@4621
   240
  (*I/O and diagnostics*)
wenzelm@4621
   241
  val cd: string -> unit
wenzelm@4621
   242
  val pwd: unit -> string
wenzelm@5966
   243
  val writeln_fn: (string -> unit) ref
wenzelm@9774
   244
  val priority_fn: (string -> unit) ref
wenzelm@4621
   245
  val warning_fn: (string -> unit) ref
wenzelm@4621
   246
  val error_fn: (string -> unit) ref
wenzelm@4621
   247
  val writeln: string -> unit
wenzelm@9774
   248
  val priority: string -> unit
wenzelm@4621
   249
  val warning: string -> unit
wenzelm@4621
   250
  exception ERROR
wenzelm@4621
   251
  val error_msg: string -> unit
wenzelm@4621
   252
  val error: string -> 'a
wenzelm@4621
   253
  val sys_error: string -> 'a
wenzelm@4621
   254
  val assert: bool -> string -> unit
wenzelm@4621
   255
  val deny: bool -> string -> unit
wenzelm@4621
   256
  val assert_all: ('a -> bool) -> 'a list -> ('a -> string) -> unit
wenzelm@4621
   257
  datatype 'a error = Error of string | OK of 'a
wenzelm@4621
   258
  val get_error: 'a error -> string option
wenzelm@4621
   259
  val get_ok: 'a error -> 'a option
wenzelm@4621
   260
  val handle_error: ('a -> 'b) -> 'a -> 'b error
wenzelm@4923
   261
  exception ERROR_MESSAGE of string
wenzelm@4923
   262
  val transform_error: ('a -> 'b) -> 'a -> 'b
wenzelm@5904
   263
  val transform_failure: (exn -> exn) -> ('a -> 'b) -> 'a -> 'b
wenzelm@4621
   264
wenzelm@4621
   265
  (*timing*)
wenzelm@4621
   266
  val cond_timeit: bool -> (unit -> 'a) -> 'a
wenzelm@4621
   267
  val timeit: (unit -> 'a) -> 'a
wenzelm@4621
   268
  val timeap: ('a -> 'b) -> 'a -> 'b
wenzelm@8999
   269
  val timing: bool ref
wenzelm@4621
   270
wenzelm@4621
   271
  (*misc*)
wenzelm@4621
   272
  val make_keylist: ('a -> 'b) -> 'a list -> ('a * 'b) list
wenzelm@4621
   273
  val keyfilter: ('a * ''b) list -> ''b -> 'a list
wenzelm@4621
   274
  val partition: ('a -> bool) -> 'a list -> 'a list * 'a list
wenzelm@4621
   275
  val partition_eq: ('a * 'a -> bool) -> 'a list -> 'a list list
wenzelm@4621
   276
  val partition_list: (int -> 'a -> bool) -> int -> int -> 'a list -> 'a list list
wenzelm@4621
   277
  val transitive_closure: (string * string list) list -> (string * string list) list
wenzelm@11021
   278
  val init_gensym: unit -> unit    (* FIXME !!??! *)
wenzelm@4621
   279
  val gensym: string -> string
wenzelm@4621
   280
  val bump_int_list: string list -> string list
wenzelm@4621
   281
  val bump_list: string list * string -> string list
wenzelm@4621
   282
  val bump_string: string -> string
wenzelm@4621
   283
  val scanwords: (string -> bool) -> string list -> string list
wenzelm@4621
   284
  datatype 'a mtree = Join of 'a * 'a mtree list
wenzelm@4621
   285
end;
wenzelm@4621
   286
wenzelm@4621
   287
structure Library: LIBRARY =
clasohm@1364
   288
struct
clasohm@0
   289
wenzelm@4995
   290
wenzelm@233
   291
(** functions **)
clasohm@0
   292
wenzelm@233
   293
(*handy combinators*)
wenzelm@233
   294
fun curry f x y = f (x, y);
wenzelm@233
   295
fun uncurry f (x, y) = f x y;
wenzelm@233
   296
fun I x = x;
wenzelm@233
   297
fun K x y = x;
clasohm@0
   298
wenzelm@380
   299
(*reverse apply*)
wenzelm@410
   300
fun (x |> f) = f x;
wenzelm@8418
   301
fun ((x, y) |>> f) = (f x, y);
wenzelm@8418
   302
fun ((x, y) |>>> f) = let val (x', z) = f x in (x', (y, z)) end;
wenzelm@380
   303
wenzelm@233
   304
(*application of (infix) operator to its left or right argument*)
wenzelm@233
   305
fun apl (x, f) y = f (x, y);
wenzelm@233
   306
fun apr (f, y) x = f (x, y);
clasohm@0
   307
wenzelm@233
   308
(*function exponentiation: f(...(f x)...) with n applications of f*)
wenzelm@233
   309
fun funpow n f x =
wenzelm@233
   310
  let fun rep (0, x) = x
wenzelm@233
   311
        | rep (n, x) = rep (n - 1, f x)
wenzelm@233
   312
  in rep (n, x) end;
wenzelm@160
   313
wenzelm@5893
   314
(*concatenation: 2 and 3 args*)
wenzelm@5893
   315
fun (f oo g) x y = f (g x y);
wenzelm@5893
   316
fun (f ooo g) x y z = f (g x y z);
wenzelm@6510
   317
fun (f oooo g) x y z w = f (g x y z w);
wenzelm@6510
   318
wenzelm@160
   319
wenzelm@160
   320
wenzelm@2471
   321
(** stamps **)
wenzelm@2471
   322
wenzelm@2471
   323
type stamp = unit ref;
wenzelm@2471
   324
val stamp: unit -> stamp = ref;
wenzelm@2471
   325
wenzelm@2471
   326
wenzelm@2471
   327
wenzelm@233
   328
(** options **)
clasohm@0
   329
clasohm@0
   330
datatype 'a option = None | Some of 'a;
clasohm@0
   331
wenzelm@4139
   332
exception OPTION;
clasohm@0
   333
clasohm@0
   334
fun the (Some x) = x
wenzelm@4139
   335
  | the None = raise OPTION;
clasohm@0
   336
wenzelm@4212
   337
(*strict!*)
wenzelm@255
   338
fun if_none None y = y
wenzelm@255
   339
  | if_none (Some x) _ = x;
wenzelm@255
   340
clasohm@0
   341
fun is_some (Some _) = true
clasohm@0
   342
  | is_some None = false;
clasohm@0
   343
clasohm@0
   344
fun is_none (Some _) = false
clasohm@0
   345
  | is_none None = true;
clasohm@0
   346
wenzelm@233
   347
fun apsome f (Some x) = Some (f x)
wenzelm@233
   348
  | apsome _ None = None;
clasohm@0
   349
wenzelm@6959
   350
wenzelm@6959
   351
(* exception handling *)
wenzelm@6959
   352
wenzelm@6959
   353
exception ERROR;
wenzelm@6959
   354
wenzelm@6959
   355
fun try f x = Some (f x)
wenzelm@6959
   356
  handle Interrupt => raise Interrupt | ERROR => raise ERROR | _ => None;
wenzelm@6959
   357
wenzelm@6959
   358
fun can f x = is_some (try f x);
wenzelm@4139
   359
wenzelm@4139
   360
wenzelm@4139
   361
wenzelm@233
   362
(** pairs **)
wenzelm@233
   363
wenzelm@233
   364
fun pair x y = (x, y);
wenzelm@233
   365
fun rpair x y = (y, x);
wenzelm@233
   366
wenzelm@233
   367
fun fst (x, y) = x;
wenzelm@233
   368
fun snd (x, y) = y;
wenzelm@233
   369
wenzelm@233
   370
fun eq_fst ((x1, _), (x2, _)) = x1 = x2;
wenzelm@233
   371
fun eq_snd ((_, y1), (_, y2)) = y1 = y2;
wenzelm@233
   372
wenzelm@233
   373
fun swap (x, y) = (y, x);
wenzelm@233
   374
wenzelm@4212
   375
(*apply function to components*)
wenzelm@233
   376
fun apfst f (x, y) = (f x, y);
wenzelm@233
   377
fun apsnd f (x, y) = (x, f y);
wenzelm@4212
   378
fun pairself f (x, y) = (f x, f y);
wenzelm@233
   379
wenzelm@233
   380
wenzelm@233
   381
wenzelm@233
   382
(** booleans **)
wenzelm@233
   383
wenzelm@233
   384
(* equality *)
wenzelm@233
   385
wenzelm@233
   386
fun equal x y = x = y;
wenzelm@233
   387
fun not_equal x y = x <> y;
wenzelm@233
   388
wenzelm@233
   389
wenzelm@233
   390
(* operators for combining predicates *)
wenzelm@233
   391
paulson@2175
   392
fun (p orf q) = fn x => p x orelse q x;
paulson@2175
   393
fun (p andf q) = fn x => p x andalso q x;
wenzelm@233
   394
wenzelm@233
   395
wenzelm@233
   396
(* predicates on lists *)
wenzelm@233
   397
wenzelm@233
   398
(*exists pred [x1, ..., xn] ===> pred x1 orelse ... orelse pred xn*)
wenzelm@233
   399
fun exists (pred: 'a -> bool) : 'a list -> bool =
wenzelm@233
   400
  let fun boolf [] = false
wenzelm@233
   401
        | boolf (x :: xs) = pred x orelse boolf xs
wenzelm@233
   402
  in boolf end;
wenzelm@233
   403
wenzelm@233
   404
(*forall pred [x1, ..., xn] ===> pred x1 andalso ... andalso pred xn*)
wenzelm@233
   405
fun forall (pred: 'a -> bool) : 'a list -> bool =
wenzelm@233
   406
  let fun boolf [] = true
wenzelm@233
   407
        | boolf (x :: xs) = pred x andalso boolf xs
wenzelm@233
   408
  in boolf end;
clasohm@0
   409
wenzelm@233
   410
wenzelm@380
   411
(* flags *)
wenzelm@380
   412
wenzelm@380
   413
fun set flag = (flag := true; true);
wenzelm@380
   414
fun reset flag = (flag := false; false);
wenzelm@380
   415
fun toggle flag = (flag := not (! flag); ! flag);
wenzelm@380
   416
wenzelm@9118
   417
fun change r f = r := f (! r);
wenzelm@9118
   418
wenzelm@4212
   419
(*temporarily set flag, handling errors*)
wenzelm@2978
   420
fun setmp flag value f x =
wenzelm@2958
   421
  let
wenzelm@2958
   422
    val orig_value = ! flag;
wenzelm@2958
   423
    fun return y = (flag := orig_value; y);
wenzelm@2958
   424
  in
wenzelm@2958
   425
    flag := value;
wenzelm@2958
   426
    return (f x handle exn => (return (); raise exn))
wenzelm@2958
   427
  end;
wenzelm@2958
   428
wenzelm@380
   429
wenzelm@11853
   430
(* conditional execution *)
wenzelm@11853
   431
wenzelm@11853
   432
fun conditional b f = if b then f () else ();
wenzelm@11853
   433
wenzelm@11853
   434
wenzelm@233
   435
wenzelm@233
   436
(** lists **)
wenzelm@233
   437
wenzelm@233
   438
exception LIST of string;
wenzelm@233
   439
wenzelm@233
   440
fun null [] = true
wenzelm@233
   441
  | null (_ :: _) = false;
wenzelm@233
   442
wenzelm@233
   443
fun hd [] = raise LIST "hd"
wenzelm@233
   444
  | hd (x :: _) = x;
wenzelm@233
   445
wenzelm@233
   446
fun tl [] = raise LIST "tl"
wenzelm@233
   447
  | tl (_ :: xs) = xs;
wenzelm@233
   448
wenzelm@233
   449
fun cons x xs = x :: xs;
wenzelm@5285
   450
fun single x = [x];
wenzelm@233
   451
wenzelm@4629
   452
fun append xs ys = xs @ ys;
wenzelm@4629
   453
wenzelm@5904
   454
fun apply [] x = x
wenzelm@5904
   455
  | apply (f :: fs) x = apply fs (f x);
wenzelm@5904
   456
wenzelm@233
   457
wenzelm@233
   458
(* fold *)
wenzelm@233
   459
wenzelm@233
   460
(*the following versions of fold are designed to fit nicely with infixes*)
clasohm@0
   461
wenzelm@233
   462
(*  (op @) (e, [x1, ..., xn])  ===>  ((e @ x1) @ x2) ... @ xn
wenzelm@233
   463
    for operators that associate to the left (TAIL RECURSIVE)*)
wenzelm@233
   464
fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a =
wenzelm@233
   465
  let fun itl (e, [])  = e
wenzelm@233
   466
        | itl (e, a::l) = itl (f(e, a), l)
wenzelm@233
   467
  in  itl end;
wenzelm@233
   468
wenzelm@233
   469
(*  (op @) ([x1, ..., xn], e)  ===>   x1 @ (x2 ... @ (xn @ e))
wenzelm@233
   470
    for operators that associate to the right (not tail recursive)*)
wenzelm@233
   471
fun foldr f (l, e) =
wenzelm@233
   472
  let fun itr [] = e
wenzelm@233
   473
        | itr (a::l) = f(a, itr l)
wenzelm@233
   474
  in  itr l  end;
wenzelm@233
   475
wenzelm@233
   476
(*  (op @) [x1, ..., xn]  ===>   x1 @ (x2 ... @ (x[n-1] @ xn))
wenzelm@233
   477
    for n > 0, operators that associate to the right (not tail recursive)*)
wenzelm@233
   478
fun foldr1 f l =
wenzelm@4181
   479
  let fun itr [x] = x
wenzelm@233
   480
        | itr (x::l) = f(x, itr l)
wenzelm@233
   481
  in  itr l  end;
wenzelm@233
   482
wenzelm@4956
   483
fun foldl_map _ (x, []) = (x, [])
wenzelm@4956
   484
  | foldl_map f (x, y :: ys) =
wenzelm@4956
   485
      let
wenzelm@4956
   486
        val (x', y') = f (x, y);
wenzelm@4956
   487
        val (x'', ys') = foldl_map f (x', ys);
wenzelm@4956
   488
      in (x'', y' :: ys') end;
wenzelm@4956
   489
oheimb@11002
   490
fun foldln f xs e = fst (foldl (fn ((e,i), x) => (f (x,i) e, i+1)) ((e,1),xs));
wenzelm@233
   491
wenzelm@233
   492
(* basic list functions *)
wenzelm@233
   493
wenzelm@233
   494
(*length of a list, should unquestionably be a standard function*)
wenzelm@233
   495
local fun length1 (n, [])  = n   (*TAIL RECURSIVE*)
wenzelm@233
   496
        | length1 (n, x :: xs) = length1 (n + 1, xs)
wenzelm@233
   497
in  fun length l = length1 (0, l) end;
wenzelm@233
   498
wenzelm@233
   499
(*take the first n elements from a list*)
wenzelm@233
   500
fun take (n, []) = []
wenzelm@233
   501
  | take (n, x :: xs) =
wenzelm@233
   502
      if n > 0 then x :: take (n - 1, xs) else [];
wenzelm@233
   503
wenzelm@233
   504
(*drop the first n elements from a list*)
wenzelm@233
   505
fun drop (n, []) = []
wenzelm@233
   506
  | drop (n, x :: xs) =
wenzelm@233
   507
      if n > 0 then drop (n - 1, xs) else x :: xs;
clasohm@0
   508
nipkow@4713
   509
fun dropwhile P [] = []
nipkow@4713
   510
  | dropwhile P (ys as x::xs) = if P x then dropwhile P xs else ys;
nipkow@4713
   511
wenzelm@233
   512
(*return nth element of a list, where 0 designates the first element;
wenzelm@233
   513
  raise EXCEPTION if list too short*)
wenzelm@233
   514
fun nth_elem NL =
wenzelm@233
   515
  (case drop NL of
wenzelm@233
   516
    [] => raise LIST "nth_elem"
wenzelm@233
   517
  | x :: _ => x);
wenzelm@233
   518
wenzelm@11773
   519
fun map_nth_elem 0 f (x :: xs) = f x :: xs
wenzelm@11773
   520
  | map_nth_elem n f (x :: xs) = x :: map_nth_elem (n - 1) f xs
wenzelm@11773
   521
  | map_nth_elem _ _ [] = raise LIST "map_nth_elem";
wenzelm@11773
   522
wenzelm@233
   523
(*last element of a list*)
wenzelm@233
   524
fun last_elem [] = raise LIST "last_elem"
wenzelm@233
   525
  | last_elem [x] = x
wenzelm@233
   526
  | last_elem (_ :: xs) = last_elem xs;
wenzelm@233
   527
wenzelm@3762
   528
(*rear decomposition*)
wenzelm@3762
   529
fun split_last [] = raise LIST "split_last"
wenzelm@3762
   530
  | split_last [x] = ([], x)
wenzelm@3762
   531
  | split_last (x :: xs) = apfst (cons x) (split_last xs);
wenzelm@3762
   532
wenzelm@4893
   533
(*update nth element*)
wenzelm@4893
   534
fun nth_update x (n, xs) =
wenzelm@4893
   535
  let
wenzelm@4893
   536
    val prfx = take (n, xs);
wenzelm@4893
   537
    val sffx = drop (n, xs);
wenzelm@4893
   538
  in
wenzelm@4893
   539
    (case sffx of
wenzelm@4893
   540
      [] => raise LIST "nth_update"
wenzelm@4893
   541
    | _ :: sffx' => prfx @ (x :: sffx'))
wenzelm@4893
   542
  end;
wenzelm@4893
   543
wenzelm@4212
   544
(*find the position of an element in a list*)
wenzelm@4212
   545
fun find_index pred =
wenzelm@4212
   546
  let fun find _ [] = ~1
wenzelm@4212
   547
        | find n (x :: xs) = if pred x then n else find (n + 1) xs;
wenzelm@4212
   548
  in find 0 end;
wenzelm@3762
   549
wenzelm@4224
   550
fun find_index_eq x = find_index (equal x);
wenzelm@4212
   551
wenzelm@4212
   552
(*find first element satisfying predicate*)
wenzelm@4212
   553
fun find_first _ [] = None
wenzelm@4212
   554
  | find_first pred (x :: xs) =
wenzelm@4212
   555
      if pred x then Some x else find_first pred xs;
wenzelm@233
   556
wenzelm@4916
   557
(*get first element by lookup function*)
wenzelm@4916
   558
fun get_first _ [] = None
wenzelm@4916
   559
  | get_first f (x :: xs) =
wenzelm@4916
   560
      (case f x of
wenzelm@4916
   561
        None => get_first f xs
wenzelm@4916
   562
      | some => some);
wenzelm@4916
   563
wenzelm@233
   564
(*flatten a list of lists to a list*)
wenzelm@233
   565
fun flat (ls: 'c list list) : 'c list = foldr (op @) (ls, []);
wenzelm@233
   566
wenzelm@233
   567
(*like Lisp's MAPC -- seq proc [x1, ..., xn] evaluates
wenzelm@233
   568
  (proc x1; ...; proc xn) for side effects*)
wenzelm@233
   569
fun seq (proc: 'a -> unit) : 'a list -> unit =
wenzelm@233
   570
  let fun seqf [] = ()
wenzelm@233
   571
        | seqf (x :: xs) = (proc x; seqf xs)
wenzelm@233
   572
  in seqf end;
wenzelm@233
   573
wenzelm@233
   574
(*separate s [x1, x2, ..., xn]  ===>  [x1, s, x2, s, ..., s, xn]*)
wenzelm@233
   575
fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs
wenzelm@233
   576
  | separate _ xs = xs;
wenzelm@233
   577
wenzelm@233
   578
(*make the list [x, x, ..., x] of length n*)
wenzelm@233
   579
fun replicate n (x: 'a) : 'a list =
wenzelm@233
   580
  let fun rep (0, xs) = xs
wenzelm@233
   581
        | rep (n, xs) = rep (n - 1, x :: xs)
wenzelm@233
   582
  in
wenzelm@233
   583
    if n < 0 then raise LIST "replicate"
wenzelm@233
   584
    else rep (n, [])
wenzelm@233
   585
  end;
wenzelm@233
   586
wenzelm@4248
   587
(*multiply [a, b, c, ...] * [xs, ys, zs, ...]*)
wenzelm@4248
   588
fun multiply ([], _) = []
wenzelm@4248
   589
  | multiply (x :: xs, yss) = map (cons x) yss @ multiply (xs, yss);
wenzelm@4248
   590
wenzelm@233
   591
wenzelm@233
   592
(* filter *)
wenzelm@233
   593
wenzelm@233
   594
(*copy the list preserving elements that satisfy the predicate*)
wenzelm@233
   595
fun filter (pred: 'a->bool) : 'a list -> 'a list =
clasohm@0
   596
  let fun filt [] = []
wenzelm@233
   597
        | filt (x :: xs) = if pred x then x :: filt xs else filt xs
wenzelm@233
   598
  in filt end;
clasohm@0
   599
clasohm@0
   600
fun filter_out f = filter (not o f);
clasohm@0
   601
wenzelm@233
   602
fun mapfilter (f: 'a -> 'b option) ([]: 'a list) = [] : 'b list
wenzelm@233
   603
  | mapfilter f (x :: xs) =
wenzelm@233
   604
      (case f x of
wenzelm@233
   605
        None => mapfilter f xs
wenzelm@233
   606
      | Some y => y :: mapfilter f xs);
wenzelm@233
   607
wenzelm@233
   608
wenzelm@233
   609
(* lists of pairs *)
wenzelm@233
   610
wenzelm@380
   611
fun map2 _ ([], []) = []
wenzelm@380
   612
  | map2 f (x :: xs, y :: ys) = (f (x, y) :: map2 f (xs, ys))
wenzelm@380
   613
  | map2 _ _ = raise LIST "map2";
wenzelm@380
   614
wenzelm@380
   615
fun exists2 _ ([], []) = false
wenzelm@380
   616
  | exists2 pred (x :: xs, y :: ys) = pred (x, y) orelse exists2 pred (xs, ys)
wenzelm@380
   617
  | exists2 _ _ = raise LIST "exists2";
wenzelm@380
   618
wenzelm@380
   619
fun forall2 _ ([], []) = true
wenzelm@380
   620
  | forall2 pred (x :: xs, y :: ys) = pred (x, y) andalso forall2 pred (xs, ys)
wenzelm@380
   621
  | forall2 _ _ = raise LIST "forall2";
wenzelm@380
   622
wenzelm@4956
   623
fun seq2 _ ([], []) = ()
wenzelm@4956
   624
  | seq2 f (x :: xs, y :: ys) = (f (x, y); seq2 f (xs, ys))
wenzelm@4956
   625
  | seq2 _ _ = raise LIST "seq2";
wenzelm@4956
   626
wenzelm@233
   627
(*combine two lists forming a list of pairs:
wenzelm@233
   628
  [x1, ..., xn] ~~ [y1, ..., yn]  ===>  [(x1, y1), ..., (xn, yn)]*)
wenzelm@233
   629
fun [] ~~ [] = []
wenzelm@233
   630
  | (x :: xs) ~~ (y :: ys) = (x, y) :: (xs ~~ ys)
wenzelm@233
   631
  | _ ~~ _ = raise LIST "~~";
wenzelm@233
   632
wenzelm@233
   633
(*inverse of ~~; the old 'split':
wenzelm@233
   634
  [(x1, y1), ..., (xn, yn)]  ===>  ([x1, ..., xn], [y1, ..., yn])*)
wenzelm@233
   635
fun split_list (l: ('a * 'b) list) = (map #1 l, map #2 l);
wenzelm@233
   636
wenzelm@7468
   637
fun equal_lists eq (xs, ys) = length xs = length ys andalso forall2 eq (xs, ys);
wenzelm@7468
   638
wenzelm@233
   639
wenzelm@233
   640
(* prefixes, suffixes *)
wenzelm@233
   641
wenzelm@233
   642
fun [] prefix _ = true
wenzelm@233
   643
  | (x :: xs) prefix (y :: ys) = x = y andalso (xs prefix ys)
wenzelm@233
   644
  | _ prefix _ = false;
wenzelm@233
   645
wenzelm@233
   646
(* [x1, ..., xi, ..., xn]  --->  ([x1, ..., x(i-1)], [xi, ..., xn])
wenzelm@233
   647
   where xi is the first element that does not satisfy the predicate*)
wenzelm@233
   648
fun take_prefix (pred : 'a -> bool)  (xs: 'a list) : 'a list * 'a list =
wenzelm@233
   649
  let fun take (rxs, []) = (rev rxs, [])
wenzelm@255
   650
        | take (rxs, x :: xs) =
wenzelm@255
   651
            if  pred x  then  take(x :: rxs, xs)  else  (rev rxs, x :: xs)
wenzelm@233
   652
  in  take([], xs)  end;
wenzelm@233
   653
wenzelm@233
   654
(* [x1, ..., xi, ..., xn]  --->  ([x1, ..., xi], [x(i+1), ..., xn])
wenzelm@233
   655
   where xi is the last element that does not satisfy the predicate*)
wenzelm@233
   656
fun take_suffix _ [] = ([], [])
wenzelm@233
   657
  | take_suffix pred (x :: xs) =
wenzelm@233
   658
      (case take_suffix pred xs of
wenzelm@233
   659
        ([], sffx) => if pred x then ([], x :: sffx) else ([x], sffx)
wenzelm@233
   660
      | (prfx, sffx) => (x :: prfx, sffx));
wenzelm@233
   661
wenzelm@233
   662
wenzelm@233
   663
wenzelm@233
   664
(** integers **)
wenzelm@233
   665
nipkow@10692
   666
fun gcd(x,y) =
nipkow@10692
   667
  let fun gxd x y =
nipkow@10692
   668
    if y = 0 then x else gxd y (x mod y)
nipkow@10692
   669
  in if x < y then gxd y x else gxd x y end;
nipkow@10692
   670
nipkow@10692
   671
fun lcm(x,y) = (x * y) div gcd(x,y);
nipkow@10692
   672
wenzelm@2958
   673
fun inc i = (i := ! i + 1; ! i);
wenzelm@2958
   674
fun dec i = (i := ! i - 1; ! i);
wenzelm@233
   675
wenzelm@233
   676
wenzelm@233
   677
(* lists of integers *)
wenzelm@233
   678
wenzelm@233
   679
(*make the list [from, from + 1, ..., to]*)
paulson@2175
   680
fun (from upto to) =
wenzelm@233
   681
  if from > to then [] else from :: ((from + 1) upto to);
wenzelm@233
   682
wenzelm@233
   683
(*make the list [from, from - 1, ..., to]*)
paulson@2175
   684
fun (from downto to) =
wenzelm@233
   685
  if from < to then [] else from :: ((from - 1) downto to);
wenzelm@233
   686
wenzelm@233
   687
(*predicate: downto0 (is, n) <=> is = [n, n - 1, ..., 0]*)
wenzelm@233
   688
fun downto0 (i :: is, n) = i = n andalso downto0 (is, n - 1)
wenzelm@233
   689
  | downto0 ([], n) = n = ~1;
wenzelm@233
   690
wenzelm@233
   691
wenzelm@233
   692
(* convert integers to strings *)
wenzelm@233
   693
wenzelm@233
   694
(*expand the number in the given base;
wenzelm@233
   695
  example: radixpand (2, 8) gives [1, 0, 0, 0]*)
wenzelm@233
   696
fun radixpand (base, num) : int list =
wenzelm@233
   697
  let
wenzelm@233
   698
    fun radix (n, tail) =
wenzelm@233
   699
      if n < base then n :: tail
wenzelm@233
   700
      else radix (n div base, (n mod base) :: tail)
wenzelm@233
   701
  in radix (num, []) end;
wenzelm@233
   702
wenzelm@233
   703
(*expands a number into a string of characters starting from "zerochar";
wenzelm@233
   704
  example: radixstring (2, "0", 8) gives "1000"*)
wenzelm@233
   705
fun radixstring (base, zerochar, num) =
wenzelm@233
   706
  let val offset = ord zerochar;
wenzelm@233
   707
      fun chrof n = chr (offset + n)
wenzelm@233
   708
  in implode (map chrof (radixpand (base, num))) end;
wenzelm@233
   709
wenzelm@233
   710
paulson@3407
   711
val string_of_int = Int.toString;
wenzelm@233
   712
paulson@3407
   713
fun string_of_indexname (a,0) = a
paulson@3407
   714
  | string_of_indexname (a,i) = a ^ "_" ^ Int.toString i;
wenzelm@233
   715
wenzelm@233
   716
wenzelm@233
   717
(** strings **)
wenzelm@233
   718
wenzelm@6312
   719
(*functions tuned for strings, avoiding explode*)
wenzelm@6312
   720
wenzelm@6312
   721
fun nth_elem_string (i, str) =
wenzelm@6959
   722
  (case try String.substring (str, i, 1) of
wenzelm@6959
   723
    Some s => s
wenzelm@6959
   724
  | None => raise LIST "nth_elem_string");
wenzelm@6312
   725
wenzelm@6282
   726
fun foldl_string f (x0, str) =
wenzelm@6282
   727
  let
wenzelm@6282
   728
    val n = size str;
wenzelm@6282
   729
    fun fold (x, i) = if i < n then fold (f (x, String.substring (str, i, 1)), i + 1) else x
wenzelm@6282
   730
  in fold (x0, 0) end;
wenzelm@6282
   731
wenzelm@6312
   732
fun exists_string pred str = foldl_string (fn (b, s) => b orelse pred s) (false, str);
wenzelm@6312
   733
lcp@512
   734
(*enclose in brackets*)
lcp@512
   735
fun enclose lpar rpar str = lpar ^ str ^ rpar;
wenzelm@6642
   736
fun unenclose str = String.substring (str, 1, size str - 2);
wenzelm@255
   737
wenzelm@233
   738
(*simple quoting (does not escape special chars)*)
lcp@512
   739
val quote = enclose "\"" "\"";
wenzelm@233
   740
wenzelm@4212
   741
(*space_implode "..." (explode "hello") = "h...e...l...l...o"*)
wenzelm@233
   742
fun space_implode a bs = implode (separate a bs);
wenzelm@233
   743
wenzelm@255
   744
val commas = space_implode ", ";
wenzelm@380
   745
val commas_quote = commas o map quote;
wenzelm@255
   746
wenzelm@233
   747
(*concatenate messages, one per line, into a string*)
wenzelm@255
   748
val cat_lines = space_implode "\n";
wenzelm@233
   749
wenzelm@4212
   750
(*space_explode "." "h.e..l.lo" = ["h", "e", "", "l", "lo"]*)
wenzelm@3832
   751
fun space_explode _ "" = []
wenzelm@3832
   752
  | space_explode sep str =
wenzelm@3832
   753
      let
wenzelm@3832
   754
        fun expl chs =
wenzelm@3832
   755
          (case take_prefix (not_equal sep) chs of
wenzelm@3832
   756
            (cs, []) => [implode cs]
wenzelm@3832
   757
          | (cs, _ :: cs') => implode cs :: expl cs');
wenzelm@3832
   758
      in expl (explode str) end;
wenzelm@3832
   759
wenzelm@3832
   760
val split_lines = space_explode "\n";
wenzelm@3832
   761
wenzelm@7712
   762
(*untabify*)
wenzelm@7712
   763
fun untabify chs =
wenzelm@7712
   764
  let
wenzelm@7712
   765
    val tab_width = 8;
wenzelm@7712
   766
wenzelm@7712
   767
    fun untab (_, "\n") = (0, ["\n"])
wenzelm@9118
   768
      | untab (pos, "\t") =
wenzelm@9118
   769
          let val d = tab_width - (pos mod tab_width) in (pos + d, replicate d " ") end
wenzelm@7712
   770
      | untab (pos, c) = (pos + 1, [c]);
wenzelm@7712
   771
  in
wenzelm@7712
   772
    if not (exists (equal "\t") chs) then chs
wenzelm@7712
   773
    else flat (#2 (foldl_map untab (0, chs)))
wenzelm@7712
   774
  end;
wenzelm@7712
   775
wenzelm@5285
   776
(*append suffix*)
wenzelm@5285
   777
fun suffix sfx s = s ^ sfx;
wenzelm@5285
   778
wenzelm@5285
   779
(*remove suffix*)
wenzelm@5285
   780
fun unsuffix sfx s =
wenzelm@5285
   781
  let
wenzelm@5285
   782
    val cs = explode s;
wenzelm@5285
   783
    val prfx_len = size s - size sfx;
wenzelm@5285
   784
  in
wenzelm@5285
   785
    if prfx_len >= 0 andalso implode (drop (prfx_len, cs)) = sfx then
wenzelm@5285
   786
      implode (take (prfx_len, cs))
wenzelm@5285
   787
    else raise LIST "unsuffix"
wenzelm@5285
   788
  end;
wenzelm@5285
   789
wenzelm@10951
   790
fun replicate_string 0 _ = ""
wenzelm@10951
   791
  | replicate_string 1 a = a
wenzelm@10951
   792
  | replicate_string k a =
wenzelm@10951
   793
      if k mod 2 = 0 then replicate_string (k div 2) (a ^ a)
wenzelm@10951
   794
      else replicate_string (k div 2) (a ^ a) ^ a;
wenzelm@10951
   795
wenzelm@3832
   796
wenzelm@233
   797
wenzelm@233
   798
(** lists as sets **)
wenzelm@233
   799
wenzelm@233
   800
(*membership in a list*)
wenzelm@233
   801
fun x mem [] = false
wenzelm@233
   802
  | x mem (y :: ys) = x = y orelse x mem ys;
clasohm@0
   803
paulson@2175
   804
(*membership in a list, optimized version for ints*)
berghofe@1576
   805
fun (x:int) mem_int [] = false
berghofe@1576
   806
  | x mem_int (y :: ys) = x = y orelse x mem_int ys;
berghofe@1576
   807
paulson@2175
   808
(*membership in a list, optimized version for strings*)
berghofe@1576
   809
fun (x:string) mem_string [] = false
berghofe@1576
   810
  | x mem_string (y :: ys) = x = y orelse x mem_string ys;
berghofe@1576
   811
clasohm@0
   812
(*generalized membership test*)
wenzelm@233
   813
fun gen_mem eq (x, []) = false
wenzelm@233
   814
  | gen_mem eq (x, y :: ys) = eq (x, y) orelse gen_mem eq (x, ys);
wenzelm@233
   815
wenzelm@233
   816
wenzelm@233
   817
(*insertion into list if not already there*)
paulson@2175
   818
fun (x ins xs) = if x mem xs then xs else x :: xs;
clasohm@0
   819
paulson@2175
   820
(*insertion into list, optimized version for ints*)
paulson@2175
   821
fun (x ins_int xs) = if x mem_int xs then xs else x :: xs;
berghofe@1576
   822
paulson@2175
   823
(*insertion into list, optimized version for strings*)
paulson@2175
   824
fun (x ins_string xs) = if x mem_string xs then xs else x :: xs;
berghofe@1576
   825
clasohm@0
   826
(*generalized insertion*)
wenzelm@233
   827
fun gen_ins eq (x, xs) = if gen_mem eq (x, xs) then xs else x :: xs;
wenzelm@233
   828
wenzelm@233
   829
wenzelm@233
   830
(*union of sets represented as lists: no repetitions*)
wenzelm@233
   831
fun xs union [] = xs
wenzelm@233
   832
  | [] union ys = ys
wenzelm@233
   833
  | (x :: xs) union ys = xs union (x ins ys);
clasohm@0
   834
paulson@2175
   835
(*union of sets, optimized version for ints*)
berghofe@1576
   836
fun (xs:int list) union_int [] = xs
berghofe@1576
   837
  | [] union_int ys = ys
berghofe@1576
   838
  | (x :: xs) union_int ys = xs union_int (x ins_int ys);
berghofe@1576
   839
paulson@2175
   840
(*union of sets, optimized version for strings*)
berghofe@1576
   841
fun (xs:string list) union_string [] = xs
berghofe@1576
   842
  | [] union_string ys = ys
berghofe@1576
   843
  | (x :: xs) union_string ys = xs union_string (x ins_string ys);
berghofe@1576
   844
clasohm@0
   845
(*generalized union*)
wenzelm@233
   846
fun gen_union eq (xs, []) = xs
wenzelm@233
   847
  | gen_union eq ([], ys) = ys
wenzelm@233
   848
  | gen_union eq (x :: xs, ys) = gen_union eq (xs, gen_ins eq (x, ys));
wenzelm@233
   849
wenzelm@233
   850
wenzelm@233
   851
(*intersection*)
wenzelm@233
   852
fun [] inter ys = []
wenzelm@233
   853
  | (x :: xs) inter ys =
wenzelm@233
   854
      if x mem ys then x :: (xs inter ys) else xs inter ys;
wenzelm@233
   855
paulson@2175
   856
(*intersection, optimized version for ints*)
berghofe@1576
   857
fun ([]:int list) inter_int ys = []
berghofe@1576
   858
  | (x :: xs) inter_int ys =
berghofe@1576
   859
      if x mem_int ys then x :: (xs inter_int ys) else xs inter_int ys;
berghofe@1576
   860
paulson@2175
   861
(*intersection, optimized version for strings *)
berghofe@1576
   862
fun ([]:string list) inter_string ys = []
berghofe@1576
   863
  | (x :: xs) inter_string ys =
berghofe@1576
   864
      if x mem_string ys then x :: (xs inter_string ys) else xs inter_string ys;
berghofe@1576
   865
paulson@7090
   866
(*generalized intersection*)
paulson@7090
   867
fun gen_inter eq ([], ys) = []
paulson@7090
   868
  | gen_inter eq (x::xs, ys) = 
paulson@7090
   869
      if gen_mem eq (x,ys) then x :: gen_inter eq (xs, ys)
paulson@7090
   870
	                   else      gen_inter eq (xs, ys);
paulson@7090
   871
wenzelm@233
   872
wenzelm@233
   873
(*subset*)
wenzelm@233
   874
fun [] subset ys = true
wenzelm@233
   875
  | (x :: xs) subset ys = x mem ys andalso xs subset ys;
wenzelm@233
   876
paulson@2175
   877
(*subset, optimized version for ints*)
berghofe@1576
   878
fun ([]:int list) subset_int ys = true
berghofe@1576
   879
  | (x :: xs) subset_int ys = x mem_int ys andalso xs subset_int ys;
berghofe@1576
   880
paulson@2175
   881
(*subset, optimized version for strings*)
berghofe@1576
   882
fun ([]:string list) subset_string ys = true
berghofe@1576
   883
  | (x :: xs) subset_string ys = x mem_string ys andalso xs subset_string ys;
berghofe@1576
   884
wenzelm@4363
   885
(*set equality*)
wenzelm@4363
   886
fun eq_set (xs, ys) =
wenzelm@4363
   887
  xs = ys orelse (xs subset ys andalso ys subset xs);
wenzelm@4363
   888
paulson@2182
   889
(*set equality for strings*)
berghofe@1576
   890
fun eq_set_string ((xs:string list), ys) =
berghofe@1576
   891
  xs = ys orelse (xs subset_string ys andalso ys subset_string xs);
berghofe@1576
   892
paulson@2182
   893
fun gen_subset eq (xs, ys) = forall (fn x => gen_mem eq (x, ys)) xs;
paulson@2182
   894
wenzelm@265
   895
wenzelm@233
   896
(*removing an element from a list WITHOUT duplicates*)
wenzelm@233
   897
fun (y :: ys) \ x = if x = y then ys else y :: (ys \ x)
wenzelm@233
   898
  | [] \ x = [];
wenzelm@233
   899
paulson@2243
   900
fun ys \\ xs = foldl (op \) (ys,xs);
clasohm@0
   901
wenzelm@233
   902
(*removing an element from a list -- possibly WITH duplicates*)
wenzelm@233
   903
fun gen_rem eq (xs, y) = filter_out (fn x => eq (x, y)) xs;
wenzelm@233
   904
paulson@2243
   905
fun gen_rems eq = foldl (gen_rem eq);
wenzelm@233
   906
wenzelm@233
   907
wenzelm@233
   908
(*makes a list of the distinct members of the input; preserves order, takes
wenzelm@233
   909
  first of equal elements*)
wenzelm@233
   910
fun gen_distinct eq lst =
wenzelm@233
   911
  let
wenzelm@233
   912
    val memb = gen_mem eq;
clasohm@0
   913
wenzelm@233
   914
    fun dist (rev_seen, []) = rev rev_seen
wenzelm@233
   915
      | dist (rev_seen, x :: xs) =
wenzelm@233
   916
          if memb (x, rev_seen) then dist (rev_seen, xs)
wenzelm@233
   917
          else dist (x :: rev_seen, xs);
wenzelm@233
   918
  in
wenzelm@233
   919
    dist ([], lst)
wenzelm@233
   920
  end;
wenzelm@233
   921
paulson@2243
   922
fun distinct l = gen_distinct (op =) l;
wenzelm@233
   923
wenzelm@233
   924
wenzelm@233
   925
(*returns the tail beginning with the first repeated element, or []*)
wenzelm@233
   926
fun findrep [] = []
wenzelm@233
   927
  | findrep (x :: xs) = if x mem xs then x :: xs else findrep xs;
wenzelm@233
   928
wenzelm@233
   929
wenzelm@255
   930
(*returns a list containing all repeated elements exactly once; preserves
wenzelm@255
   931
  order, takes first of equal elements*)
wenzelm@255
   932
fun gen_duplicates eq lst =
wenzelm@255
   933
  let
wenzelm@255
   934
    val memb = gen_mem eq;
wenzelm@255
   935
wenzelm@255
   936
    fun dups (rev_dups, []) = rev rev_dups
wenzelm@255
   937
      | dups (rev_dups, x :: xs) =
wenzelm@255
   938
          if memb (x, rev_dups) orelse not (memb (x, xs)) then
wenzelm@255
   939
            dups (rev_dups, xs)
wenzelm@255
   940
          else dups (x :: rev_dups, xs);
wenzelm@255
   941
  in
wenzelm@255
   942
    dups ([], lst)
wenzelm@255
   943
  end;
wenzelm@255
   944
paulson@2243
   945
fun duplicates l = gen_duplicates (op =) l;
wenzelm@255
   946
wenzelm@255
   947
wenzelm@233
   948
wenzelm@233
   949
(** association lists **)
clasohm@0
   950
wenzelm@233
   951
(*association list lookup*)
wenzelm@233
   952
fun assoc ([], key) = None
wenzelm@233
   953
  | assoc ((keyi, xi) :: pairs, key) =
wenzelm@233
   954
      if key = keyi then Some xi else assoc (pairs, key);
wenzelm@233
   955
paulson@2175
   956
(*association list lookup, optimized version for ints*)
berghofe@1576
   957
fun assoc_int ([], (key:int)) = None
berghofe@1576
   958
  | assoc_int ((keyi, xi) :: pairs, key) =
berghofe@1576
   959
      if key = keyi then Some xi else assoc_int (pairs, key);
berghofe@1576
   960
paulson@2175
   961
(*association list lookup, optimized version for strings*)
berghofe@1576
   962
fun assoc_string ([], (key:string)) = None
berghofe@1576
   963
  | assoc_string ((keyi, xi) :: pairs, key) =
berghofe@1576
   964
      if key = keyi then Some xi else assoc_string (pairs, key);
berghofe@1576
   965
paulson@2175
   966
(*association list lookup, optimized version for string*ints*)
berghofe@1576
   967
fun assoc_string_int ([], (key:string*int)) = None
berghofe@1576
   968
  | assoc_string_int ((keyi, xi) :: pairs, key) =
berghofe@1576
   969
      if key = keyi then Some xi else assoc_string_int (pairs, key);
berghofe@1576
   970
wenzelm@233
   971
fun assocs ps x =
wenzelm@233
   972
  (case assoc (ps, x) of
wenzelm@233
   973
    None => []
wenzelm@233
   974
  | Some ys => ys);
wenzelm@233
   975
wenzelm@255
   976
(*two-fold association list lookup*)
wenzelm@255
   977
fun assoc2 (aal, (key1, key2)) =
wenzelm@255
   978
  (case assoc (aal, key1) of
wenzelm@255
   979
    Some al => assoc (al, key2)
wenzelm@255
   980
  | None => None);
wenzelm@255
   981
wenzelm@233
   982
(*generalized association list lookup*)
wenzelm@233
   983
fun gen_assoc eq ([], key) = None
wenzelm@233
   984
  | gen_assoc eq ((keyi, xi) :: pairs, key) =
wenzelm@233
   985
      if eq (key, keyi) then Some xi else gen_assoc eq (pairs, key);
wenzelm@233
   986
wenzelm@233
   987
(*association list update*)
wenzelm@233
   988
fun overwrite (al, p as (key, _)) =
wenzelm@233
   989
  let fun over ((q as (keyi, _)) :: pairs) =
wenzelm@233
   990
            if keyi = key then p :: pairs else q :: (over pairs)
wenzelm@233
   991
        | over [] = [p]
wenzelm@233
   992
  in over al end;
wenzelm@233
   993
wenzelm@2522
   994
fun gen_overwrite eq (al, p as (key, _)) =
wenzelm@2522
   995
  let fun over ((q as (keyi, _)) :: pairs) =
wenzelm@2522
   996
            if eq (keyi, key) then p :: pairs else q :: (over pairs)
wenzelm@2522
   997
        | over [] = [p]
wenzelm@2522
   998
  in over al end;
wenzelm@2522
   999
wenzelm@233
  1000
wenzelm@233
  1001
wenzelm@233
  1002
(** generic tables **)
clasohm@0
  1003
wenzelm@233
  1004
(*Tables are supposed to be 'efficient' encodings of lists of elements distinct
wenzelm@233
  1005
  wrt. an equality "eq". The extend and merge operations below are optimized
wenzelm@233
  1006
  for long-term space efficiency.*)
wenzelm@233
  1007
wenzelm@233
  1008
(*append (new) elements to a table*)
wenzelm@233
  1009
fun generic_extend _ _ _ tab [] = tab
wenzelm@233
  1010
  | generic_extend eq dest_tab mk_tab tab1 lst2 =
wenzelm@233
  1011
      let
wenzelm@233
  1012
        val lst1 = dest_tab tab1;
wenzelm@233
  1013
        val new_lst2 = gen_rems eq (lst2, lst1);
wenzelm@233
  1014
      in
wenzelm@233
  1015
        if null new_lst2 then tab1
wenzelm@233
  1016
        else mk_tab (lst1 @ new_lst2)
wenzelm@233
  1017
      end;
clasohm@0
  1018
wenzelm@233
  1019
(*append (new) elements of 2nd table to 1st table*)
wenzelm@233
  1020
fun generic_merge eq dest_tab mk_tab tab1 tab2 =
wenzelm@233
  1021
  let
wenzelm@233
  1022
    val lst1 = dest_tab tab1;
wenzelm@233
  1023
    val lst2 = dest_tab tab2;
wenzelm@233
  1024
    val new_lst2 = gen_rems eq (lst2, lst1);
wenzelm@233
  1025
  in
wenzelm@233
  1026
    if null new_lst2 then tab1
wenzelm@233
  1027
    else if gen_subset eq (lst1, lst2) then tab2
wenzelm@233
  1028
    else mk_tab (lst1 @ new_lst2)
wenzelm@233
  1029
  end;
clasohm@0
  1030
wenzelm@233
  1031
wenzelm@233
  1032
(*lists as tables*)
paulson@2243
  1033
fun extend_list tab = generic_extend (op =) I I tab;
paulson@2243
  1034
fun merge_lists tab = generic_merge (op =) I I tab;
wenzelm@4692
  1035
fun merge_alists tab = generic_merge eq_fst I I tab;
wenzelm@233
  1036
wenzelm@380
  1037
fun merge_rev_lists xs [] = xs
wenzelm@380
  1038
  | merge_rev_lists [] ys = ys
wenzelm@380
  1039
  | merge_rev_lists xs (y :: ys) =
wenzelm@380
  1040
      (if y mem xs then I else cons y) (merge_rev_lists xs ys);
wenzelm@380
  1041
clasohm@0
  1042
clasohm@0
  1043
wenzelm@233
  1044
(** balanced trees **)
wenzelm@233
  1045
wenzelm@233
  1046
exception Balance;      (*indicates non-positive argument to balancing fun*)
wenzelm@233
  1047
wenzelm@233
  1048
(*balanced folding; avoids deep nesting*)
wenzelm@233
  1049
fun fold_bal f [x] = x
wenzelm@233
  1050
  | fold_bal f [] = raise Balance
wenzelm@233
  1051
  | fold_bal f xs =
wenzelm@233
  1052
      let val k = length xs div 2
wenzelm@233
  1053
      in  f (fold_bal f (take(k, xs)),
wenzelm@233
  1054
             fold_bal f (drop(k, xs)))
wenzelm@233
  1055
      end;
wenzelm@233
  1056
wenzelm@233
  1057
(*construct something of the form f(...g(...(x)...)) for balanced access*)
wenzelm@233
  1058
fun access_bal (f, g, x) n i =
wenzelm@233
  1059
  let fun acc n i =     (*1<=i<=n*)
wenzelm@233
  1060
          if n=1 then x else
wenzelm@233
  1061
          let val n2 = n div 2
wenzelm@233
  1062
          in  if i<=n2 then f (acc n2 i)
wenzelm@233
  1063
                       else g (acc (n-n2) (i-n2))
wenzelm@233
  1064
          end
wenzelm@233
  1065
  in  if 1<=i andalso i<=n then acc n i else raise Balance  end;
wenzelm@233
  1066
wenzelm@233
  1067
(*construct ALL such accesses; could try harder to share recursive calls!*)
wenzelm@233
  1068
fun accesses_bal (f, g, x) n =
wenzelm@233
  1069
  let fun acc n =
wenzelm@233
  1070
          if n=1 then [x] else
wenzelm@233
  1071
          let val n2 = n div 2
wenzelm@233
  1072
              val acc2 = acc n2
wenzelm@233
  1073
          in  if n-n2=n2 then map f acc2 @ map g acc2
wenzelm@233
  1074
                         else map f acc2 @ map g (acc (n-n2)) end
wenzelm@233
  1075
  in  if 1<=n then acc n else raise Balance  end;
wenzelm@233
  1076
wenzelm@233
  1077
wenzelm@233
  1078
wenzelm@2506
  1079
(** orders **)
wenzelm@2506
  1080
wenzelm@2506
  1081
datatype order = LESS | EQUAL | GREATER;
wenzelm@2506
  1082
wenzelm@4445
  1083
fun rev_order LESS = GREATER
wenzelm@4445
  1084
  | rev_order EQUAL = EQUAL
wenzelm@4445
  1085
  | rev_order GREATER = LESS;
wenzelm@4445
  1086
wenzelm@4479
  1087
(*assume rel is a linear strict order*)
wenzelm@4445
  1088
fun make_ord rel (x, y) =
wenzelm@4445
  1089
  if rel (x, y) then LESS
wenzelm@4445
  1090
  else if rel (y, x) then GREATER
wenzelm@4445
  1091
  else EQUAL;
wenzelm@4445
  1092
wenzelm@4343
  1093
fun int_ord (i, j: int) =
wenzelm@2506
  1094
  if i < j then LESS
wenzelm@2506
  1095
  else if i = j then EQUAL
wenzelm@2506
  1096
  else GREATER;
wenzelm@2506
  1097
wenzelm@4343
  1098
fun string_ord (a, b: string) =
wenzelm@2506
  1099
  if a < b then LESS
wenzelm@2506
  1100
  else if a = b then EQUAL
wenzelm@2506
  1101
  else GREATER;
wenzelm@2506
  1102
wenzelm@4343
  1103
(*lexicographic product*)
wenzelm@4343
  1104
fun prod_ord a_ord b_ord ((x, y), (x', y')) =
wenzelm@4343
  1105
  (case a_ord (x, x') of EQUAL => b_ord (y, y') | ord => ord);
wenzelm@4343
  1106
wenzelm@4343
  1107
(*dictionary order -- in general NOT well-founded!*)
wenzelm@4343
  1108
fun dict_ord _ ([], []) = EQUAL
wenzelm@4343
  1109
  | dict_ord _ ([], _ :: _) = LESS
wenzelm@4343
  1110
  | dict_ord _ (_ :: _, []) = GREATER
wenzelm@4343
  1111
  | dict_ord elem_ord (x :: xs, y :: ys) =
wenzelm@4343
  1112
      (case elem_ord (x, y) of EQUAL => dict_ord elem_ord (xs, ys) | ord => ord);
wenzelm@4343
  1113
wenzelm@4343
  1114
(*lexicographic product of lists*)
wenzelm@4343
  1115
fun list_ord elem_ord (xs, ys) =
wenzelm@4343
  1116
  prod_ord int_ord (dict_ord elem_ord) ((length xs, xs), (length ys, ys));
wenzelm@4343
  1117
wenzelm@2506
  1118
wenzelm@4621
  1119
(* sorting *)
wenzelm@4621
  1120
wenzelm@4621
  1121
(*quicksort (stable, i.e. does not reorder equal elements)*)
wenzelm@4621
  1122
fun sort ord =
wenzelm@4621
  1123
  let
wenzelm@4621
  1124
    fun qsort xs =
wenzelm@4621
  1125
      let val len = length xs in
wenzelm@4621
  1126
        if len <= 1 then xs
wenzelm@4621
  1127
        else
wenzelm@4621
  1128
          let val (lts, eqs, gts) = part (nth_elem (len div 2, xs)) xs in
wenzelm@4621
  1129
            qsort lts @ eqs @ qsort gts
wenzelm@4621
  1130
          end
wenzelm@4621
  1131
      end
wenzelm@4621
  1132
    and part _ [] = ([], [], [])
wenzelm@4621
  1133
      | part pivot (x :: xs) = add (ord (x, pivot)) x (part pivot xs)
wenzelm@4621
  1134
    and add LESS x (lts, eqs, gts) = (x :: lts, eqs, gts)
wenzelm@4621
  1135
      | add EQUAL x (lts, eqs, gts) = (lts, x :: eqs, gts)
wenzelm@4621
  1136
      | add GREATER x (lts, eqs, gts) = (lts, eqs, x :: gts);
wenzelm@4621
  1137
  in qsort end;
wenzelm@4621
  1138
wenzelm@4621
  1139
(*sort strings*)
wenzelm@4621
  1140
val sort_strings = sort string_ord;
wenzelm@4621
  1141
fun sort_wrt sel xs = sort (string_ord o pairself sel) xs;
wenzelm@4621
  1142
berghofe@11514
  1143
fun unique_strings ([]: string list) = []
berghofe@11514
  1144
  | unique_strings [x] = [x]
berghofe@11514
  1145
  | unique_strings (x :: y :: ys) =
berghofe@11514
  1146
      if x = y then unique_strings (y :: ys)
berghofe@11514
  1147
      else x :: unique_strings (y :: ys);
wenzelm@4621
  1148
wenzelm@2506
  1149
wenzelm@3525
  1150
(** input / output and diagnostics **)
wenzelm@233
  1151
paulson@2243
  1152
val cd = OS.FileSys.chDir;
wenzelm@2317
  1153
val pwd = OS.FileSys.getDir;
paulson@2243
  1154
wenzelm@11853
  1155
fun std_output s = (TextIO.output (TextIO.stdOut, s); TextIO.flushOut TextIO.stdOut);
wenzelm@11853
  1156
fun std_error s = (TextIO.output (TextIO.stdErr, s); TextIO.flushOut TextIO.stdErr);
wenzelm@3525
  1157
wenzelm@5942
  1158
fun prefix_lines prfx txt =
wenzelm@5949
  1159
  txt |> split_lines |> map (fn s => prfx ^ s) |> cat_lines;
wenzelm@3525
  1160
wenzelm@3525
  1161
(*hooks for output channels: normal, warning, error*)
wenzelm@5966
  1162
val writeln_fn = ref (std_output o suffix "\n");
wenzelm@9774
  1163
val priority_fn = ref (fn s => ! writeln_fn s);
wenzelm@5949
  1164
val warning_fn = ref (std_output o suffix "\n" o prefix_lines "### ");
wenzelm@5949
  1165
val error_fn = ref (std_output o suffix "\n" o prefix_lines "*** ");
berghofe@1580
  1166
wenzelm@5966
  1167
fun writeln s = ! writeln_fn s;
wenzelm@9774
  1168
fun priority s = ! priority_fn s;
wenzelm@5942
  1169
fun warning s = ! warning_fn s;
wenzelm@233
  1170
wenzelm@233
  1171
(*print error message and abort to top level*)
wenzelm@6959
  1172
wenzelm@5949
  1173
fun error_msg s = ! error_fn s;
wenzelm@3553
  1174
fun error s = (error_msg s; raise ERROR);
wenzelm@4849
  1175
fun sys_error msg = error ("## SYSTEM ERROR ##\n" ^ msg);
wenzelm@233
  1176
wenzelm@233
  1177
fun assert p msg = if p then () else error msg;
wenzelm@233
  1178
fun deny p msg = if p then error msg else ();
wenzelm@233
  1179
lcp@544
  1180
(*Assert pred for every member of l, generating a message if pred fails*)
wenzelm@4212
  1181
fun assert_all pred l msg_fn =
lcp@544
  1182
  let fun asl [] = ()
wenzelm@4212
  1183
        | asl (x::xs) = if pred x then asl xs else error (msg_fn x)
wenzelm@4212
  1184
  in asl l end;
wenzelm@233
  1185
wenzelm@3624
  1186
wenzelm@4212
  1187
(* handle errors capturing messages *)
wenzelm@3699
  1188
wenzelm@3699
  1189
datatype 'a error =
wenzelm@3699
  1190
  Error of string |
wenzelm@3699
  1191
  OK of 'a;
wenzelm@3699
  1192
wenzelm@4248
  1193
fun get_error (Error msg) = Some msg
wenzelm@4248
  1194
  | get_error _ = None;
wenzelm@4248
  1195
wenzelm@4248
  1196
fun get_ok (OK x) = Some x
wenzelm@4248
  1197
  | get_ok _ = None;
wenzelm@4248
  1198
wenzelm@5037
  1199
datatype 'a result =
wenzelm@5037
  1200
  Result of 'a |
wenzelm@5037
  1201
  Exn of exn;
wenzelm@5037
  1202
wenzelm@3699
  1203
fun handle_error f x =
wenzelm@3699
  1204
  let
wenzelm@4945
  1205
    val buffer = ref ([]: string list);
wenzelm@4945
  1206
    fun capture s = buffer := ! buffer @ [s];
wenzelm@5037
  1207
    fun err_msg () = if not (null (! buffer)) then error_msg (cat_lines (! buffer)) else ();
wenzelm@3699
  1208
  in
wenzelm@5037
  1209
    (case Result (setmp error_fn capture f x) handle exn => Exn exn of
wenzelm@5037
  1210
      Result y => (err_msg (); OK y)
wenzelm@5037
  1211
    | Exn ERROR => Error (cat_lines (! buffer))
wenzelm@5037
  1212
    | Exn exn => (err_msg (); raise exn))
wenzelm@3624
  1213
  end;
wenzelm@3624
  1214
wenzelm@3624
  1215
wenzelm@5037
  1216
(* transform ERROR into ERROR_MESSAGE *)
wenzelm@4923
  1217
wenzelm@4923
  1218
exception ERROR_MESSAGE of string;
wenzelm@4923
  1219
wenzelm@4923
  1220
fun transform_error f x =
wenzelm@4923
  1221
  (case handle_error f x of
wenzelm@4923
  1222
    OK y => y
wenzelm@4923
  1223
  | Error msg => raise ERROR_MESSAGE msg);
wenzelm@4923
  1224
wenzelm@4923
  1225
wenzelm@5904
  1226
(* transform any exception, including ERROR *)
wenzelm@5904
  1227
wenzelm@5904
  1228
fun transform_failure exn f x =
wenzelm@5904
  1229
  transform_error f x handle e => raise exn e;
wenzelm@5904
  1230
wenzelm@5904
  1231
wenzelm@233
  1232
wenzelm@233
  1233
(** timing **)
wenzelm@233
  1234
paulson@4326
  1235
(*a conditional timing function: applies f to () and, if the flag is true,
wenzelm@8999
  1236
  prints its runtime on warning channel*)
paulson@4326
  1237
fun cond_timeit flag f =
paulson@4326
  1238
  if flag then
paulson@4326
  1239
    let val start = startTiming()
paulson@4326
  1240
        val result = f ()
wenzelm@8999
  1241
    in warning (endTiming start);  result end
paulson@4326
  1242
  else f ();
paulson@4326
  1243
wenzelm@233
  1244
(*unconditional timing function*)
paulson@2243
  1245
fun timeit x = cond_timeit true x;
wenzelm@233
  1246
wenzelm@233
  1247
(*timed application function*)
wenzelm@233
  1248
fun timeap f x = timeit (fn () => f x);
wenzelm@233
  1249
wenzelm@8999
  1250
(*global timing mode*)
wenzelm@8999
  1251
val timing = ref false;
wenzelm@8999
  1252
berghofe@3606
  1253
wenzelm@233
  1254
nipkow@10692
  1255
(** rational numbers **)
nipkow@10692
  1256
nipkow@10692
  1257
datatype rat = Rat of bool * int * int
nipkow@10692
  1258
nipkow@10692
  1259
fun rep_rat(Rat(a,p,q)) = (if a then p else ~p,q)
nipkow@10692
  1260
nipkow@10692
  1261
fun ratnorm(a,p,q) = if p=0 then Rat(a,0,1) else
nipkow@10692
  1262
  let val absp = abs p
nipkow@10692
  1263
      val m = gcd(absp,q)
nipkow@10692
  1264
  in Rat(a = (0 <= p), absp div m, q div m) end;
nipkow@10692
  1265
nipkow@10692
  1266
fun ratadd(Rat(a,p,q),Rat(b,r,s)) =
nipkow@10692
  1267
  let val den = lcm(q,s)
nipkow@10692
  1268
      val p = p*(den div q) and r = r*(den div s)
nipkow@10692
  1269
      val num = (if a then p else ~p) + (if b then r else ~r)
nipkow@10692
  1270
  in ratnorm(true,num,den) end;
nipkow@10692
  1271
nipkow@10692
  1272
fun ratmul(Rat(a,p,q),Rat(b,r,s)) = ratnorm(a=b,p*r,q*s)
nipkow@10692
  1273
nipkow@10692
  1274
fun ratinv(Rat(a,p,q)) = if p=0 then error("ratinv") else Rat(a,q,p)
nipkow@10692
  1275
nipkow@10692
  1276
fun int_ratdiv(p,q) =
nipkow@10692
  1277
  if q=0 then error("int_ratdiv") else ratnorm(0<=q, p, abs q)
nipkow@10692
  1278
nipkow@10692
  1279
fun ratneg(Rat(b,p,q)) = Rat(not b,p,q);
nipkow@10692
  1280
nipkow@10692
  1281
fun rat_of_int i = if i < 0 then Rat(false,abs i,1) else Rat(true,i,1);
nipkow@10692
  1282
nipkow@10692
  1283
wenzelm@4621
  1284
(** misc **)
wenzelm@233
  1285
wenzelm@9830
  1286
fun overwrite_warn (args as (alist, (a, _))) msg =
wenzelm@9830
  1287
 (if is_none (assoc (alist, a)) then () else warning msg;
wenzelm@9830
  1288
  overwrite args);
nipkow@9721
  1289
wenzelm@233
  1290
(*use the keyfun to make a list of (x, key) pairs*)
clasohm@0
  1291
fun make_keylist (keyfun: 'a->'b) : 'a list -> ('a * 'b) list =
wenzelm@233
  1292
  let fun keypair x = (x, keyfun x)
wenzelm@233
  1293
  in map keypair end;
clasohm@0
  1294
wenzelm@233
  1295
(*given a list of (x, key) pairs and a searchkey
clasohm@0
  1296
  return the list of xs from each pair whose key equals searchkey*)
clasohm@0
  1297
fun keyfilter [] searchkey = []
wenzelm@233
  1298
  | keyfilter ((x, key) :: pairs) searchkey =
wenzelm@233
  1299
      if key = searchkey then x :: keyfilter pairs searchkey
wenzelm@233
  1300
      else keyfilter pairs searchkey;
clasohm@0
  1301
clasohm@0
  1302
clasohm@0
  1303
(*Partition list into elements that satisfy predicate and those that don't.
wenzelm@233
  1304
  Preserves order of elements in both lists.*)
clasohm@0
  1305
fun partition (pred: 'a->bool) (ys: 'a list) : ('a list * 'a list) =
clasohm@0
  1306
    let fun part ([], answer) = answer
wenzelm@233
  1307
          | part (x::xs, (ys, ns)) = if pred(x)
wenzelm@233
  1308
            then  part (xs, (x::ys, ns))
wenzelm@233
  1309
            else  part (xs, (ys, x::ns))
wenzelm@233
  1310
    in  part (rev ys, ([], []))  end;
clasohm@0
  1311
clasohm@0
  1312
clasohm@0
  1313
fun partition_eq (eq:'a * 'a -> bool) =
clasohm@0
  1314
    let fun part [] = []
wenzelm@233
  1315
          | part (x::ys) = let val (xs, xs') = partition (apl(x, eq)) ys
wenzelm@233
  1316
                           in (x::xs)::(part xs') end
clasohm@0
  1317
    in part end;
clasohm@0
  1318
clasohm@0
  1319
wenzelm@233
  1320
(*Partition a list into buckets  [ bi, b(i+1), ..., bj ]
clasohm@0
  1321
   putting x in bk if p(k)(x) holds.  Preserve order of elements if possible.*)
clasohm@0
  1322
fun partition_list p i j =
wenzelm@233
  1323
  let fun part k xs =
wenzelm@233
  1324
            if k>j then
clasohm@0
  1325
              (case xs of [] => []
clasohm@0
  1326
                         | _ => raise LIST "partition_list")
clasohm@0
  1327
            else
wenzelm@233
  1328
            let val (ns, rest) = partition (p k) xs;
wenzelm@233
  1329
            in  ns :: part(k+1)rest  end
clasohm@0
  1330
  in  part i end;
clasohm@0
  1331
clasohm@0
  1332
wenzelm@233
  1333
(* transitive closure (not Warshall's algorithm) *)
clasohm@0
  1334
wenzelm@233
  1335
fun transitive_closure [] = []
wenzelm@233
  1336
  | transitive_closure ((x, ys)::ps) =
wenzelm@233
  1337
      let val qs = transitive_closure ps
paulson@2182
  1338
          val zs = foldl (fn (zs, y) => assocs qs y union_string zs) (ys, ys)
wenzelm@5904
  1339
          fun step(u, us) = (u, if x mem_string us then zs union_string us
paulson@2243
  1340
                                else us)
wenzelm@233
  1341
      in (x, zs) :: map step qs end;
clasohm@0
  1342
clasohm@0
  1343
wenzelm@233
  1344
(* generating identifiers *)
clasohm@0
  1345
paulson@4063
  1346
(** Freshly generated identifiers; supplied prefix MUST start with a letter **)
clasohm@0
  1347
local
paulson@4063
  1348
(*Maps 0-63 to A-Z, a-z, 0-9 or _ or ' for generating random identifiers*)
paulson@4063
  1349
fun char i =      if i<26 then chr (ord "A" + i)
wenzelm@5904
  1350
             else if i<52 then chr (ord "a" + i - 26)
wenzelm@5904
  1351
             else if i<62 then chr (ord"0" + i - 52)
wenzelm@5904
  1352
             else if i=62 then "_"
wenzelm@5904
  1353
             else  (*i=63*)    "'";
paulson@4063
  1354
paulson@4063
  1355
val charVec = Vector.tabulate (64, char);
paulson@4063
  1356
wenzelm@5904
  1357
fun newid n =
wenzelm@5904
  1358
  let
wenzelm@4284
  1359
  in  implode (map (fn i => Vector.sub(charVec,i)) (radixpand (64,n)))  end;
paulson@2003
  1360
wenzelm@4284
  1361
val seedr = ref 0;
clasohm@0
  1362
paulson@4063
  1363
in
wenzelm@4284
  1364
wenzelm@11021
  1365
fun init_gensym() = (seedr := 0);    (* FIXME !!??! *)
paulson@2003
  1366
wenzelm@4284
  1367
fun gensym pre = pre ^ (#1(newid (!seedr), inc seedr));
paulson@4063
  1368
end;
paulson@4063
  1369
paulson@4063
  1370
paulson@4063
  1371
local
paulson@4063
  1372
(*Identifies those character codes legal in identifiers.
paulson@4063
  1373
  chould use Basis Library character functions if Poly/ML provided characters*)
wenzelm@5904
  1374
fun idCode k = (ord "a" <= k andalso k < ord "z") orelse
paulson@4063
  1375
               (ord "A" <= k andalso k < ord "Z") orelse
paulson@4063
  1376
               (ord "0" <= k andalso k < ord "9");
paulson@4063
  1377
paulson@4063
  1378
val idCodeVec = Vector.tabulate (256, idCode);
paulson@4063
  1379
paulson@4063
  1380
in
paulson@2003
  1381
clasohm@0
  1382
(*Increment a list of letters like a reversed base 26 number.
wenzelm@233
  1383
  If head is "z", bumps chars in tail.
clasohm@0
  1384
  Digits are incremented as if they were integers.
clasohm@0
  1385
  "_" and "'" are not changed.
wenzelm@233
  1386
  For making variants of identifiers.*)
clasohm@0
  1387
wenzelm@5904
  1388
fun bump_int_list(c::cs) =
wenzelm@5904
  1389
        if c="9" then "0" :: bump_int_list cs
wenzelm@5904
  1390
        else
paulson@4063
  1391
        if "0" <= c andalso c < "9" then chr(ord(c)+1) :: cs
wenzelm@233
  1392
        else "1" :: c :: cs
clasohm@0
  1393
  | bump_int_list([]) = error("bump_int_list: not an identifier");
clasohm@0
  1394
wenzelm@233
  1395
fun bump_list([], d) = [d]
wenzelm@233
  1396
  | bump_list(["'"], d) = [d, "'"]
wenzelm@233
  1397
  | bump_list("z"::cs, _) = "a" :: bump_list(cs, "a")
wenzelm@233
  1398
  | bump_list("Z"::cs, _) = "A" :: bump_list(cs, "A")
wenzelm@233
  1399
  | bump_list("9"::cs, _) = "0" :: bump_int_list cs
wenzelm@5904
  1400
  | bump_list(c::cs, _) =
paulson@4063
  1401
        let val k = ord(c)
wenzelm@5904
  1402
        in if Vector.sub(idCodeVec,k) then chr(k+1) :: cs
wenzelm@5904
  1403
           else
wenzelm@5904
  1404
           if c="'" orelse c="_" then c :: bump_list(cs, "")
wenzelm@5904
  1405
           else error("bump_list: not legal in identifier: " ^
wenzelm@5904
  1406
                      implode(rev(c::cs)))
wenzelm@233
  1407
        end;
clasohm@0
  1408
clasohm@0
  1409
end;
clasohm@0
  1410
wenzelm@233
  1411
fun bump_string s : string = implode (rev (bump_list(rev(explode s), "")));
wenzelm@41
  1412
wenzelm@41
  1413
wenzelm@233
  1414
(* lexical scanning *)
clasohm@0
  1415
wenzelm@233
  1416
(*scan a list of characters into "words" composed of "letters" (recognized by
wenzelm@233
  1417
  is_let) and separated by any number of non-"letters"*)
wenzelm@233
  1418
fun scanwords is_let cs =
clasohm@0
  1419
  let fun scan1 [] = []
wenzelm@233
  1420
        | scan1 cs =
wenzelm@233
  1421
            let val (lets, rest) = take_prefix is_let cs
wenzelm@233
  1422
            in implode lets :: scanwords is_let rest end;
wenzelm@233
  1423
  in scan1 (#2 (take_prefix (not o is_let) cs)) end;
clasohm@24
  1424
wenzelm@4212
  1425
wenzelm@4212
  1426
wenzelm@4212
  1427
(* Variable-branching trees: for proof terms etc. *)
wenzelm@4212
  1428
datatype 'a mtree = Join of 'a * 'a mtree list;
wenzelm@4212
  1429
wenzelm@4212
  1430
clasohm@1364
  1431
end;
clasohm@1364
  1432
clasohm@1364
  1433
open Library;