src/Pure/proofterm.ML
author berghofe
Wed Oct 31 19:37:04 2001 +0100 (2001-10-31)
changeset 11998 b14e7686ce84
parent 11715 592923615f77
child 11999 43b4385445bf
permissions -rw-r--r--
- enter_thmx -> enter_thms
- improved naming of theorems: enter_thms now takes functions pre_name and post_name
as arguments
berghofe@11519
     1
(*  Title:      Pure/proofterm.ML
berghofe@11519
     2
    ID:         $Id$
wenzelm@11540
     3
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@11540
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@11519
     5
wenzelm@11540
     6
LF style proof terms.
berghofe@11519
     7
*)
berghofe@11519
     8
berghofe@11615
     9
infix 8 % %% %>;
berghofe@11519
    10
berghofe@11519
    11
signature BASIC_PROOFTERM =
berghofe@11519
    12
sig
wenzelm@11543
    13
  val proofs: int ref
berghofe@11519
    14
berghofe@11519
    15
  datatype proof =
berghofe@11519
    16
     PBound of int
berghofe@11519
    17
   | Abst of string * typ option * proof
berghofe@11519
    18
   | AbsP of string * term option * proof
berghofe@11615
    19
   | op % of proof * term option
berghofe@11615
    20
   | op %% of proof * proof
berghofe@11519
    21
   | Hyp of term
berghofe@11519
    22
   | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
    23
   | PAxm of string * term * typ list option
berghofe@11519
    24
   | Oracle of string * term * typ list option
berghofe@11519
    25
   | MinProof of proof list;
berghofe@11519
    26
berghofe@11615
    27
  val %> : proof * term -> proof
berghofe@11519
    28
end;
berghofe@11519
    29
berghofe@11519
    30
signature PROOFTERM =
berghofe@11519
    31
sig
berghofe@11519
    32
  include BASIC_PROOFTERM
berghofe@11519
    33
berghofe@11519
    34
  val infer_derivs : (proof -> proof -> proof) -> bool * proof -> bool * proof -> bool * proof
berghofe@11519
    35
  val infer_derivs' : (proof -> proof) -> (bool * proof -> bool * proof)
berghofe@11519
    36
berghofe@11519
    37
  (** primitive operations **)
berghofe@11519
    38
  val proof_combt : proof * term list -> proof
berghofe@11519
    39
  val proof_combt' : proof * term option list -> proof
berghofe@11519
    40
  val proof_combP : proof * proof list -> proof
berghofe@11519
    41
  val strip_combt : proof -> proof * term option list
berghofe@11519
    42
  val strip_combP : proof -> proof * proof list
berghofe@11519
    43
  val strip_thm : proof -> proof
berghofe@11519
    44
  val map_proof_terms : (term -> term) -> (typ -> typ) -> proof -> proof
berghofe@11519
    45
  val fold_proof_terms : (term * 'a -> 'a) -> (typ * 'a -> 'a) -> 'a * proof -> 'a
berghofe@11519
    46
  val add_prf_names : string list * proof -> string list
berghofe@11519
    47
  val add_prf_tfree_names : string list * proof -> string list
berghofe@11519
    48
  val add_prf_tvar_ixns : indexname list * proof -> indexname list
berghofe@11519
    49
  val prf_abstract_over : term -> proof -> proof
berghofe@11519
    50
  val prf_incr_bv : int -> int -> int -> int -> proof -> proof
berghofe@11519
    51
  val incr_pboundvars : int -> int -> proof -> proof
berghofe@11519
    52
  val prf_loose_bvar1 : proof -> int -> bool
berghofe@11519
    53
  val prf_loose_Pbvar1 : proof -> int -> bool
berghofe@11519
    54
  val norm_proof : Envir.env -> proof -> proof
berghofe@11519
    55
  val norm_proof' : Envir.env -> proof -> proof
berghofe@11519
    56
  val prf_subst_bounds : term list -> proof -> proof
berghofe@11519
    57
  val prf_subst_pbounds : proof list -> proof -> proof
berghofe@11519
    58
  val freeze_thaw_prf : proof -> proof * (proof -> proof)
berghofe@11519
    59
berghofe@11519
    60
  val thms_of_proof : (term * proof) list Symtab.table -> proof ->
berghofe@11519
    61
    (term * proof) list Symtab.table
berghofe@11519
    62
  val axms_of_proof : proof Symtab.table -> proof -> proof Symtab.table
berghofe@11519
    63
  val oracles_of_proof : proof list -> proof -> proof list
berghofe@11519
    64
berghofe@11519
    65
  (** proof terms for specific inference rules **)
berghofe@11519
    66
  val implies_intr_proof : term -> proof -> proof
berghofe@11519
    67
  val forall_intr_proof : term -> string -> proof -> proof
berghofe@11519
    68
  val varify_proof : term -> string list -> proof -> proof
berghofe@11519
    69
  val freezeT : term -> proof -> proof
berghofe@11519
    70
  val rotate_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    71
  val permute_prems_prf : term list -> int -> int -> proof -> proof
berghofe@11519
    72
  val instantiate : (indexname * typ) list -> (term * term) list -> proof -> proof
berghofe@11519
    73
  val lift_proof : term -> int -> term -> proof -> proof
berghofe@11519
    74
  val assumption_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    75
  val bicompose_proof : term list -> term list -> term list -> term option ->
berghofe@11519
    76
    int -> proof -> proof -> proof
berghofe@11519
    77
  val equality_axms : (string * term) list
berghofe@11519
    78
  val reflexive_axm : proof
berghofe@11519
    79
  val symmetric_axm : proof
berghofe@11519
    80
  val transitive_axm : proof
berghofe@11519
    81
  val equal_intr_axm : proof
berghofe@11519
    82
  val equal_elim_axm : proof
berghofe@11519
    83
  val abstract_rule_axm : proof
berghofe@11519
    84
  val combination_axm : proof
berghofe@11519
    85
  val reflexive : proof
berghofe@11519
    86
  val symmetric : proof -> proof
berghofe@11519
    87
  val transitive : term -> typ -> proof -> proof -> proof
berghofe@11519
    88
  val abstract_rule : term -> string -> proof -> proof
berghofe@11519
    89
  val combination : term -> term -> term -> term -> typ -> proof -> proof -> proof
berghofe@11519
    90
  val equal_intr : term -> term -> proof -> proof -> proof
berghofe@11519
    91
  val equal_elim : term -> term -> proof -> proof -> proof
berghofe@11519
    92
  val axm_proof : string -> term -> proof
berghofe@11519
    93
  val oracle_proof : string -> term -> proof
berghofe@11519
    94
  val thm_proof : Sign.sg -> string * (string * string list) list ->
berghofe@11519
    95
    term list -> term -> proof -> proof
berghofe@11519
    96
  val get_name_tags : term -> proof -> string * (string * string list) list
berghofe@11519
    97
berghofe@11519
    98
  (** rewriting on proof terms **)
berghofe@11519
    99
  val add_prf_rrules : theory -> (proof * proof) list -> unit
berghofe@11519
   100
  val add_prf_rprocs : theory ->
berghofe@11519
   101
    (string * (Term.typ list -> proof -> proof option)) list -> unit
berghofe@11519
   102
  val rewrite_proof : Type.type_sig -> (proof * proof) list *
berghofe@11519
   103
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
berghofe@11615
   104
  val rewrite_proof_notypes : (proof * proof) list *
berghofe@11615
   105
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
berghofe@11519
   106
  val init : theory -> theory
berghofe@11519
   107
  
berghofe@11519
   108
end
berghofe@11519
   109
berghofe@11519
   110
structure Proofterm : PROOFTERM =
berghofe@11519
   111
struct
berghofe@11519
   112
berghofe@11715
   113
open Envir;
berghofe@11715
   114
berghofe@11519
   115
datatype proof =
berghofe@11519
   116
   PBound of int
berghofe@11519
   117
 | Abst of string * typ option * proof
berghofe@11519
   118
 | AbsP of string * term option * proof
berghofe@11615
   119
 | op % of proof * term option
berghofe@11615
   120
 | op %% of proof * proof
berghofe@11519
   121
 | Hyp of term
berghofe@11519
   122
 | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
   123
 | PAxm of string * term * typ list option
berghofe@11519
   124
 | Oracle of string * term * typ list option
berghofe@11519
   125
 | MinProof of proof list;
berghofe@11519
   126
berghofe@11519
   127
fun oracles_of_proof prfs prf =
berghofe@11519
   128
  let
berghofe@11519
   129
    fun oras_of (tabs, Abst (_, _, prf)) = oras_of (tabs, prf)
berghofe@11519
   130
      | oras_of (tabs, AbsP (_, _, prf)) = oras_of (tabs, prf)
berghofe@11615
   131
      | oras_of (tabs, prf % _) = oras_of (tabs, prf)
berghofe@11615
   132
      | oras_of (tabs, prf1 %% prf2) = oras_of (oras_of (tabs, prf1), prf2)
berghofe@11519
   133
      | oras_of (tabs as (thms, oras), PThm ((name, _), prf, prop, _)) =
berghofe@11519
   134
          (case Symtab.lookup (thms, name) of
berghofe@11519
   135
             None => oras_of ((Symtab.update ((name, [prop]), thms), oras), prf)
berghofe@11519
   136
           | Some ps => if prop mem ps then tabs else
berghofe@11519
   137
               oras_of ((Symtab.update ((name, prop::ps), thms), oras), prf))
berghofe@11519
   138
      | oras_of ((thms, oras), prf as Oracle _) = (thms, prf ins oras)
berghofe@11519
   139
      | oras_of (tabs, MinProof prfs) = foldl oras_of (tabs, prfs)
berghofe@11519
   140
      | oras_of (tabs, _) = tabs
berghofe@11519
   141
  in
berghofe@11519
   142
    snd (oras_of ((Symtab.empty, prfs), prf))
berghofe@11519
   143
  end;
berghofe@11519
   144
berghofe@11519
   145
fun thms_of_proof tab (Abst (_, _, prf)) = thms_of_proof tab prf
berghofe@11519
   146
  | thms_of_proof tab (AbsP (_, _, prf)) = thms_of_proof tab prf
berghofe@11615
   147
  | thms_of_proof tab (prf1 %% prf2) = thms_of_proof (thms_of_proof tab prf1) prf2
berghofe@11615
   148
  | thms_of_proof tab (prf % _) = thms_of_proof tab prf
berghofe@11519
   149
  | thms_of_proof tab (prf' as PThm ((s, _), prf, prop, _)) =
berghofe@11519
   150
      (case Symtab.lookup (tab, s) of
berghofe@11519
   151
         None => thms_of_proof (Symtab.update ((s, [(prop, prf')]), tab)) prf
berghofe@11519
   152
       | Some ps => if exists (equal prop o fst) ps then tab else
berghofe@11519
   153
           thms_of_proof (Symtab.update ((s, (prop, prf')::ps), tab)) prf)
berghofe@11519
   154
  | thms_of_proof tab _ = tab;
berghofe@11519
   155
berghofe@11519
   156
fun axms_of_proof tab (Abst (_, _, prf)) = axms_of_proof tab prf
berghofe@11519
   157
  | axms_of_proof tab (AbsP (_, _, prf)) = axms_of_proof tab prf
berghofe@11615
   158
  | axms_of_proof tab (prf1 %% prf2) = axms_of_proof (axms_of_proof tab prf1) prf2
berghofe@11615
   159
  | axms_of_proof tab (prf % _) = axms_of_proof tab prf
berghofe@11519
   160
  | axms_of_proof tab (prf as PAxm (s, _, _)) = Symtab.update ((s, prf), tab)
berghofe@11519
   161
  | axms_of_proof tab _ = tab;
berghofe@11519
   162
berghofe@11519
   163
(** collect all theorems, axioms and oracles **)
berghofe@11519
   164
berghofe@11519
   165
fun mk_min_proof (prfs, Abst (_, _, prf)) = mk_min_proof (prfs, prf)
berghofe@11519
   166
  | mk_min_proof (prfs, AbsP (_, _, prf)) = mk_min_proof (prfs, prf)
berghofe@11615
   167
  | mk_min_proof (prfs, prf % _) = mk_min_proof (prfs, prf)
berghofe@11615
   168
  | mk_min_proof (prfs, prf1 %% prf2) = mk_min_proof (mk_min_proof (prfs, prf1), prf2)
berghofe@11519
   169
  | mk_min_proof (prfs, prf as PThm _) = prf ins prfs
berghofe@11519
   170
  | mk_min_proof (prfs, prf as PAxm _) = prf ins prfs
berghofe@11519
   171
  | mk_min_proof (prfs, prf as Oracle _) = prf ins prfs
berghofe@11519
   172
  | mk_min_proof (prfs, MinProof prfs') = prfs union prfs'
berghofe@11519
   173
  | mk_min_proof (prfs, _) = prfs;
berghofe@11519
   174
berghofe@11519
   175
(** proof objects with different levels of detail **)
berghofe@11519
   176
wenzelm@11543
   177
val proofs = ref 2;
berghofe@11519
   178
wenzelm@11543
   179
fun err_illegal_level i =
wenzelm@11543
   180
  error ("Illegal level of detail for proof objects: " ^ string_of_int i);
berghofe@11519
   181
berghofe@11519
   182
fun if_ora b = if b then oracles_of_proof else K;
berghofe@11519
   183
berghofe@11519
   184
fun infer_derivs f (ora1, prf1) (ora2, prf2) =
berghofe@11519
   185
  (ora1 orelse ora2, 
wenzelm@11543
   186
   case !proofs of
wenzelm@11543
   187
     2 => f prf1 prf2
wenzelm@11543
   188
   | 1 => MinProof (mk_min_proof (mk_min_proof ([], prf1), prf2))
wenzelm@11543
   189
   | 0 => MinProof (if_ora ora2 (if_ora ora1 [] prf1) prf2)
wenzelm@11543
   190
   | i => err_illegal_level i);
berghofe@11519
   191
berghofe@11519
   192
fun infer_derivs' f (ora, prf) =
berghofe@11519
   193
  (ora,
wenzelm@11543
   194
   case !proofs of
wenzelm@11543
   195
     2 => f prf
wenzelm@11543
   196
   | 1 => MinProof (mk_min_proof ([], prf))
wenzelm@11543
   197
   | 0 => MinProof (if_ora ora [] prf)
wenzelm@11543
   198
   | i => err_illegal_level i);
berghofe@11519
   199
berghofe@11615
   200
fun (prf %> t) = prf % Some t;
berghofe@11519
   201
berghofe@11615
   202
val proof_combt = foldl (op %>);
berghofe@11615
   203
val proof_combt' = foldl (op %);
berghofe@11615
   204
val proof_combP = foldl (op %%);
berghofe@11519
   205
berghofe@11519
   206
fun strip_combt prf = 
berghofe@11615
   207
    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
berghofe@11519
   208
          | stripc  x =  x 
berghofe@11519
   209
    in  stripc (prf, [])  end;
berghofe@11519
   210
berghofe@11519
   211
fun strip_combP prf = 
berghofe@11615
   212
    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
berghofe@11519
   213
          | stripc  x =  x
berghofe@11519
   214
    in  stripc (prf, [])  end;
berghofe@11519
   215
berghofe@11519
   216
fun strip_thm prf = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
   217
      (PThm (_, prf', _, _), _) => prf'
berghofe@11519
   218
    | _ => prf);
berghofe@11519
   219
berghofe@11519
   220
val mk_Abst = foldr (fn ((s, T:typ), prf) => Abst (s, None, prf));
berghofe@11519
   221
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", None, prf)) prf;
berghofe@11519
   222
berghofe@11715
   223
fun apsome' f None = raise SAME
berghofe@11715
   224
  | apsome' f (Some x) = Some (f x);
berghofe@11715
   225
berghofe@11715
   226
fun same f x =
berghofe@11715
   227
  let val x' = f x
berghofe@11715
   228
  in if x = x' then raise SAME else x' end;
berghofe@11715
   229
berghofe@11715
   230
fun map_proof_terms f g =
berghofe@11715
   231
  let
berghofe@11715
   232
    fun mapp (Abst (s, T, prf)) = (Abst (s, apsome' (same g) T, mapph prf)
berghofe@11715
   233
          handle SAME => Abst (s, T, mapp prf))
berghofe@11715
   234
      | mapp (AbsP (s, t, prf)) = (AbsP (s, apsome' (same f) t, mapph prf)
berghofe@11715
   235
          handle SAME => AbsP (s, t, mapp prf))
berghofe@11715
   236
      | mapp (prf % t) = (mapp prf % apsome f t
berghofe@11715
   237
          handle SAME => prf % apsome' (same f) t)
berghofe@11715
   238
      | mapp (prf1 %% prf2) = (mapp prf1 %% mapph prf2
berghofe@11715
   239
          handle SAME => prf1 %% mapp prf2)
berghofe@11715
   240
      | mapp (PThm (a, prf, prop, Some Ts)) =
berghofe@11715
   241
          PThm (a, prf, prop, Some (same (map g) Ts))
berghofe@11715
   242
      | mapp (PAxm (a, prop, Some Ts)) =
berghofe@11715
   243
          PAxm (a, prop, Some (same (map g) Ts))
berghofe@11715
   244
      | mapp _ = raise SAME
berghofe@11715
   245
    and mapph prf = (mapp prf handle SAME => prf)
berghofe@11715
   246
berghofe@11715
   247
  in mapph end;
berghofe@11519
   248
berghofe@11519
   249
fun fold_proof_terms f g (a, Abst (_, Some T, prf)) = fold_proof_terms f g (g (T, a), prf)
berghofe@11519
   250
  | fold_proof_terms f g (a, Abst (_, None, prf)) = fold_proof_terms f g (a, prf)
berghofe@11519
   251
  | fold_proof_terms f g (a, AbsP (_, Some t, prf)) = fold_proof_terms f g (f (t, a), prf)
berghofe@11519
   252
  | fold_proof_terms f g (a, AbsP (_, None, prf)) = fold_proof_terms f g (a, prf)
berghofe@11615
   253
  | fold_proof_terms f g (a, prf % Some t) = f (t, fold_proof_terms f g (a, prf))
berghofe@11615
   254
  | fold_proof_terms f g (a, prf % None) = fold_proof_terms f g (a, prf)
berghofe@11615
   255
  | fold_proof_terms f g (a, prf1 %% prf2) = fold_proof_terms f g
berghofe@11519
   256
      (fold_proof_terms f g (a, prf1), prf2)
berghofe@11519
   257
  | fold_proof_terms _ g (a, PThm (_, _, _, Some Ts)) = foldr g (Ts, a)
berghofe@11519
   258
  | fold_proof_terms _ g (a, PAxm (_, prop, Some Ts)) = foldr g (Ts, a)
berghofe@11519
   259
  | fold_proof_terms _ _ (a, _) = a;
berghofe@11519
   260
berghofe@11519
   261
val add_prf_names = fold_proof_terms add_term_names ((uncurry K) o swap);
berghofe@11519
   262
val add_prf_tfree_names = fold_proof_terms add_term_tfree_names add_typ_tfree_names;
berghofe@11519
   263
val add_prf_tvar_ixns = fold_proof_terms add_term_tvar_ixns (add_typ_ixns o swap);
berghofe@11519
   264
berghofe@11519
   265
berghofe@11519
   266
(***** utilities *****)
berghofe@11519
   267
berghofe@11519
   268
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
berghofe@11519
   269
  | strip_abs _ t = t;
berghofe@11519
   270
berghofe@11519
   271
fun mk_abs Ts t = foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
berghofe@11519
   272
berghofe@11519
   273
berghofe@11519
   274
(*Abstraction of a proof term over its occurrences of v, 
berghofe@11519
   275
    which must contain no loose bound variables.
berghofe@11519
   276
  The resulting proof term is ready to become the body of an Abst.*)
berghofe@11519
   277
berghofe@11519
   278
fun prf_abstract_over v =
berghofe@11519
   279
  let
berghofe@11715
   280
    fun abst' lev u = if v aconv u then Bound lev else
berghofe@11715
   281
      (case u of
berghofe@11715
   282
         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
berghofe@11715
   283
       | f $ t => (abst' lev f $ absth' lev t handle SAME => f $ abst' lev t)
berghofe@11715
   284
       | _ => raise SAME)
berghofe@11715
   285
    and absth' lev t = (abst' lev t handle SAME => t);
berghofe@11519
   286
berghofe@11715
   287
    fun abst lev (AbsP (a, t, prf)) =
berghofe@11715
   288
          (AbsP (a, apsome' (abst' lev) t, absth lev prf)
berghofe@11715
   289
           handle SAME => AbsP (a, t, abst lev prf))
berghofe@11715
   290
      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
berghofe@11715
   291
      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
berghofe@11715
   292
          handle SAME => prf1 %% abst lev prf2)
berghofe@11715
   293
      | abst lev (prf % t) = (abst lev prf % apsome (absth' lev) t
berghofe@11715
   294
          handle SAME => prf % apsome' (abst' lev) t)
berghofe@11715
   295
      | abst _ _ = raise SAME
berghofe@11715
   296
    and absth lev prf = (abst lev prf handle SAME => prf)
berghofe@11519
   297
berghofe@11715
   298
  in absth 0 end;
berghofe@11519
   299
berghofe@11519
   300
berghofe@11519
   301
(*increments a proof term's non-local bound variables
berghofe@11519
   302
  required when moving a proof term within abstractions
berghofe@11519
   303
     inc is  increment for bound variables
berghofe@11519
   304
     lev is  level at which a bound variable is considered 'loose'*)
berghofe@11519
   305
berghofe@11519
   306
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
berghofe@11519
   307
berghofe@11715
   308
fun prf_incr_bv' incP inct Plev tlev (PBound i) =
berghofe@11715
   309
      if i >= Plev then PBound (i+incP) else raise SAME 
berghofe@11715
   310
  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
berghofe@11715
   311
      (AbsP (a, apsome' (same (incr_bv' inct tlev)) t,
berghofe@11715
   312
         prf_incr_bv incP inct (Plev+1) tlev body) handle SAME =>
berghofe@11715
   313
           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
berghofe@11715
   314
  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
berghofe@11715
   315
      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
berghofe@11715
   316
  | prf_incr_bv' incP inct Plev tlev (prf %% prf') = 
berghofe@11715
   317
      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
berghofe@11715
   318
       handle SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
berghofe@11715
   319
  | prf_incr_bv' incP inct Plev tlev (prf % t) = 
berghofe@11715
   320
      (prf_incr_bv' incP inct Plev tlev prf % apsome (incr_bv' inct tlev) t
berghofe@11715
   321
       handle SAME => prf % apsome' (same (incr_bv' inct tlev)) t)
berghofe@11715
   322
  | prf_incr_bv' _ _ _ _ _ = raise SAME
berghofe@11715
   323
and prf_incr_bv incP inct Plev tlev prf =
berghofe@11715
   324
      (prf_incr_bv' incP inct Plev tlev prf handle SAME => prf);
berghofe@11519
   325
berghofe@11519
   326
fun incr_pboundvars  0 0 prf = prf
berghofe@11519
   327
  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
berghofe@11519
   328
berghofe@11519
   329
berghofe@11615
   330
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
berghofe@11615
   331
  | prf_loose_bvar1 (prf % Some t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
berghofe@11615
   332
  | prf_loose_bvar1 (_ % None) _ = true
berghofe@11519
   333
  | prf_loose_bvar1 (AbsP (_, Some t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
berghofe@11519
   334
  | prf_loose_bvar1 (AbsP (_, None, _)) k = true
berghofe@11519
   335
  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
berghofe@11519
   336
  | prf_loose_bvar1 _ _ = false;
berghofe@11519
   337
berghofe@11519
   338
fun prf_loose_Pbvar1 (PBound i) k = i = k
berghofe@11615
   339
  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
berghofe@11615
   340
  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
berghofe@11519
   341
  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
berghofe@11519
   342
  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
berghofe@11519
   343
  | prf_loose_Pbvar1 _ _ = false;
berghofe@11519
   344
berghofe@11519
   345
berghofe@11519
   346
(**** substitutions ****)
berghofe@11519
   347
berghofe@11519
   348
fun norm_proof env =
berghofe@11519
   349
  let
berghofe@11519
   350
    fun norm (Abst (s, T, prf)) = (Abst (s, apsome' (norm_type_same env) T, normh prf)
berghofe@11519
   351
          handle SAME => Abst (s, T, norm prf))
berghofe@11519
   352
      | norm (AbsP (s, t, prf)) = (AbsP (s, apsome' (norm_term_same env) t, normh prf)
berghofe@11519
   353
          handle SAME => AbsP (s, t, norm prf))
berghofe@11615
   354
      | norm (prf % t) = (norm prf % apsome (norm_term env) t
berghofe@11615
   355
          handle SAME => prf % apsome' (norm_term_same env) t)
berghofe@11615
   356
      | norm (prf1 %% prf2) = (norm prf1 %% normh prf2
berghofe@11615
   357
          handle SAME => prf1 %% norm prf2)
berghofe@11519
   358
      | norm (PThm (s, prf, t, Ts)) = PThm (s, prf, t, apsome' (norm_types_same env) Ts)
berghofe@11519
   359
      | norm (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome' (norm_types_same env) Ts)
berghofe@11519
   360
      | norm _ = raise SAME
berghofe@11519
   361
    and normh prf = (norm prf handle SAME => prf);
berghofe@11519
   362
  in normh end;
berghofe@11519
   363
berghofe@11519
   364
(***** Remove some types in proof term (to save space) *****)
berghofe@11519
   365
berghofe@11519
   366
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
berghofe@11519
   367
  | remove_types (t $ u) = remove_types t $ remove_types u
berghofe@11519
   368
  | remove_types (Const (s, _)) = Const (s, dummyT)
berghofe@11519
   369
  | remove_types t = t;
berghofe@11519
   370
berghofe@11519
   371
fun remove_types_env (Envir.Envir {iTs, asol, maxidx}) =
berghofe@11519
   372
  Envir.Envir {iTs = iTs, asol = Vartab.map remove_types asol, maxidx = maxidx};
berghofe@11519
   373
berghofe@11519
   374
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
berghofe@11519
   375
berghofe@11519
   376
(**** substitution of bound variables ****)
berghofe@11519
   377
berghofe@11519
   378
fun prf_subst_bounds args prf =
berghofe@11519
   379
  let
berghofe@11519
   380
    val n = length args;
berghofe@11519
   381
    fun subst' lev (Bound i) =
berghofe@11519
   382
         (if i<lev then raise SAME    (*var is locally bound*)
berghofe@11519
   383
          else  incr_boundvars lev (List.nth (args, i-lev))
berghofe@11519
   384
                  handle Subscript => Bound (i-n)  (*loose: change it*))
berghofe@11519
   385
      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
berghofe@11519
   386
      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
berghofe@11519
   387
          handle SAME => f $ subst' lev t)
berghofe@11519
   388
      | subst' _ _ = raise SAME
berghofe@11519
   389
    and substh' lev t = (subst' lev t handle SAME => t);
berghofe@11519
   390
berghofe@11519
   391
    fun subst lev (AbsP (a, t, body)) = (AbsP (a, apsome' (subst' lev) t, substh lev body)
berghofe@11519
   392
          handle SAME => AbsP (a, t, subst lev body))
berghofe@11519
   393
      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
berghofe@11615
   394
      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
berghofe@11615
   395
          handle SAME => prf %% subst lev prf')
berghofe@11615
   396
      | subst lev (prf % t) = (subst lev prf % apsome (substh' lev) t
berghofe@11615
   397
          handle SAME => prf % apsome' (subst' lev) t)
berghofe@11519
   398
      | subst _ _ = raise SAME
berghofe@11519
   399
    and substh lev prf = (subst lev prf handle SAME => prf)
berghofe@11519
   400
  in case args of [] => prf | _ => substh 0 prf end;
berghofe@11519
   401
berghofe@11519
   402
fun prf_subst_pbounds args prf =
berghofe@11519
   403
  let
berghofe@11519
   404
    val n = length args;
berghofe@11519
   405
    fun subst (PBound i) Plev tlev =
berghofe@11519
   406
 	 (if i < Plev then raise SAME    (*var is locally bound*)
berghofe@11519
   407
          else incr_pboundvars Plev tlev (List.nth (args, i-Plev))
berghofe@11519
   408
                 handle Subscript => PBound (i-n)  (*loose: change it*))
berghofe@11519
   409
      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
berghofe@11519
   410
      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
berghofe@11615
   411
      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
berghofe@11615
   412
          handle SAME => prf %% subst prf' Plev tlev)
berghofe@11615
   413
      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
berghofe@11519
   414
      | subst  prf _ _ = raise SAME
berghofe@11519
   415
    and substh prf Plev tlev = (subst prf Plev tlev handle SAME => prf)
berghofe@11519
   416
  in case args of [] => prf | _ => substh prf 0 0 end;
berghofe@11519
   417
berghofe@11519
   418
berghofe@11519
   419
(**** Freezing and thawing of variables in proof terms ****)
berghofe@11519
   420
berghofe@11519
   421
fun frzT names =
berghofe@11519
   422
  map_type_tvar (fn (ixn, xs) => TFree (the (assoc (names, ixn)), xs));
berghofe@11519
   423
berghofe@11519
   424
fun thawT names =
berghofe@11519
   425
  map_type_tfree (fn (s, xs) => case assoc (names, s) of
berghofe@11519
   426
      None => TFree (s, xs)
berghofe@11519
   427
    | Some ixn => TVar (ixn, xs));
berghofe@11519
   428
berghofe@11519
   429
fun freeze names names' (t $ u) =
berghofe@11519
   430
      freeze names names' t $ freeze names names' u
berghofe@11519
   431
  | freeze names names' (Abs (s, T, t)) =
berghofe@11519
   432
      Abs (s, frzT names' T, freeze names names' t)
berghofe@11519
   433
  | freeze names names' (Const (s, T)) = Const (s, frzT names' T)
berghofe@11519
   434
  | freeze names names' (Free (s, T)) = Free (s, frzT names' T)
berghofe@11519
   435
  | freeze names names' (Var (ixn, T)) =
berghofe@11519
   436
      Free (the (assoc (names, ixn)), frzT names' T)
berghofe@11519
   437
  | freeze names names' t = t;
berghofe@11519
   438
berghofe@11519
   439
fun thaw names names' (t $ u) =
berghofe@11519
   440
      thaw names names' t $ thaw names names' u
berghofe@11519
   441
  | thaw names names' (Abs (s, T, t)) =
berghofe@11519
   442
      Abs (s, thawT names' T, thaw names names' t)
berghofe@11519
   443
  | thaw names names' (Const (s, T)) = Const (s, thawT names' T)
berghofe@11519
   444
  | thaw names names' (Free (s, T)) = 
berghofe@11519
   445
      let val T' = thawT names' T
berghofe@11519
   446
      in case assoc (names, s) of
berghofe@11519
   447
          None => Free (s, T')
berghofe@11519
   448
        | Some ixn => Var (ixn, T')
berghofe@11519
   449
      end
berghofe@11519
   450
  | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
berghofe@11519
   451
  | thaw names names' t = t;
berghofe@11519
   452
berghofe@11519
   453
fun freeze_thaw_prf prf =
berghofe@11519
   454
  let
berghofe@11519
   455
    val (fs, Tfs, vs, Tvs) = fold_proof_terms
berghofe@11519
   456
      (fn (t, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   457
         (add_term_frees (t, fs), add_term_tfree_names (t, Tfs),
berghofe@11519
   458
          add_term_vars (t, vs), add_term_tvar_ixns (t, Tvs)))
berghofe@11519
   459
      (fn (T, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   460
         (fs, add_typ_tfree_names (T, Tfs),
berghofe@11519
   461
          vs, add_typ_ixns (Tvs, T)))
berghofe@11519
   462
            (([], [], [], []), prf);
berghofe@11519
   463
    val fs' = map (fst o dest_Free) fs;
berghofe@11519
   464
    val vs' = map (fst o dest_Var) vs;
berghofe@11519
   465
    val names = vs' ~~ variantlist (map fst vs', fs');
berghofe@11519
   466
    val names' = Tvs ~~ variantlist (map fst Tvs, Tfs);
berghofe@11519
   467
    val rnames = map swap names;
berghofe@11519
   468
    val rnames' = map swap names';
berghofe@11519
   469
  in
berghofe@11519
   470
    (map_proof_terms (freeze names names') (frzT names') prf,
berghofe@11519
   471
     map_proof_terms (thaw rnames rnames') (thawT rnames'))
berghofe@11519
   472
  end;
berghofe@11519
   473
berghofe@11519
   474
berghofe@11519
   475
(***** implication introduction *****)
berghofe@11519
   476
berghofe@11519
   477
fun implies_intr_proof h prf =
berghofe@11519
   478
  let
berghofe@11715
   479
    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise SAME
berghofe@11519
   480
      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
berghofe@11519
   481
      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i+1) prf)
berghofe@11615
   482
      | abshyp i (prf % t) = abshyp i prf % t
berghofe@11715
   483
      | abshyp i (prf1 %% prf2) = (abshyp i prf1 %% abshyph i prf2
berghofe@11715
   484
          handle SAME => prf1 %% abshyp i prf2)
berghofe@11715
   485
      | abshyp _ _ = raise SAME
berghofe@11715
   486
    and abshyph i prf = (abshyp i prf handle SAME => prf)
berghofe@11519
   487
  in
berghofe@11715
   488
    AbsP ("H", None (*h*), abshyph 0 prf)
berghofe@11519
   489
  end;
berghofe@11519
   490
berghofe@11519
   491
berghofe@11519
   492
(***** forall introduction *****)
berghofe@11519
   493
berghofe@11519
   494
fun forall_intr_proof x a prf = Abst (a, None, prf_abstract_over x prf);
berghofe@11519
   495
berghofe@11519
   496
berghofe@11519
   497
(***** varify *****)
berghofe@11519
   498
berghofe@11519
   499
fun varify_proof t fixed prf =
berghofe@11519
   500
  let
berghofe@11519
   501
    val fs = add_term_tfree_names (t, []) \\ fixed;
berghofe@11519
   502
    val ixns = add_term_tvar_ixns (t, []);
berghofe@11519
   503
    val fmap = fs ~~ variantlist (fs, map #1 ixns)
berghofe@11519
   504
    fun thaw (f as (a, S)) =
berghofe@11519
   505
      (case assoc (fmap, a) of
berghofe@11519
   506
        None => TFree f
berghofe@11519
   507
      | Some b => TVar ((b, 0), S));
berghofe@11519
   508
  in map_proof_terms (map_term_types (map_type_tfree thaw)) (map_type_tfree thaw) prf
berghofe@11519
   509
  end;
berghofe@11519
   510
berghofe@11519
   511
berghofe@11519
   512
local
berghofe@11519
   513
berghofe@11519
   514
fun new_name (ix, (pairs,used)) =
berghofe@11519
   515
  let val v = variant used (string_of_indexname ix)
berghofe@11519
   516
  in  ((ix, v) :: pairs, v :: used)  end;
berghofe@11519
   517
berghofe@11519
   518
fun freeze_one alist (ix, sort) = (case assoc (alist, ix) of
berghofe@11519
   519
    None => TVar (ix, sort)
berghofe@11519
   520
  | Some name => TFree (name, sort));
berghofe@11519
   521
berghofe@11519
   522
in
berghofe@11519
   523
berghofe@11519
   524
fun freezeT t prf =
berghofe@11519
   525
  let
berghofe@11519
   526
    val used = it_term_types add_typ_tfree_names (t, [])
berghofe@11519
   527
    and tvars = map #1 (it_term_types add_typ_tvars (t, []));
berghofe@11519
   528
    val (alist, _) = foldr new_name (tvars, ([], used));
berghofe@11519
   529
  in
berghofe@11519
   530
    (case alist of
berghofe@11519
   531
      [] => prf (*nothing to do!*)
berghofe@11519
   532
    | _ =>
berghofe@11519
   533
      let val frzT = map_type_tvar (freeze_one alist)
berghofe@11519
   534
      in map_proof_terms (map_term_types frzT) frzT prf end)
berghofe@11519
   535
  end;
berghofe@11519
   536
berghofe@11519
   537
end;
berghofe@11519
   538
berghofe@11519
   539
berghofe@11519
   540
(***** rotate assumptions *****)
berghofe@11519
   541
berghofe@11519
   542
fun rotate_proof Bs Bi m prf =
berghofe@11519
   543
  let
berghofe@11519
   544
    val params = Term.strip_all_vars Bi;
berghofe@11519
   545
    val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
berghofe@11519
   546
    val i = length asms;
berghofe@11519
   547
    val j = length Bs;
berghofe@11519
   548
  in
berghofe@11519
   549
    mk_AbsP (j+1, proof_combP (prf, map PBound
berghofe@11519
   550
      (j downto 1) @ [mk_Abst (params, mk_AbsP (i,
berghofe@11519
   551
        proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
berghofe@11519
   552
          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
berghofe@11519
   553
  end;
berghofe@11519
   554
berghofe@11519
   555
berghofe@11519
   556
(***** permute premises *****)
berghofe@11519
   557
berghofe@11519
   558
fun permute_prems_prf prems j k prf =
berghofe@11519
   559
  let val n = length prems
berghofe@11519
   560
  in mk_AbsP (n, proof_combP (prf,
berghofe@11519
   561
    map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
berghofe@11519
   562
  end;
berghofe@11519
   563
berghofe@11519
   564
berghofe@11519
   565
(***** instantiation *****)
berghofe@11519
   566
berghofe@11519
   567
fun instantiate vTs tpairs =
berghofe@11519
   568
  map_proof_terms (subst_atomic (map (apsnd remove_types) tpairs) o
berghofe@11519
   569
    subst_TVars vTs) (typ_subst_TVars vTs);
berghofe@11519
   570
berghofe@11519
   571
berghofe@11519
   572
(***** lifting *****)
berghofe@11519
   573
berghofe@11519
   574
fun lift_proof Bi inc prop prf =
berghofe@11519
   575
  let
berghofe@11519
   576
    val (_, lift_all) = Logic.lift_fns (Bi, inc);
berghofe@11519
   577
berghofe@11519
   578
    fun lift'' Us Ts t = strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
berghofe@11519
   579
berghofe@11715
   580
    fun lift' Us Ts (Abst (s, T, prf)) =
berghofe@11715
   581
          (Abst (s, apsome' (same (incr_tvar inc)) T, lifth' Us (dummyT::Ts) prf)
berghofe@11715
   582
           handle SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
berghofe@11715
   583
      | lift' Us Ts (AbsP (s, t, prf)) =
berghofe@11715
   584
          (AbsP (s, apsome' (same (lift'' Us Ts)) t, lifth' Us Ts prf)
berghofe@11715
   585
           handle SAME => AbsP (s, t, lift' Us Ts prf))
berghofe@11715
   586
      | lift' Us Ts (prf % t) = (lift' Us Ts prf % apsome (lift'' Us Ts) t
berghofe@11715
   587
          handle SAME => prf % apsome' (same (lift'' Us Ts)) t)
berghofe@11715
   588
      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
berghofe@11715
   589
          handle SAME => prf1 %% lift' Us Ts prf2)
berghofe@11715
   590
      | lift' _ _ (PThm (s, prf, prop, Ts)) =
berghofe@11715
   591
          PThm (s, prf, prop, apsome' (same (map (incr_tvar inc))) Ts)
berghofe@11715
   592
      | lift' _ _ (PAxm (s, prop, Ts)) =
berghofe@11715
   593
          PAxm (s, prop, apsome' (same (map (incr_tvar inc))) Ts)
berghofe@11715
   594
      | lift' _ _ _ = raise SAME
berghofe@11715
   595
    and lifth' Us Ts prf = (lift' Us Ts prf handle SAME => prf);
berghofe@11519
   596
berghofe@11519
   597
    val ps = map lift_all (Logic.strip_imp_prems (snd (Logic.strip_flexpairs prop)));
berghofe@11519
   598
    val k = length ps;
berghofe@11519
   599
berghofe@11519
   600
    fun mk_app (b, (i, j, prf)) = 
berghofe@11615
   601
          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
berghofe@11519
   602
berghofe@11519
   603
    fun lift Us bs i j (Const ("==>", _) $ A $ B) =
berghofe@11519
   604
	    AbsP ("H", None (*A*), lift Us (true::bs) (i+1) j B)
berghofe@11519
   605
      | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) = 
berghofe@11519
   606
	    Abst (a, None (*T*), lift (T::Us) (false::bs) i (j+1) t)
berghofe@11715
   607
      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
berghofe@11519
   608
            map (fn k => (#3 (foldr mk_app (bs, (i-1, j-1, PBound k)))))
berghofe@11519
   609
              (i + k - 1 downto i));
berghofe@11519
   610
  in
berghofe@11519
   611
    mk_AbsP (k, lift [] [] 0 0 Bi)
berghofe@11519
   612
  end;
berghofe@11519
   613
berghofe@11519
   614
berghofe@11519
   615
(***** proof by assumption *****)
berghofe@11519
   616
berghofe@11519
   617
fun mk_asm_prf (Const ("==>", _) $ A $ B) i = AbsP ("H", None (*A*), mk_asm_prf B (i+1))
berghofe@11519
   618
  | mk_asm_prf (Const ("all", _) $ Abs (a, T, t)) i = Abst (a, None (*T*), mk_asm_prf t i)
berghofe@11519
   619
  | mk_asm_prf _ i = PBound i;
berghofe@11519
   620
berghofe@11519
   621
fun assumption_proof Bs Bi n prf =
berghofe@11519
   622
  mk_AbsP (length Bs, proof_combP (prf,
berghofe@11519
   623
    map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi (~n)]));
berghofe@11519
   624
berghofe@11519
   625
berghofe@11519
   626
(***** Composition of object rule with proof state *****)
berghofe@11519
   627
berghofe@11519
   628
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
berghofe@11519
   629
      AbsP ("H", None (*A*), flatten_params_proof (i+1) j n (B, k))
berghofe@11519
   630
  | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
berghofe@11519
   631
      Abst (a, None (*T*), flatten_params_proof i (j+1) n (t, k))
berghofe@11519
   632
  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
berghofe@11519
   633
      map Bound (j-1 downto 0)), map PBound (i-1 downto 0 \ i-n));
berghofe@11519
   634
berghofe@11519
   635
fun bicompose_proof Bs oldAs newAs A n rprf sprf =
berghofe@11519
   636
  let
berghofe@11519
   637
    val la = length newAs;
berghofe@11519
   638
    val lb = length Bs;
berghofe@11519
   639
  in
berghofe@11519
   640
    mk_AbsP (lb+la, proof_combP (sprf,
berghofe@11615
   641
      map PBound (lb + la - 1 downto la)) %%
berghofe@11519
   642
        proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) (~n)] else []) @
berghofe@11519
   643
          map (flatten_params_proof 0 0 n) (oldAs ~~ (la - 1 downto 0))))
berghofe@11519
   644
  end;
berghofe@11519
   645
berghofe@11519
   646
berghofe@11519
   647
(***** axioms for equality *****)
berghofe@11519
   648
berghofe@11519
   649
val aT = TFree ("'a", ["logic"]);
berghofe@11519
   650
val bT = TFree ("'b", ["logic"]);
berghofe@11519
   651
val x = Free ("x", aT);
berghofe@11519
   652
val y = Free ("y", aT);
berghofe@11519
   653
val z = Free ("z", aT);
berghofe@11519
   654
val A = Free ("A", propT);
berghofe@11519
   655
val B = Free ("B", propT);
berghofe@11519
   656
val f = Free ("f", aT --> bT);
berghofe@11519
   657
val g = Free ("g", aT --> bT);
berghofe@11519
   658
berghofe@11519
   659
local open Logic in
berghofe@11519
   660
berghofe@11519
   661
val equality_axms =
berghofe@11519
   662
  [("reflexive", mk_equals (x, x)),
berghofe@11519
   663
   ("symmetric", mk_implies (mk_equals (x, y), mk_equals (y, x))),
berghofe@11519
   664
   ("transitive", list_implies ([mk_equals (x, y), mk_equals (y, z)], mk_equals (x, z))),
berghofe@11519
   665
   ("equal_intr", list_implies ([mk_implies (A, B), mk_implies (B, A)], mk_equals (A, B))),
berghofe@11519
   666
   ("equal_elim", list_implies ([mk_equals (A, B), A], B)),
berghofe@11519
   667
   ("abstract_rule", Logic.mk_implies
berghofe@11519
   668
      (all aT $ Abs ("x", aT, equals bT $ (f $ Bound 0) $ (g $ Bound 0)),
berghofe@11519
   669
       equals (aT --> bT) $
berghofe@11519
   670
         Abs ("x", aT, f $ Bound 0) $ Abs ("x", aT, g $ Bound 0))),
berghofe@11519
   671
   ("combination", Logic.list_implies
berghofe@11519
   672
      ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)],
berghofe@11519
   673
       Logic.mk_equals (f $ x, g $ y)))];
berghofe@11519
   674
berghofe@11519
   675
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
berghofe@11519
   676
  equal_elim_axm, abstract_rule_axm, combination_axm] =
berghofe@11519
   677
    map (fn (s, t) => PAxm ("ProtoPure." ^ s, varify t, None)) equality_axms;
berghofe@11519
   678
berghofe@11519
   679
end;
berghofe@11519
   680
berghofe@11615
   681
val reflexive = reflexive_axm % None;
berghofe@11519
   682
berghofe@11615
   683
fun symmetric (prf as PAxm ("ProtoPure.reflexive", _, _) % _) = prf
berghofe@11615
   684
  | symmetric prf = symmetric_axm % None % None %% prf;
berghofe@11519
   685
berghofe@11615
   686
fun transitive _ _ (PAxm ("ProtoPure.reflexive", _, _) % _) prf2 = prf2
berghofe@11615
   687
  | transitive _ _ prf1 (PAxm ("ProtoPure.reflexive", _, _) % _) = prf1
berghofe@11519
   688
  | transitive u (Type ("prop", [])) prf1 prf2 =
berghofe@11615
   689
      transitive_axm % None % Some (remove_types u) % None %% prf1 %% prf2
berghofe@11519
   690
  | transitive u T prf1 prf2 =
berghofe@11615
   691
      transitive_axm % None % None % None %% prf1 %% prf2;
berghofe@11519
   692
berghofe@11519
   693
fun abstract_rule x a prf =
berghofe@11615
   694
  abstract_rule_axm % None % None %% forall_intr_proof x a prf;
berghofe@11519
   695
berghofe@11615
   696
fun check_comb (PAxm ("ProtoPure.combination", _, _) % f % g % _ % _ %% prf %% _) =
berghofe@11519
   697
      is_some f orelse check_comb prf
berghofe@11615
   698
  | check_comb (PAxm ("ProtoPure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
berghofe@11519
   699
      check_comb prf1 andalso check_comb prf2
berghofe@11615
   700
  | check_comb (PAxm ("ProtoPure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
berghofe@11519
   701
  | check_comb _ = false;
berghofe@11519
   702
berghofe@11519
   703
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
berghofe@11519
   704
  let
berghofe@11519
   705
    val f = Envir.beta_norm f;
berghofe@11519
   706
    val g = Envir.beta_norm g;
berghofe@11519
   707
    val prf =  if check_comb prf1 then
berghofe@11615
   708
        combination_axm % None % None
berghofe@11519
   709
      else (case prf1 of
berghofe@11615
   710
          PAxm ("ProtoPure.reflexive", _, _) % _ =>
berghofe@11615
   711
            combination_axm %> remove_types f % None
berghofe@11615
   712
        | _ => combination_axm %> remove_types f %> remove_types g)
berghofe@11519
   713
  in
berghofe@11519
   714
    (case T of
berghofe@11615
   715
       Type ("fun", _) => prf %
berghofe@11519
   716
         (case head_of f of
berghofe@11519
   717
            Abs _ => Some (remove_types t)
berghofe@11519
   718
          | Var _ => Some (remove_types t)
berghofe@11615
   719
          | _ => None) %
berghofe@11519
   720
         (case head_of g of
berghofe@11519
   721
            Abs _ => Some (remove_types u)
berghofe@11519
   722
          | Var _ => Some (remove_types u)
berghofe@11615
   723
          | _ => None) %% prf1 %% prf2
berghofe@11615
   724
     | _ => prf % None % None %% prf1 %% prf2)
berghofe@11519
   725
  end;
berghofe@11519
   726
berghofe@11519
   727
fun equal_intr A B prf1 prf2 =
berghofe@11615
   728
  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   729
berghofe@11519
   730
fun equal_elim A B prf1 prf2 =
berghofe@11615
   731
  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   732
berghofe@11519
   733
berghofe@11519
   734
(***** axioms and theorems *****)
berghofe@11519
   735
berghofe@11519
   736
fun vars_of t = rev (foldl_aterms
berghofe@11519
   737
  (fn (vs, v as Var _) => v ins vs | (vs, _) => vs) ([], t));
berghofe@11519
   738
berghofe@11519
   739
fun test_args _ [] = true
berghofe@11519
   740
  | test_args is (Bound i :: ts) =
berghofe@11519
   741
      not (i mem is) andalso test_args (i :: is) ts
berghofe@11519
   742
  | test_args _ _ = false;
berghofe@11519
   743
berghofe@11519
   744
fun is_fun (Type ("fun", _)) = true
berghofe@11519
   745
  | is_fun (TVar _) = true
berghofe@11519
   746
  | is_fun _ = false;
berghofe@11519
   747
berghofe@11519
   748
fun add_funvars Ts (vs, t) =
berghofe@11519
   749
  if is_fun (fastype_of1 (Ts, t)) then
berghofe@11519
   750
    vs union mapfilter (fn Var (ixn, T) =>
berghofe@11519
   751
      if is_fun T then Some ixn else None | _ => None) (vars_of t)
berghofe@11519
   752
  else vs;
berghofe@11519
   753
berghofe@11519
   754
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
berghofe@11519
   755
      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
berghofe@11519
   756
  | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
berghofe@11519
   757
      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
berghofe@11519
   758
  | add_npvars q p Ts (vs, t) = (case strip_comb t of
berghofe@11519
   759
    (Var (ixn, _), ts) => if test_args [] ts then vs
berghofe@11519
   760
      else foldl (add_npvars q p Ts) (overwrite (vs,
berghofe@11519
   761
        (ixn, foldl (add_funvars Ts) (if_none (assoc (vs, ixn)) [], ts))), ts)
berghofe@11519
   762
  | (Abs (_, T, u), ts) => foldl (add_npvars q p (T::Ts)) (vs, u :: ts)
berghofe@11519
   763
  | (_, ts) => foldl (add_npvars q p Ts) (vs, ts));
berghofe@11519
   764
berghofe@11519
   765
fun prop_vars (Const ("==>", _) $ P $ Q) = prop_vars P union prop_vars Q
berghofe@11519
   766
  | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
berghofe@11519
   767
  | prop_vars t = (case strip_comb t of
berghofe@11519
   768
      (Var (ixn, _), _) => [ixn] | _ => []);
berghofe@11519
   769
berghofe@11519
   770
fun is_proj t =
berghofe@11519
   771
  let
berghofe@11519
   772
    fun is_p i t = (case strip_comb t of
berghofe@11519
   773
        (Bound j, []) => false
berghofe@11519
   774
      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
berghofe@11519
   775
      | (Abs (_, _, u), _) => is_p (i+1) u
berghofe@11519
   776
      | (_, ts) => exists (is_p i) ts)
berghofe@11519
   777
  in (case strip_abs_body t of
berghofe@11519
   778
        Bound _ => true
berghofe@11519
   779
      | t' => is_p 0 t')
berghofe@11519
   780
  end;
berghofe@11519
   781
berghofe@11519
   782
fun needed_vars prop = 
berghofe@11519
   783
  foldl op union ([], map op ins (add_npvars true true [] ([], prop))) union
berghofe@11519
   784
  prop_vars prop;
berghofe@11519
   785
berghofe@11519
   786
fun gen_axm_proof c name prop =
berghofe@11519
   787
  let
berghofe@11519
   788
    val nvs = needed_vars prop;
berghofe@11519
   789
    val args = map (fn (v as Var (ixn, _)) =>
berghofe@11519
   790
        if ixn mem nvs then Some v else None) (vars_of prop) @
berghofe@11519
   791
      map Some (sort (make_ord atless) (term_frees prop));
berghofe@11519
   792
  in
berghofe@11519
   793
    proof_combt' (c (name, prop, None), args)
berghofe@11519
   794
  end;
berghofe@11519
   795
berghofe@11519
   796
val axm_proof = gen_axm_proof PAxm;
berghofe@11519
   797
val oracle_proof = gen_axm_proof Oracle;
berghofe@11519
   798
berghofe@11519
   799
fun shrink ls lev (prf as Abst (a, T, body)) =
berghofe@11519
   800
      let val (b, is, ch, body') = shrink ls (lev+1) body
berghofe@11519
   801
      in (b, is, ch, if ch then Abst (a, T, body') else prf) end
berghofe@11519
   802
  | shrink ls lev (prf as AbsP (a, t, body)) =
berghofe@11519
   803
      let val (b, is, ch, body') = shrink (lev::ls) lev body
berghofe@11519
   804
      in (b orelse 0 mem is, mapfilter (fn 0 => None | i => Some (i-1)) is,
berghofe@11519
   805
        ch, if ch then AbsP (a, t, body') else prf)
berghofe@11519
   806
      end
berghofe@11519
   807
  | shrink ls lev prf =
berghofe@11519
   808
      let val (is, ch, _, prf') = shrink' ls lev [] [] prf
berghofe@11519
   809
      in (false, is, ch, prf') end
berghofe@11615
   810
and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
berghofe@11519
   811
      let
berghofe@11519
   812
        val p as (_, is', ch', prf') = shrink ls lev prf2;
berghofe@11519
   813
        val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
berghofe@11519
   814
      in (is union is', ch orelse ch', ts',
berghofe@11615
   815
          if ch orelse ch' then prf'' %% prf' else prf)
berghofe@11519
   816
      end
berghofe@11615
   817
  | shrink' ls lev ts prfs (prf as prf1 % t) =
berghofe@11519
   818
      let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
berghofe@11615
   819
      in (is, ch orelse ch', ts', if ch orelse ch' then prf' % t' else prf) end
berghofe@11519
   820
  | shrink' ls lev ts prfs (prf as PBound i) =
berghofe@11519
   821
      (if exists (fn Some (Bound j) => lev-j <= nth_elem (i, ls) | _ => true) ts
berghofe@11519
   822
         orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
berghofe@11519
   823
  | shrink' ls lev ts prfs (prf as Hyp _) = ([], false, map (pair false) ts, prf)
berghofe@11615
   824
  | shrink' ls lev ts prfs (prf as MinProof _) =
berghofe@11615
   825
      ([], false, map (pair false) ts, prf)
berghofe@11519
   826
  | shrink' ls lev ts prfs prf =
berghofe@11519
   827
      let
berghofe@11519
   828
        val prop = (case prf of PThm (_, _, prop, _) => prop | PAxm (_, prop, _) => prop
berghofe@11519
   829
          | Oracle (_, prop, _) => prop | _ => error "shrink: proof not in normal form");
berghofe@11519
   830
        val vs = vars_of prop;
berghofe@11519
   831
        val ts' = take (length vs, ts)
berghofe@11519
   832
        val ts'' = drop (length vs, ts)
berghofe@11519
   833
        val insts = take (length ts', map (fst o dest_Var) vs) ~~ ts';
berghofe@11519
   834
        val nvs = foldl (fn (ixns', (ixn, ixns)) =>
berghofe@11519
   835
          ixn ins (case assoc (insts, ixn) of
berghofe@11519
   836
              Some (Some t) => if is_proj t then ixns union ixns' else ixns'
berghofe@11519
   837
            | _ => ixns union ixns'))
berghofe@11519
   838
              (needed prop ts'' prfs, add_npvars false true [] ([], prop));
berghofe@11519
   839
        val insts' = map
berghofe@11519
   840
          (fn (ixn, x as Some _) => if ixn mem nvs then (false, x) else (true, None)
berghofe@11519
   841
            | (_, x) => (false, x)) insts
berghofe@11519
   842
      in ([], false, insts' @ map (pair false) ts'', prf) end
berghofe@11519
   843
and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
berghofe@11519
   844
      (if b then map (fst o dest_Var) (vars_of t) else []) union needed u ts prfs
berghofe@11519
   845
  | needed (Var (ixn, _)) (_::_) _ = [ixn]
berghofe@11519
   846
  | needed _ _ _ = [];
berghofe@11519
   847
berghofe@11519
   848
berghofe@11519
   849
(**** Simple first order matching functions for terms and proofs ****)
berghofe@11519
   850
berghofe@11519
   851
exception PMatch;
berghofe@11519
   852
berghofe@11519
   853
(** see pattern.ML **)
berghofe@11519
   854
berghofe@11519
   855
fun fomatch Ts tmatch =
berghofe@11519
   856
  let
berghofe@11519
   857
    fun mtch (instsp as (tyinsts, insts)) = fn
berghofe@11519
   858
        (Var (ixn, T), t)  =>
berghofe@11519
   859
	  (tmatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))), (ixn, t)::insts)
berghofe@11519
   860
      | (Free (a, T), Free (b, U)) =>
berghofe@11519
   861
	  if a=b then (tmatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   862
      | (Const (a, T), Const (b, U))  =>
berghofe@11519
   863
	  if a=b then (tmatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   864
      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
berghofe@11519
   865
      | _ => raise PMatch
berghofe@11519
   866
  in mtch end;
berghofe@11519
   867
berghofe@11519
   868
fun match_proof Ts tmatch =
berghofe@11519
   869
  let
berghofe@11519
   870
    fun mtch (inst as (pinst, tinst as (tyinsts, insts))) = fn
berghofe@11519
   871
        (Hyp (Var (ixn, _)), prf) => ((ixn, prf)::pinst, tinst)
berghofe@11615
   872
      | (prf1 % opt1, prf2 % opt2) =>
berghofe@11519
   873
          let val inst' as (pinst, tinst) = mtch inst (prf1, prf2)
berghofe@11519
   874
          in (case (opt1, opt2) of
berghofe@11519
   875
                (None, _) => inst'
berghofe@11519
   876
              | (Some _, None) => raise PMatch
berghofe@11519
   877
              | (Some t, Some u) => (pinst, fomatch Ts tmatch tinst (t, Envir.beta_norm u)))
berghofe@11519
   878
          end
berghofe@11615
   879
      | (prf1 %% prf2, prf1' %% prf2') =>
berghofe@11519
   880
          mtch (mtch inst (prf1, prf1')) (prf2, prf2')
berghofe@11519
   881
      | (PThm ((name1, _), _, prop1, None), PThm ((name2, _), _, prop2, _)) =>
berghofe@11519
   882
          if name1=name2 andalso prop1=prop2 then inst else raise PMatch
berghofe@11519
   883
      | (PThm ((name1, _), _, prop1, Some Ts), PThm ((name2, _), _, prop2, Some Us)) =>
berghofe@11519
   884
          if name1=name2 andalso prop1=prop2 then
berghofe@11519
   885
            (pinst, (foldl (tmatch o apsnd K) (tyinsts, Ts ~~ Us), insts))
berghofe@11519
   886
          else raise PMatch
berghofe@11519
   887
      | (PAxm (s1, _, None), PAxm (s2, _, _)) =>
berghofe@11519
   888
          if s1=s2 then inst else raise PMatch
berghofe@11519
   889
      | (PAxm (s1, _, Some Ts), PAxm (s2, _, Some Us)) =>
berghofe@11519
   890
          if s1=s2 then
berghofe@11519
   891
            (pinst, (foldl (tmatch o apsnd K) (tyinsts, Ts ~~ Us), insts))
berghofe@11519
   892
          else raise PMatch
berghofe@11519
   893
      | _ => raise PMatch
berghofe@11519
   894
  in mtch end;
berghofe@11519
   895
berghofe@11519
   896
fun prf_subst (pinst, (tyinsts, insts)) =
berghofe@11519
   897
  let
berghofe@11519
   898
    val substT = typ_subst_TVars_Vartab tyinsts;
berghofe@11519
   899
berghofe@11519
   900
    fun subst' lev (t as Var (ixn, _)) = (case assoc (insts, ixn) of
berghofe@11519
   901
          None => t
berghofe@11519
   902
        | Some u => incr_boundvars lev u)
berghofe@11519
   903
      | subst' lev (Const (s, T)) = Const (s, substT T)
berghofe@11519
   904
      | subst' lev (Free (s, T)) = Free (s, substT T)
berghofe@11519
   905
      | subst' lev (Abs (a, T, body)) = Abs (a, substT T, subst' (lev+1) body)
berghofe@11519
   906
      | subst' lev (f $ t) = subst' lev f $ subst' lev t
berghofe@11519
   907
      | subst' _ t = t;
berghofe@11519
   908
berghofe@11519
   909
    fun subst plev tlev (AbsP (a, t, body)) =
berghofe@11519
   910
          AbsP (a, apsome (subst' tlev) t, subst (plev+1) tlev body)
berghofe@11519
   911
      | subst plev tlev (Abst (a, T, body)) =
berghofe@11519
   912
          Abst (a, apsome substT T, subst plev (tlev+1) body)
berghofe@11615
   913
      | subst plev tlev (prf %% prf') = subst plev tlev prf %% subst plev tlev prf'
berghofe@11615
   914
      | subst plev tlev (prf % t) = subst plev tlev prf % apsome (subst' tlev) t
berghofe@11519
   915
      | subst plev tlev (prf as Hyp (Var (ixn, _))) = (case assoc (pinst, ixn) of
berghofe@11519
   916
          None => prf
berghofe@11519
   917
        | Some prf' => incr_pboundvars plev tlev prf')
berghofe@11519
   918
      | subst _ _ (PThm (id, prf, prop, Ts)) =
berghofe@11519
   919
          PThm (id, prf, prop, apsome (map substT) Ts)
berghofe@11519
   920
      | subst _ _ (PAxm (id, prop, Ts)) =
berghofe@11519
   921
          PAxm (id, prop, apsome (map substT) Ts)
berghofe@11519
   922
      | subst _ _ t = t
berghofe@11519
   923
  in subst 0 0 end;
berghofe@11519
   924
berghofe@11519
   925
(**** rewriting on proof terms ****)
berghofe@11519
   926
berghofe@11519
   927
fun rewrite_prf tmatch (rules, procs) prf =
berghofe@11519
   928
  let
berghofe@11615
   929
    fun rew _ (Abst (_, _, body) % Some t) = Some (prf_subst_bounds [t] body)
berghofe@11615
   930
      | rew _ (AbsP (_, _, body) %% prf) = Some (prf_subst_pbounds [prf] body)
berghofe@11519
   931
      | rew Ts prf = (case get_first (fn (_, r) => r Ts prf) procs of
berghofe@11519
   932
          Some prf' => Some prf'
berghofe@11519
   933
        | None => get_first (fn (prf1, prf2) => Some (prf_subst
berghofe@11519
   934
            (match_proof Ts tmatch ([], (Vartab.empty, [])) (prf1, prf)) prf2)
berghofe@11519
   935
               handle PMatch => None) rules);
berghofe@11519
   936
berghofe@11615
   937
    fun rew0 Ts (prf as AbsP (_, _, prf' %% PBound 0)) =
berghofe@11519
   938
          if prf_loose_Pbvar1 prf' 0 then rew Ts prf
berghofe@11519
   939
          else
berghofe@11519
   940
            let val prf'' = incr_pboundvars (~1) 0 prf'
berghofe@11519
   941
            in Some (if_none (rew Ts prf'') prf'') end
berghofe@11615
   942
      | rew0 Ts (prf as Abst (_, _, prf' % Some (Bound 0))) =
berghofe@11519
   943
          if prf_loose_bvar1 prf' 0 then rew Ts prf
berghofe@11519
   944
          else
berghofe@11519
   945
            let val prf'' = incr_pboundvars 0 (~1) prf'
berghofe@11519
   946
            in Some (if_none (rew Ts prf'') prf'') end
berghofe@11519
   947
      | rew0 Ts prf = rew Ts prf;
berghofe@11519
   948
berghofe@11519
   949
    fun rew1 Ts prf = (case rew2 Ts prf of
berghofe@11519
   950
          Some prf1 => (case rew0 Ts prf1 of
berghofe@11519
   951
              Some prf2 => Some (if_none (rew1 Ts prf2) prf2)
berghofe@11519
   952
            | None => Some prf1)
berghofe@11519
   953
        | None => (case rew0 Ts prf of
berghofe@11519
   954
              Some prf1 => Some (if_none (rew1 Ts prf1) prf1)
berghofe@11519
   955
            | None => None))
berghofe@11519
   956
berghofe@11615
   957
    and rew2 Ts (prf % Some t) = (case prf of
berghofe@11519
   958
            Abst (_, _, body) =>
berghofe@11519
   959
              let val prf' = prf_subst_bounds [t] body
berghofe@11519
   960
              in Some (if_none (rew2 Ts prf') prf') end
berghofe@11519
   961
          | _ => (case rew1 Ts prf of
berghofe@11615
   962
              Some prf' => Some (prf' % Some t)
berghofe@11519
   963
            | None => None))
berghofe@11615
   964
      | rew2 Ts (prf % None) = apsome (fn prf' => prf' % None) (rew1 Ts prf)
berghofe@11615
   965
      | rew2 Ts (prf1 %% prf2) = (case prf1 of
berghofe@11519
   966
            AbsP (_, _, body) =>
berghofe@11519
   967
              let val prf' = prf_subst_pbounds [prf2] body
berghofe@11519
   968
              in Some (if_none (rew2 Ts prf') prf') end
berghofe@11519
   969
          | _ => (case rew1 Ts prf1 of
berghofe@11519
   970
              Some prf1' => (case rew1 Ts prf2 of
berghofe@11615
   971
                  Some prf2' => Some (prf1' %% prf2')
berghofe@11615
   972
                | None => Some (prf1' %% prf2))
berghofe@11519
   973
            | None => (case rew1 Ts prf2 of
berghofe@11615
   974
                  Some prf2' => Some (prf1 %% prf2')
berghofe@11519
   975
                | None => None)))
berghofe@11519
   976
      | rew2 Ts (Abst (s, T, prf)) = (case rew1 (if_none T dummyT :: Ts) prf of
berghofe@11519
   977
            Some prf' => Some (Abst (s, T, prf'))
berghofe@11519
   978
          | None => None)
berghofe@11519
   979
      | rew2 Ts (AbsP (s, t, prf)) = (case rew1 Ts prf of
berghofe@11519
   980
            Some prf' => Some (AbsP (s, t, prf'))
berghofe@11519
   981
          | None => None)
berghofe@11519
   982
      | rew2 _ _ = None
berghofe@11519
   983
berghofe@11519
   984
  in if_none (rew1 [] prf) prf end;
berghofe@11519
   985
berghofe@11519
   986
fun rewrite_proof tsig = rewrite_prf (fn (tab, f) =>
berghofe@11519
   987
  Type.typ_match tsig (tab, f ()) handle Type.TYPE_MATCH => raise PMatch);
berghofe@11519
   988
berghofe@11715
   989
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
berghofe@11615
   990
berghofe@11519
   991
(**** theory data ****)
berghofe@11519
   992
berghofe@11519
   993
(* data kind 'Pure/proof' *)
berghofe@11519
   994
berghofe@11519
   995
structure ProofArgs =
berghofe@11519
   996
struct
berghofe@11519
   997
  val name = "Pure/proof";
berghofe@11519
   998
  type T = ((proof * proof) list *
berghofe@11519
   999
    (string * (typ list -> proof -> proof option)) list) ref;
berghofe@11519
  1000
berghofe@11519
  1001
  val empty = (ref ([], [])): T;
berghofe@11519
  1002
  fun copy (ref rews) = (ref rews): T;            (*create new reference!*)
berghofe@11519
  1003
  val prep_ext = copy;
berghofe@11519
  1004
  fun merge (ref (rules1, procs1), ref (rules2, procs2)) = ref
berghofe@11519
  1005
    (merge_lists rules1 rules2,
berghofe@11519
  1006
     generic_merge (uncurry equal o pairself fst) I I procs1 procs2);
berghofe@11519
  1007
  fun print _ _ = ();
berghofe@11519
  1008
end;
berghofe@11519
  1009
berghofe@11519
  1010
structure ProofData = TheoryDataFun(ProofArgs);
berghofe@11519
  1011
berghofe@11519
  1012
val init = ProofData.init;
berghofe@11519
  1013
berghofe@11519
  1014
fun add_prf_rrules thy rs =
berghofe@11519
  1015
  let val r = ProofData.get thy
berghofe@11519
  1016
  in r := (rs @ fst (!r), snd (!r)) end;
berghofe@11519
  1017
berghofe@11519
  1018
fun add_prf_rprocs thy ps =
berghofe@11519
  1019
  let val r = ProofData.get thy
berghofe@11519
  1020
  in r := (fst (!r), ps @ snd (!r)) end;
berghofe@11519
  1021
berghofe@11519
  1022
fun thm_proof sign (name, tags) hyps prop prf =
berghofe@11519
  1023
  let
berghofe@11519
  1024
    val hyps' = gen_distinct op aconv hyps;
berghofe@11519
  1025
    val prop = Logic.list_implies (hyps', prop);
berghofe@11519
  1026
    val nvs = needed_vars prop;
berghofe@11519
  1027
    val args = map (fn (v as Var (ixn, _)) =>
berghofe@11519
  1028
        if ixn mem nvs then Some v else None) (vars_of prop) @
berghofe@11519
  1029
      map Some (sort (make_ord atless) (term_frees prop));
wenzelm@11543
  1030
    val opt_prf = if ! proofs = 2 then
berghofe@11519
  1031
        #4 (shrink [] 0 (rewrite_prf fst (!(ProofData.get_sg sign))
berghofe@11519
  1032
          (foldr (uncurry implies_intr_proof) (hyps', prf))))
berghofe@11519
  1033
      else MinProof (mk_min_proof ([], prf));
berghofe@11519
  1034
    val head = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
  1035
        (PThm ((old_name, _), prf', prop', None), args') =>
berghofe@11519
  1036
          if (old_name="" orelse old_name=name) andalso
berghofe@11519
  1037
             prop = prop' andalso args = args' then
berghofe@11519
  1038
            PThm ((name, tags), prf', prop, None)
berghofe@11519
  1039
          else
berghofe@11519
  1040
            PThm ((name, tags), opt_prf, prop, None)
berghofe@11519
  1041
      | _ => PThm ((name, tags), opt_prf, prop, None))
berghofe@11519
  1042
  in
berghofe@11519
  1043
    proof_combP (proof_combt' (head, args), map Hyp hyps')
berghofe@11519
  1044
  end;
berghofe@11519
  1045
berghofe@11519
  1046
fun get_name_tags prop prf = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
  1047
      (PThm ((name, tags), _, prop', _), _) =>
berghofe@11519
  1048
        if prop=prop' then (name, tags) else ("", [])
berghofe@11519
  1049
    | (PAxm (name, prop', _), _) =>
berghofe@11519
  1050
        if prop=prop' then (name, []) else ("", [])
berghofe@11519
  1051
    | _ => ("", []));
berghofe@11519
  1052
berghofe@11519
  1053
end;
berghofe@11519
  1054
berghofe@11519
  1055
structure BasicProofterm : BASIC_PROOFTERM = Proofterm;
berghofe@11519
  1056
open BasicProofterm;