src/HOL/Library/BigO.thy
author kuncar
Fri Dec 09 18:07:04 2011 +0100 (2011-12-09)
changeset 45802 b16f976db515
parent 45270 d5b5c9259afd
child 47108 2a1953f0d20d
permissions -rw-r--r--
Quotient_Info stores only relation maps
wenzelm@16932
     1
(*  Title:      HOL/Library/BigO.thy
avigad@16908
     2
    Authors:    Jeremy Avigad and Kevin Donnelly
avigad@16908
     3
*)
avigad@16908
     4
avigad@16908
     5
header {* Big O notation *}
avigad@16908
     6
avigad@16908
     7
theory BigO
haftmann@38622
     8
imports Complex_Main Function_Algebras Set_Algebras
avigad@16908
     9
begin
avigad@16908
    10
avigad@16908
    11
text {*
avigad@16908
    12
This library is designed to support asymptotic ``big O'' calculations,
wenzelm@17199
    13
i.e.~reasoning with expressions of the form $f = O(g)$ and $f = g +
wenzelm@17199
    14
O(h)$.  An earlier version of this library is described in detail in
wenzelm@17199
    15
\cite{Avigad-Donnelly}.
wenzelm@17199
    16
avigad@16908
    17
The main changes in this version are as follows:
avigad@16908
    18
\begin{itemize}
wenzelm@17199
    19
\item We have eliminated the @{text O} operator on sets. (Most uses of this seem
avigad@16908
    20
  to be inessential.)
wenzelm@17199
    21
\item We no longer use @{text "+"} as output syntax for @{text "+o"}
wenzelm@17199
    22
\item Lemmas involving @{text "sumr"} have been replaced by more general lemmas 
wenzelm@17199
    23
  involving `@{text "setsum"}.
avigad@16908
    24
\item The library has been expanded, with e.g.~support for expressions of
wenzelm@17199
    25
  the form @{text "f < g + O(h)"}.
avigad@16908
    26
\end{itemize}
wenzelm@17199
    27
wenzelm@17199
    28
Note also since the Big O library includes rules that demonstrate set
wenzelm@17199
    29
inclusion, to use the automated reasoners effectively with the library
wenzelm@17199
    30
one should redeclare the theorem @{text "subsetI"} as an intro rule,
wenzelm@17199
    31
rather than as an @{text "intro!"} rule, for example, using
wenzelm@17199
    32
\isa{\isakeyword{declare}}~@{text "subsetI [del, intro]"}.
avigad@16908
    33
*}
avigad@16908
    34
avigad@16908
    35
subsection {* Definitions *}
avigad@16908
    36
wenzelm@19736
    37
definition
haftmann@35028
    38
  bigo :: "('a => 'b::linordered_idom) => ('a => 'b) set"  ("(1O'(_'))") where
wenzelm@19736
    39
  "O(f::('a => 'b)) =
avigad@16908
    40
      {h. EX c. ALL x. abs (h x) <= c * abs (f x)}"
avigad@16908
    41
haftmann@35028
    42
lemma bigo_pos_const: "(EX (c::'a::linordered_idom). 
avigad@16908
    43
    ALL x. (abs (h x)) <= (c * (abs (f x))))
avigad@16908
    44
      = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))"
avigad@16908
    45
  apply auto
avigad@16908
    46
  apply (case_tac "c = 0")
avigad@16908
    47
  apply simp
avigad@16908
    48
  apply (rule_tac x = "1" in exI)
avigad@16908
    49
  apply simp
avigad@16908
    50
  apply (rule_tac x = "abs c" in exI)
avigad@16908
    51
  apply auto
avigad@16908
    52
  apply (subgoal_tac "c * abs(f x) <= abs c * abs (f x)")
avigad@16908
    53
  apply (erule_tac x = x in allE)
avigad@16908
    54
  apply force
avigad@16908
    55
  apply (rule mult_right_mono)
avigad@16908
    56
  apply (rule abs_ge_self)
avigad@16908
    57
  apply (rule abs_ge_zero)
wenzelm@22665
    58
  done
avigad@16908
    59
avigad@16908
    60
lemma bigo_alt_def: "O(f) = 
avigad@16908
    61
    {h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}"
wenzelm@22665
    62
  by (auto simp add: bigo_def bigo_pos_const)
avigad@16908
    63
avigad@16908
    64
lemma bigo_elt_subset [intro]: "f : O(g) ==> O(f) <= O(g)"
avigad@16908
    65
  apply (auto simp add: bigo_alt_def)
avigad@16908
    66
  apply (rule_tac x = "ca * c" in exI)
avigad@16908
    67
  apply (rule conjI)
avigad@16908
    68
  apply (rule mult_pos_pos)
avigad@16908
    69
  apply (assumption)+
avigad@16908
    70
  apply (rule allI)
avigad@16908
    71
  apply (drule_tac x = "xa" in spec)+
avigad@16908
    72
  apply (subgoal_tac "ca * abs(f xa) <= ca * (c * abs(g xa))")
avigad@16908
    73
  apply (erule order_trans)
avigad@16908
    74
  apply (simp add: mult_ac)
avigad@16908
    75
  apply (rule mult_left_mono, assumption)
avigad@16908
    76
  apply (rule order_less_imp_le, assumption)
wenzelm@22665
    77
  done
avigad@16908
    78
avigad@16908
    79
lemma bigo_refl [intro]: "f : O(f)"
avigad@16908
    80
  apply(auto simp add: bigo_def)
avigad@16908
    81
  apply(rule_tac x = 1 in exI)
avigad@16908
    82
  apply simp
wenzelm@22665
    83
  done
avigad@16908
    84
avigad@16908
    85
lemma bigo_zero: "0 : O(g)"
avigad@16908
    86
  apply (auto simp add: bigo_def func_zero)
avigad@16908
    87
  apply (rule_tac x = 0 in exI)
avigad@16908
    88
  apply auto
wenzelm@22665
    89
  done
avigad@16908
    90
avigad@16908
    91
lemma bigo_zero2: "O(%x.0) = {%x.0}"
paulson@41865
    92
  by (auto simp add: bigo_def) 
avigad@16908
    93
avigad@16908
    94
lemma bigo_plus_self_subset [intro]: 
berghofe@26814
    95
  "O(f) \<oplus> O(f) <= O(f)"
berghofe@26814
    96
  apply (auto simp add: bigo_alt_def set_plus_def)
avigad@16908
    97
  apply (rule_tac x = "c + ca" in exI)
avigad@16908
    98
  apply auto
nipkow@23477
    99
  apply (simp add: ring_distribs func_plus)
avigad@16908
   100
  apply (rule order_trans)
avigad@16908
   101
  apply (rule abs_triangle_ineq)
avigad@16908
   102
  apply (rule add_mono)
avigad@16908
   103
  apply force
avigad@16908
   104
  apply force
avigad@16908
   105
done
avigad@16908
   106
berghofe@26814
   107
lemma bigo_plus_idemp [simp]: "O(f) \<oplus> O(f) = O(f)"
avigad@16908
   108
  apply (rule equalityI)
avigad@16908
   109
  apply (rule bigo_plus_self_subset)
avigad@16908
   110
  apply (rule set_zero_plus2) 
avigad@16908
   111
  apply (rule bigo_zero)
wenzelm@22665
   112
  done
avigad@16908
   113
berghofe@26814
   114
lemma bigo_plus_subset [intro]: "O(f + g) <= O(f) \<oplus> O(g)"
avigad@16908
   115
  apply (rule subsetI)
berghofe@26814
   116
  apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def)
avigad@16908
   117
  apply (subst bigo_pos_const [symmetric])+
avigad@16908
   118
  apply (rule_tac x = 
avigad@16908
   119
    "%n. if abs (g n) <= (abs (f n)) then x n else 0" in exI)
avigad@16908
   120
  apply (rule conjI)
avigad@16908
   121
  apply (rule_tac x = "c + c" in exI)
avigad@16908
   122
  apply (clarsimp)
avigad@16908
   123
  apply (auto)
avigad@16908
   124
  apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (f xa)")
avigad@16908
   125
  apply (erule_tac x = xa in allE)
avigad@16908
   126
  apply (erule order_trans)
avigad@16908
   127
  apply (simp)
avigad@16908
   128
  apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))")
avigad@16908
   129
  apply (erule order_trans)
nipkow@23477
   130
  apply (simp add: ring_distribs)
avigad@16908
   131
  apply (rule mult_left_mono)
avigad@16908
   132
  apply (simp add: abs_triangle_ineq)
avigad@16908
   133
  apply (simp add: order_less_le)
avigad@16908
   134
  apply (rule mult_nonneg_nonneg)
avigad@16908
   135
  apply (rule add_nonneg_nonneg)
avigad@16908
   136
  apply auto
avigad@16908
   137
  apply (rule_tac x = "%n. if (abs (f n)) <  abs (g n) then x n else 0" 
avigad@16908
   138
     in exI)
avigad@16908
   139
  apply (rule conjI)
avigad@16908
   140
  apply (rule_tac x = "c + c" in exI)
avigad@16908
   141
  apply auto
avigad@16908
   142
  apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (g xa)")
avigad@16908
   143
  apply (erule_tac x = xa in allE)
avigad@16908
   144
  apply (erule order_trans)
avigad@16908
   145
  apply (simp)
avigad@16908
   146
  apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))")
avigad@16908
   147
  apply (erule order_trans)
nipkow@23477
   148
  apply (simp add: ring_distribs)
avigad@16908
   149
  apply (rule mult_left_mono)
avigad@16908
   150
  apply (rule abs_triangle_ineq)
avigad@16908
   151
  apply (simp add: order_less_le)
avigad@16908
   152
  apply (rule mult_nonneg_nonneg)
avigad@16908
   153
  apply (rule add_nonneg_nonneg)
avigad@16908
   154
  apply (erule order_less_imp_le)+
avigad@16908
   155
  apply simp
avigad@16908
   156
  apply (rule ext)
avigad@16908
   157
  apply (auto simp add: if_splits linorder_not_le)
wenzelm@22665
   158
  done
avigad@16908
   159
berghofe@26814
   160
lemma bigo_plus_subset2 [intro]: "A <= O(f) ==> B <= O(f) ==> A \<oplus> B <= O(f)"
berghofe@26814
   161
  apply (subgoal_tac "A \<oplus> B <= O(f) \<oplus> O(f)")
avigad@16908
   162
  apply (erule order_trans)
avigad@16908
   163
  apply simp
avigad@16908
   164
  apply (auto del: subsetI simp del: bigo_plus_idemp)
wenzelm@22665
   165
  done
avigad@16908
   166
avigad@16908
   167
lemma bigo_plus_eq: "ALL x. 0 <= f x ==> ALL x. 0 <= g x ==> 
berghofe@26814
   168
    O(f + g) = O(f) \<oplus> O(g)"
avigad@16908
   169
  apply (rule equalityI)
avigad@16908
   170
  apply (rule bigo_plus_subset)
berghofe@26814
   171
  apply (simp add: bigo_alt_def set_plus_def func_plus)
avigad@16908
   172
  apply clarify
avigad@16908
   173
  apply (rule_tac x = "max c ca" in exI)
avigad@16908
   174
  apply (rule conjI)
avigad@16908
   175
  apply (subgoal_tac "c <= max c ca")
avigad@16908
   176
  apply (erule order_less_le_trans)
avigad@16908
   177
  apply assumption
avigad@16908
   178
  apply (rule le_maxI1)
avigad@16908
   179
  apply clarify
avigad@16908
   180
  apply (drule_tac x = "xa" in spec)+
avigad@16908
   181
  apply (subgoal_tac "0 <= f xa + g xa")
nipkow@23477
   182
  apply (simp add: ring_distribs)
avigad@16908
   183
  apply (subgoal_tac "abs(a xa + b xa) <= abs(a xa) + abs(b xa)")
avigad@16908
   184
  apply (subgoal_tac "abs(a xa) + abs(b xa) <= 
avigad@16908
   185
      max c ca * f xa + max c ca * g xa")
avigad@16908
   186
  apply (force)
avigad@16908
   187
  apply (rule add_mono)
avigad@16908
   188
  apply (subgoal_tac "c * f xa <= max c ca * f xa")
avigad@16908
   189
  apply (force)
avigad@16908
   190
  apply (rule mult_right_mono)
avigad@16908
   191
  apply (rule le_maxI1)
avigad@16908
   192
  apply assumption
avigad@16908
   193
  apply (subgoal_tac "ca * g xa <= max c ca * g xa")
avigad@16908
   194
  apply (force)
avigad@16908
   195
  apply (rule mult_right_mono)
avigad@16908
   196
  apply (rule le_maxI2)
avigad@16908
   197
  apply assumption
avigad@16908
   198
  apply (rule abs_triangle_ineq)
avigad@16908
   199
  apply (rule add_nonneg_nonneg)
avigad@16908
   200
  apply assumption+
wenzelm@22665
   201
  done
avigad@16908
   202
avigad@16908
   203
lemma bigo_bounded_alt: "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> 
avigad@16908
   204
    f : O(g)" 
avigad@16908
   205
  apply (auto simp add: bigo_def)
avigad@16908
   206
  apply (rule_tac x = "abs c" in exI)
avigad@16908
   207
  apply auto
avigad@16908
   208
  apply (drule_tac x = x in spec)+
avigad@16908
   209
  apply (simp add: abs_mult [symmetric])
wenzelm@22665
   210
  done
avigad@16908
   211
avigad@16908
   212
lemma bigo_bounded: "ALL x. 0 <= f x ==> ALL x. f x <= g x ==> 
avigad@16908
   213
    f : O(g)" 
avigad@16908
   214
  apply (erule bigo_bounded_alt [of f 1 g])
avigad@16908
   215
  apply simp
wenzelm@22665
   216
  done
avigad@16908
   217
avigad@16908
   218
lemma bigo_bounded2: "ALL x. lb x <= f x ==> ALL x. f x <= lb x + g x ==>
avigad@16908
   219
    f : lb +o O(g)"
avigad@16908
   220
  apply (rule set_minus_imp_plus)
avigad@16908
   221
  apply (rule bigo_bounded)
berghofe@26814
   222
  apply (auto simp add: diff_minus fun_Compl_def func_plus)
avigad@16908
   223
  apply (drule_tac x = x in spec)+
avigad@16908
   224
  apply force
avigad@16908
   225
  apply (drule_tac x = x in spec)+
avigad@16908
   226
  apply force
wenzelm@22665
   227
  done
avigad@16908
   228
avigad@16908
   229
lemma bigo_abs: "(%x. abs(f x)) =o O(f)" 
avigad@16908
   230
  apply (unfold bigo_def)
avigad@16908
   231
  apply auto
avigad@16908
   232
  apply (rule_tac x = 1 in exI)
avigad@16908
   233
  apply auto
wenzelm@22665
   234
  done
avigad@16908
   235
avigad@16908
   236
lemma bigo_abs2: "f =o O(%x. abs(f x))"
avigad@16908
   237
  apply (unfold bigo_def)
avigad@16908
   238
  apply auto
avigad@16908
   239
  apply (rule_tac x = 1 in exI)
avigad@16908
   240
  apply auto
wenzelm@22665
   241
  done
avigad@16908
   242
avigad@16908
   243
lemma bigo_abs3: "O(f) = O(%x. abs(f x))"
avigad@16908
   244
  apply (rule equalityI)
avigad@16908
   245
  apply (rule bigo_elt_subset)
avigad@16908
   246
  apply (rule bigo_abs2)
avigad@16908
   247
  apply (rule bigo_elt_subset)
avigad@16908
   248
  apply (rule bigo_abs)
wenzelm@22665
   249
  done
avigad@16908
   250
avigad@16908
   251
lemma bigo_abs4: "f =o g +o O(h) ==> 
avigad@16908
   252
    (%x. abs (f x)) =o (%x. abs (g x)) +o O(h)"
avigad@16908
   253
  apply (drule set_plus_imp_minus)
avigad@16908
   254
  apply (rule set_minus_imp_plus)
berghofe@26814
   255
  apply (subst fun_diff_def)
avigad@16908
   256
proof -
avigad@16908
   257
  assume a: "f - g : O(h)"
avigad@16908
   258
  have "(%x. abs (f x) - abs (g x)) =o O(%x. abs(abs (f x) - abs (g x)))"
avigad@16908
   259
    by (rule bigo_abs2)
avigad@16908
   260
  also have "... <= O(%x. abs (f x - g x))"
avigad@16908
   261
    apply (rule bigo_elt_subset)
avigad@16908
   262
    apply (rule bigo_bounded)
avigad@16908
   263
    apply force
avigad@16908
   264
    apply (rule allI)
avigad@16908
   265
    apply (rule abs_triangle_ineq3)
avigad@16908
   266
    done
avigad@16908
   267
  also have "... <= O(f - g)"
avigad@16908
   268
    apply (rule bigo_elt_subset)
berghofe@26814
   269
    apply (subst fun_diff_def)
avigad@16908
   270
    apply (rule bigo_abs)
avigad@16908
   271
    done
wenzelm@23373
   272
  also from a have "... <= O(h)"
avigad@16908
   273
    by (rule bigo_elt_subset)
avigad@16908
   274
  finally show "(%x. abs (f x) - abs (g x)) : O(h)".
avigad@16908
   275
qed
avigad@16908
   276
avigad@16908
   277
lemma bigo_abs5: "f =o O(g) ==> (%x. abs(f x)) =o O(g)" 
wenzelm@22665
   278
  by (unfold bigo_def, auto)
avigad@16908
   279
berghofe@26814
   280
lemma bigo_elt_subset2 [intro]: "f : g +o O(h) ==> O(f) <= O(g) \<oplus> O(h)"
avigad@16908
   281
proof -
avigad@16908
   282
  assume "f : g +o O(h)"
berghofe@26814
   283
  also have "... <= O(g) \<oplus> O(h)"
avigad@16908
   284
    by (auto del: subsetI)
berghofe@26814
   285
  also have "... = O(%x. abs(g x)) \<oplus> O(%x. abs(h x))"
avigad@16908
   286
    apply (subst bigo_abs3 [symmetric])+
avigad@16908
   287
    apply (rule refl)
avigad@16908
   288
    done
avigad@16908
   289
  also have "... = O((%x. abs(g x)) + (%x. abs(h x)))"
avigad@16908
   290
    by (rule bigo_plus_eq [symmetric], auto)
avigad@16908
   291
  finally have "f : ...".
avigad@16908
   292
  then have "O(f) <= ..."
avigad@16908
   293
    by (elim bigo_elt_subset)
berghofe@26814
   294
  also have "... = O(%x. abs(g x)) \<oplus> O(%x. abs(h x))"
avigad@16908
   295
    by (rule bigo_plus_eq, auto)
avigad@16908
   296
  finally show ?thesis
avigad@16908
   297
    by (simp add: bigo_abs3 [symmetric])
avigad@16908
   298
qed
avigad@16908
   299
berghofe@26814
   300
lemma bigo_mult [intro]: "O(f)\<otimes>O(g) <= O(f * g)"
avigad@16908
   301
  apply (rule subsetI)
avigad@16908
   302
  apply (subst bigo_def)
berghofe@26814
   303
  apply (auto simp add: bigo_alt_def set_times_def func_times)
avigad@16908
   304
  apply (rule_tac x = "c * ca" in exI)
avigad@16908
   305
  apply(rule allI)
avigad@16908
   306
  apply(erule_tac x = x in allE)+
avigad@16908
   307
  apply(subgoal_tac "c * ca * abs(f x * g x) = 
avigad@16908
   308
      (c * abs(f x)) * (ca * abs(g x))")
avigad@16908
   309
  apply(erule ssubst)
avigad@16908
   310
  apply (subst abs_mult)
avigad@16908
   311
  apply (rule mult_mono)
avigad@16908
   312
  apply assumption+
avigad@16908
   313
  apply (rule mult_nonneg_nonneg)
avigad@16908
   314
  apply auto
avigad@16908
   315
  apply (simp add: mult_ac abs_mult)
wenzelm@22665
   316
  done
avigad@16908
   317
avigad@16908
   318
lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)"
avigad@16908
   319
  apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult)
avigad@16908
   320
  apply (rule_tac x = c in exI)
avigad@16908
   321
  apply auto
avigad@16908
   322
  apply (drule_tac x = x in spec)
avigad@16908
   323
  apply (subgoal_tac "abs(f x) * abs(b x) <= abs(f x) * (c * abs(g x))")
avigad@16908
   324
  apply (force simp add: mult_ac)
avigad@16908
   325
  apply (rule mult_left_mono, assumption)
avigad@16908
   326
  apply (rule abs_ge_zero)
wenzelm@22665
   327
  done
avigad@16908
   328
avigad@16908
   329
lemma bigo_mult3: "f : O(h) ==> g : O(j) ==> f * g : O(h * j)"
avigad@16908
   330
  apply (rule subsetD)
avigad@16908
   331
  apply (rule bigo_mult)
avigad@16908
   332
  apply (erule set_times_intro, assumption)
wenzelm@22665
   333
  done
avigad@16908
   334
avigad@16908
   335
lemma bigo_mult4 [intro]:"f : k +o O(h) ==> g * f : (g * k) +o O(g * h)"
avigad@16908
   336
  apply (drule set_plus_imp_minus)
avigad@16908
   337
  apply (rule set_minus_imp_plus)
avigad@16908
   338
  apply (drule bigo_mult3 [where g = g and j = g])
nipkow@29667
   339
  apply (auto simp add: algebra_simps)
wenzelm@22665
   340
  done
avigad@16908
   341
wenzelm@41528
   342
lemma bigo_mult5:
wenzelm@41528
   343
  assumes "ALL x. f x ~= 0"
wenzelm@41528
   344
  shows "O(f * g) <= (f::'a => ('b::linordered_field)) *o O(g)"
wenzelm@41528
   345
proof
wenzelm@41528
   346
  fix h
wenzelm@41528
   347
  assume "h : O(f * g)"
wenzelm@41528
   348
  then have "(%x. 1 / (f x)) * h : (%x. 1 / f x) *o O(f * g)"
wenzelm@41528
   349
    by auto
wenzelm@41528
   350
  also have "... <= O((%x. 1 / f x) * (f * g))"
wenzelm@41528
   351
    by (rule bigo_mult2)
wenzelm@41528
   352
  also have "(%x. 1 / f x) * (f * g) = g"
wenzelm@41528
   353
    apply (simp add: func_times) 
wenzelm@41528
   354
    apply (rule ext)
wenzelm@41528
   355
    apply (simp add: assms nonzero_divide_eq_eq mult_ac)
wenzelm@41528
   356
    done
wenzelm@41528
   357
  finally have "(%x. (1::'b) / f x) * h : O(g)" .
wenzelm@41528
   358
  then have "f * ((%x. (1::'b) / f x) * h) : f *o O(g)"
wenzelm@41528
   359
    by auto
wenzelm@41528
   360
  also have "f * ((%x. (1::'b) / f x) * h) = h"
wenzelm@41528
   361
    apply (simp add: func_times) 
wenzelm@41528
   362
    apply (rule ext)
wenzelm@41528
   363
    apply (simp add: assms nonzero_divide_eq_eq mult_ac)
wenzelm@41528
   364
    done
wenzelm@41528
   365
  finally show "h : f *o O(g)" .
avigad@16908
   366
qed
avigad@16908
   367
avigad@16908
   368
lemma bigo_mult6: "ALL x. f x ~= 0 ==>
haftmann@35028
   369
    O(f * g) = (f::'a => ('b::linordered_field)) *o O(g)"
avigad@16908
   370
  apply (rule equalityI)
avigad@16908
   371
  apply (erule bigo_mult5)
avigad@16908
   372
  apply (rule bigo_mult2)
wenzelm@22665
   373
  done
avigad@16908
   374
avigad@16908
   375
lemma bigo_mult7: "ALL x. f x ~= 0 ==>
haftmann@35028
   376
    O(f * g) <= O(f::'a => ('b::linordered_field)) \<otimes> O(g)"
avigad@16908
   377
  apply (subst bigo_mult6)
avigad@16908
   378
  apply assumption
avigad@16908
   379
  apply (rule set_times_mono3)
avigad@16908
   380
  apply (rule bigo_refl)
wenzelm@22665
   381
  done
avigad@16908
   382
avigad@16908
   383
lemma bigo_mult8: "ALL x. f x ~= 0 ==>
haftmann@35028
   384
    O(f * g) = O(f::'a => ('b::linordered_field)) \<otimes> O(g)"
avigad@16908
   385
  apply (rule equalityI)
avigad@16908
   386
  apply (erule bigo_mult7)
avigad@16908
   387
  apply (rule bigo_mult)
wenzelm@22665
   388
  done
avigad@16908
   389
avigad@16908
   390
lemma bigo_minus [intro]: "f : O(g) ==> - f : O(g)"
berghofe@26814
   391
  by (auto simp add: bigo_def fun_Compl_def)
avigad@16908
   392
avigad@16908
   393
lemma bigo_minus2: "f : g +o O(h) ==> -f : -g +o O(h)"
avigad@16908
   394
  apply (rule set_minus_imp_plus)
avigad@16908
   395
  apply (drule set_plus_imp_minus)
avigad@16908
   396
  apply (drule bigo_minus)
avigad@16908
   397
  apply (simp add: diff_minus)
wenzelm@22665
   398
  done
avigad@16908
   399
avigad@16908
   400
lemma bigo_minus3: "O(-f) = O(f)"
wenzelm@41528
   401
  by (auto simp add: bigo_def fun_Compl_def)
avigad@16908
   402
avigad@16908
   403
lemma bigo_plus_absorb_lemma1: "f : O(g) ==> f +o O(g) <= O(g)"
avigad@16908
   404
proof -
avigad@16908
   405
  assume a: "f : O(g)"
avigad@16908
   406
  show "f +o O(g) <= O(g)"
avigad@16908
   407
  proof -
avigad@16908
   408
    have "f : O(f)" by auto
berghofe@26814
   409
    then have "f +o O(g) <= O(f) \<oplus> O(g)"
avigad@16908
   410
      by (auto del: subsetI)
berghofe@26814
   411
    also have "... <= O(g) \<oplus> O(g)"
avigad@16908
   412
    proof -
avigad@16908
   413
      from a have "O(f) <= O(g)" by (auto del: subsetI)
avigad@16908
   414
      thus ?thesis by (auto del: subsetI)
avigad@16908
   415
    qed
wenzelm@41528
   416
    also have "... <= O(g)" by simp
avigad@16908
   417
    finally show ?thesis .
avigad@16908
   418
  qed
avigad@16908
   419
qed
avigad@16908
   420
avigad@16908
   421
lemma bigo_plus_absorb_lemma2: "f : O(g) ==> O(g) <= f +o O(g)"
avigad@16908
   422
proof -
avigad@16908
   423
  assume a: "f : O(g)"
avigad@16908
   424
  show "O(g) <= f +o O(g)"
avigad@16908
   425
  proof -
avigad@16908
   426
    from a have "-f : O(g)" by auto
avigad@16908
   427
    then have "-f +o O(g) <= O(g)" by (elim bigo_plus_absorb_lemma1)
avigad@16908
   428
    then have "f +o (-f +o O(g)) <= f +o O(g)" by auto
avigad@16908
   429
    also have "f +o (-f +o O(g)) = O(g)"
avigad@16908
   430
      by (simp add: set_plus_rearranges)
avigad@16908
   431
    finally show ?thesis .
avigad@16908
   432
  qed
avigad@16908
   433
qed
avigad@16908
   434
avigad@16908
   435
lemma bigo_plus_absorb [simp]: "f : O(g) ==> f +o O(g) = O(g)"
avigad@16908
   436
  apply (rule equalityI)
avigad@16908
   437
  apply (erule bigo_plus_absorb_lemma1)
avigad@16908
   438
  apply (erule bigo_plus_absorb_lemma2)
wenzelm@22665
   439
  done
avigad@16908
   440
avigad@16908
   441
lemma bigo_plus_absorb2 [intro]: "f : O(g) ==> A <= O(g) ==> f +o A <= O(g)"
avigad@16908
   442
  apply (subgoal_tac "f +o A <= f +o O(g)")
avigad@16908
   443
  apply force+
wenzelm@22665
   444
  done
avigad@16908
   445
avigad@16908
   446
lemma bigo_add_commute_imp: "f : g +o O(h) ==> g : f +o O(h)"
avigad@16908
   447
  apply (subst set_minus_plus [symmetric])
avigad@16908
   448
  apply (subgoal_tac "g - f = - (f - g)")
avigad@16908
   449
  apply (erule ssubst)
avigad@16908
   450
  apply (rule bigo_minus)
avigad@16908
   451
  apply (subst set_minus_plus)
avigad@16908
   452
  apply assumption
avigad@16908
   453
  apply  (simp add: diff_minus add_ac)
wenzelm@22665
   454
  done
avigad@16908
   455
avigad@16908
   456
lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))"
avigad@16908
   457
  apply (rule iffI)
avigad@16908
   458
  apply (erule bigo_add_commute_imp)+
wenzelm@22665
   459
  done
avigad@16908
   460
avigad@16908
   461
lemma bigo_const1: "(%x. c) : O(%x. 1)"
wenzelm@22665
   462
  by (auto simp add: bigo_def mult_ac)
avigad@16908
   463
avigad@16908
   464
lemma bigo_const2 [intro]: "O(%x. c) <= O(%x. 1)"
avigad@16908
   465
  apply (rule bigo_elt_subset)
avigad@16908
   466
  apply (rule bigo_const1)
wenzelm@22665
   467
  done
avigad@16908
   468
haftmann@35028
   469
lemma bigo_const3: "(c::'a::linordered_field) ~= 0 ==> (%x. 1) : O(%x. c)"
avigad@16908
   470
  apply (simp add: bigo_def)
avigad@16908
   471
  apply (rule_tac x = "abs(inverse c)" in exI)
avigad@16908
   472
  apply (simp add: abs_mult [symmetric])
wenzelm@22665
   473
  done
avigad@16908
   474
haftmann@35028
   475
lemma bigo_const4: "(c::'a::linordered_field) ~= 0 ==> O(%x. 1) <= O(%x. c)"
wenzelm@22665
   476
  by (rule bigo_elt_subset, rule bigo_const3, assumption)
avigad@16908
   477
haftmann@35028
   478
lemma bigo_const [simp]: "(c::'a::linordered_field) ~= 0 ==> 
avigad@16908
   479
    O(%x. c) = O(%x. 1)"
wenzelm@22665
   480
  by (rule equalityI, rule bigo_const2, rule bigo_const4, assumption)
avigad@16908
   481
avigad@16908
   482
lemma bigo_const_mult1: "(%x. c * f x) : O(f)"
avigad@16908
   483
  apply (simp add: bigo_def)
avigad@16908
   484
  apply (rule_tac x = "abs(c)" in exI)
avigad@16908
   485
  apply (auto simp add: abs_mult [symmetric])
wenzelm@22665
   486
  done
avigad@16908
   487
avigad@16908
   488
lemma bigo_const_mult2: "O(%x. c * f x) <= O(f)"
wenzelm@22665
   489
  by (rule bigo_elt_subset, rule bigo_const_mult1)
avigad@16908
   490
haftmann@35028
   491
lemma bigo_const_mult3: "(c::'a::linordered_field) ~= 0 ==> f : O(%x. c * f x)"
avigad@16908
   492
  apply (simp add: bigo_def)
avigad@16908
   493
  apply (rule_tac x = "abs(inverse c)" in exI)
avigad@16908
   494
  apply (simp add: abs_mult [symmetric] mult_assoc [symmetric])
wenzelm@22665
   495
  done
avigad@16908
   496
haftmann@35028
   497
lemma bigo_const_mult4: "(c::'a::linordered_field) ~= 0 ==> 
avigad@16908
   498
    O(f) <= O(%x. c * f x)"
wenzelm@22665
   499
  by (rule bigo_elt_subset, rule bigo_const_mult3, assumption)
avigad@16908
   500
haftmann@35028
   501
lemma bigo_const_mult [simp]: "(c::'a::linordered_field) ~= 0 ==> 
avigad@16908
   502
    O(%x. c * f x) = O(f)"
wenzelm@22665
   503
  by (rule equalityI, rule bigo_const_mult2, erule bigo_const_mult4)
avigad@16908
   504
haftmann@35028
   505
lemma bigo_const_mult5 [simp]: "(c::'a::linordered_field) ~= 0 ==> 
avigad@16908
   506
    (%x. c) *o O(f) = O(f)"
avigad@16908
   507
  apply (auto del: subsetI)
avigad@16908
   508
  apply (rule order_trans)
avigad@16908
   509
  apply (rule bigo_mult2)
avigad@16908
   510
  apply (simp add: func_times)
wenzelm@41528
   511
  apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
avigad@16908
   512
  apply (rule_tac x = "%y. inverse c * x y" in exI)
avigad@16908
   513
  apply (simp add: mult_assoc [symmetric] abs_mult)
avigad@16908
   514
  apply (rule_tac x = "abs (inverse c) * ca" in exI)
avigad@16908
   515
  apply (rule allI)
avigad@16908
   516
  apply (subst mult_assoc)
avigad@16908
   517
  apply (rule mult_left_mono)
avigad@16908
   518
  apply (erule spec)
avigad@16908
   519
  apply force
wenzelm@22665
   520
  done
avigad@16908
   521
avigad@16908
   522
lemma bigo_const_mult6 [intro]: "(%x. c) *o O(f) <= O(f)"
wenzelm@41528
   523
  apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
avigad@16908
   524
  apply (rule_tac x = "ca * (abs c)" in exI)
avigad@16908
   525
  apply (rule allI)
avigad@16908
   526
  apply (subgoal_tac "ca * abs(c) * abs(f x) = abs(c) * (ca * abs(f x))")
avigad@16908
   527
  apply (erule ssubst)
avigad@16908
   528
  apply (subst abs_mult)
avigad@16908
   529
  apply (rule mult_left_mono)
avigad@16908
   530
  apply (erule spec)
avigad@16908
   531
  apply simp
avigad@16908
   532
  apply(simp add: mult_ac)
wenzelm@22665
   533
  done
avigad@16908
   534
avigad@16908
   535
lemma bigo_const_mult7 [intro]: "f =o O(g) ==> (%x. c * f x) =o O(g)"
avigad@16908
   536
proof -
avigad@16908
   537
  assume "f =o O(g)"
avigad@16908
   538
  then have "(%x. c) * f =o (%x. c) *o O(g)"
avigad@16908
   539
    by auto
avigad@16908
   540
  also have "(%x. c) * f = (%x. c * f x)"
avigad@16908
   541
    by (simp add: func_times)
avigad@16908
   542
  also have "(%x. c) *o O(g) <= O(g)"
avigad@16908
   543
    by (auto del: subsetI)
avigad@16908
   544
  finally show ?thesis .
avigad@16908
   545
qed
avigad@16908
   546
avigad@16908
   547
lemma bigo_compose1: "f =o O(g) ==> (%x. f(k x)) =o O(%x. g(k x))"
avigad@16908
   548
by (unfold bigo_def, auto)
avigad@16908
   549
avigad@16908
   550
lemma bigo_compose2: "f =o g +o O(h) ==> (%x. f(k x)) =o (%x. g(k x)) +o 
avigad@16908
   551
    O(%x. h(k x))"
berghofe@26814
   552
  apply (simp only: set_minus_plus [symmetric] diff_minus fun_Compl_def
avigad@16908
   553
      func_plus)
avigad@16908
   554
  apply (erule bigo_compose1)
avigad@16908
   555
done
avigad@16908
   556
wenzelm@22665
   557
avigad@16908
   558
subsection {* Setsum *}
avigad@16908
   559
avigad@16908
   560
lemma bigo_setsum_main: "ALL x. ALL y : A x. 0 <= h x y ==> 
avigad@16908
   561
    EX c. ALL x. ALL y : A x. abs(f x y) <= c * (h x y) ==>
avigad@16908
   562
      (%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)"  
avigad@16908
   563
  apply (auto simp add: bigo_def)
avigad@16908
   564
  apply (rule_tac x = "abs c" in exI)
wenzelm@17199
   565
  apply (subst abs_of_nonneg) back back
avigad@16908
   566
  apply (rule setsum_nonneg)
avigad@16908
   567
  apply force
ballarin@19279
   568
  apply (subst setsum_right_distrib)
avigad@16908
   569
  apply (rule allI)
avigad@16908
   570
  apply (rule order_trans)
avigad@16908
   571
  apply (rule setsum_abs)
avigad@16908
   572
  apply (rule setsum_mono)
avigad@16908
   573
  apply (rule order_trans)
avigad@16908
   574
  apply (drule spec)+
avigad@16908
   575
  apply (drule bspec)+
avigad@16908
   576
  apply assumption+
avigad@16908
   577
  apply (drule bspec)
avigad@16908
   578
  apply assumption+
avigad@16908
   579
  apply (rule mult_right_mono) 
avigad@16908
   580
  apply (rule abs_ge_self)
avigad@16908
   581
  apply force
wenzelm@22665
   582
  done
avigad@16908
   583
avigad@16908
   584
lemma bigo_setsum1: "ALL x y. 0 <= h x y ==> 
avigad@16908
   585
    EX c. ALL x y. abs(f x y) <= c * (h x y) ==>
avigad@16908
   586
      (%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)"
avigad@16908
   587
  apply (rule bigo_setsum_main)
avigad@16908
   588
  apply force
avigad@16908
   589
  apply clarsimp
avigad@16908
   590
  apply (rule_tac x = c in exI)
avigad@16908
   591
  apply force
wenzelm@22665
   592
  done
avigad@16908
   593
avigad@16908
   594
lemma bigo_setsum2: "ALL y. 0 <= h y ==> 
avigad@16908
   595
    EX c. ALL y. abs(f y) <= c * (h y) ==>
avigad@16908
   596
      (%x. SUM y : A x. f y) =o O(%x. SUM y : A x. h y)"
wenzelm@22665
   597
  by (rule bigo_setsum1, auto)  
avigad@16908
   598
avigad@16908
   599
lemma bigo_setsum3: "f =o O(h) ==>
avigad@16908
   600
    (%x. SUM y : A x. (l x y) * f(k x y)) =o
avigad@16908
   601
      O(%x. SUM y : A x. abs(l x y * h(k x y)))"
avigad@16908
   602
  apply (rule bigo_setsum1)
avigad@16908
   603
  apply (rule allI)+
avigad@16908
   604
  apply (rule abs_ge_zero)
avigad@16908
   605
  apply (unfold bigo_def)
avigad@16908
   606
  apply auto
avigad@16908
   607
  apply (rule_tac x = c in exI)
avigad@16908
   608
  apply (rule allI)+
avigad@16908
   609
  apply (subst abs_mult)+
avigad@16908
   610
  apply (subst mult_left_commute)
avigad@16908
   611
  apply (rule mult_left_mono)
avigad@16908
   612
  apply (erule spec)
avigad@16908
   613
  apply (rule abs_ge_zero)
wenzelm@22665
   614
  done
avigad@16908
   615
avigad@16908
   616
lemma bigo_setsum4: "f =o g +o O(h) ==>
avigad@16908
   617
    (%x. SUM y : A x. l x y * f(k x y)) =o
avigad@16908
   618
      (%x. SUM y : A x. l x y * g(k x y)) +o
avigad@16908
   619
        O(%x. SUM y : A x. abs(l x y * h(k x y)))"
avigad@16908
   620
  apply (rule set_minus_imp_plus)
berghofe@26814
   621
  apply (subst fun_diff_def)
avigad@16908
   622
  apply (subst setsum_subtractf [symmetric])
avigad@16908
   623
  apply (subst right_diff_distrib [symmetric])
avigad@16908
   624
  apply (rule bigo_setsum3)
berghofe@26814
   625
  apply (subst fun_diff_def [symmetric])
avigad@16908
   626
  apply (erule set_plus_imp_minus)
wenzelm@22665
   627
  done
avigad@16908
   628
avigad@16908
   629
lemma bigo_setsum5: "f =o O(h) ==> ALL x y. 0 <= l x y ==> 
avigad@16908
   630
    ALL x. 0 <= h x ==>
avigad@16908
   631
      (%x. SUM y : A x. (l x y) * f(k x y)) =o
avigad@16908
   632
        O(%x. SUM y : A x. (l x y) * h(k x y))" 
avigad@16908
   633
  apply (subgoal_tac "(%x. SUM y : A x. (l x y) * h(k x y)) = 
avigad@16908
   634
      (%x. SUM y : A x. abs((l x y) * h(k x y)))")
avigad@16908
   635
  apply (erule ssubst)
avigad@16908
   636
  apply (erule bigo_setsum3)
avigad@16908
   637
  apply (rule ext)
avigad@16908
   638
  apply (rule setsum_cong2)
avigad@16908
   639
  apply (subst abs_of_nonneg)
avigad@16908
   640
  apply (rule mult_nonneg_nonneg)
avigad@16908
   641
  apply auto
wenzelm@22665
   642
  done
avigad@16908
   643
avigad@16908
   644
lemma bigo_setsum6: "f =o g +o O(h) ==> ALL x y. 0 <= l x y ==>
avigad@16908
   645
    ALL x. 0 <= h x ==>
avigad@16908
   646
      (%x. SUM y : A x. (l x y) * f(k x y)) =o
avigad@16908
   647
        (%x. SUM y : A x. (l x y) * g(k x y)) +o
avigad@16908
   648
          O(%x. SUM y : A x. (l x y) * h(k x y))" 
avigad@16908
   649
  apply (rule set_minus_imp_plus)
berghofe@26814
   650
  apply (subst fun_diff_def)
avigad@16908
   651
  apply (subst setsum_subtractf [symmetric])
avigad@16908
   652
  apply (subst right_diff_distrib [symmetric])
avigad@16908
   653
  apply (rule bigo_setsum5)
berghofe@26814
   654
  apply (subst fun_diff_def [symmetric])
avigad@16908
   655
  apply (drule set_plus_imp_minus)
avigad@16908
   656
  apply auto
wenzelm@22665
   657
  done
wenzelm@22665
   658
avigad@16908
   659
avigad@16908
   660
subsection {* Misc useful stuff *}
avigad@16908
   661
avigad@16908
   662
lemma bigo_useful_intro: "A <= O(f) ==> B <= O(f) ==>
berghofe@26814
   663
  A \<oplus> B <= O(f)"
avigad@16908
   664
  apply (subst bigo_plus_idemp [symmetric])
avigad@16908
   665
  apply (rule set_plus_mono2)
avigad@16908
   666
  apply assumption+
wenzelm@22665
   667
  done
avigad@16908
   668
avigad@16908
   669
lemma bigo_useful_add: "f =o O(h) ==> g =o O(h) ==> f + g =o O(h)"
avigad@16908
   670
  apply (subst bigo_plus_idemp [symmetric])
avigad@16908
   671
  apply (rule set_plus_intro)
avigad@16908
   672
  apply assumption+
wenzelm@22665
   673
  done
avigad@16908
   674
  
haftmann@35028
   675
lemma bigo_useful_const_mult: "(c::'a::linordered_field) ~= 0 ==> 
avigad@16908
   676
    (%x. c) * f =o O(h) ==> f =o O(h)"
avigad@16908
   677
  apply (rule subsetD)
avigad@16908
   678
  apply (subgoal_tac "(%x. 1 / c) *o O(h) <= O(h)")
avigad@16908
   679
  apply assumption
avigad@16908
   680
  apply (rule bigo_const_mult6)
avigad@16908
   681
  apply (subgoal_tac "f = (%x. 1 / c) * ((%x. c) * f)")
avigad@16908
   682
  apply (erule ssubst)
avigad@16908
   683
  apply (erule set_times_intro2)
nipkow@23413
   684
  apply (simp add: func_times)
wenzelm@22665
   685
  done
avigad@16908
   686
avigad@16908
   687
lemma bigo_fix: "(%x. f ((x::nat) + 1)) =o O(%x. h(x + 1)) ==> f 0 = 0 ==>
avigad@16908
   688
    f =o O(h)"
avigad@16908
   689
  apply (simp add: bigo_alt_def)
avigad@16908
   690
  apply auto
avigad@16908
   691
  apply (rule_tac x = c in exI)
avigad@16908
   692
  apply auto
avigad@16908
   693
  apply (case_tac "x = 0")
avigad@16908
   694
  apply simp
avigad@16908
   695
  apply (rule mult_nonneg_nonneg)
avigad@16908
   696
  apply force
avigad@16908
   697
  apply force
avigad@16908
   698
  apply (subgoal_tac "x = Suc (x - 1)")
wenzelm@17199
   699
  apply (erule ssubst) back
avigad@16908
   700
  apply (erule spec)
avigad@16908
   701
  apply simp
wenzelm@22665
   702
  done
avigad@16908
   703
avigad@16908
   704
lemma bigo_fix2: 
avigad@16908
   705
    "(%x. f ((x::nat) + 1)) =o (%x. g(x + 1)) +o O(%x. h(x + 1)) ==> 
avigad@16908
   706
       f 0 = g 0 ==> f =o g +o O(h)"
avigad@16908
   707
  apply (rule set_minus_imp_plus)
avigad@16908
   708
  apply (rule bigo_fix)
berghofe@26814
   709
  apply (subst fun_diff_def)
berghofe@26814
   710
  apply (subst fun_diff_def [symmetric])
avigad@16908
   711
  apply (rule set_plus_imp_minus)
avigad@16908
   712
  apply simp
berghofe@26814
   713
  apply (simp add: fun_diff_def)
wenzelm@22665
   714
  done
wenzelm@22665
   715
avigad@16908
   716
avigad@16908
   717
subsection {* Less than or equal to *}
avigad@16908
   718
wenzelm@19736
   719
definition
haftmann@35028
   720
  lesso :: "('a => 'b::linordered_idom) => ('a => 'b) => ('a => 'b)"
wenzelm@21404
   721
    (infixl "<o" 70) where
wenzelm@19736
   722
  "f <o g = (%x. max (f x - g x) 0)"
avigad@16908
   723
avigad@16908
   724
lemma bigo_lesseq1: "f =o O(h) ==> ALL x. abs (g x) <= abs (f x) ==>
avigad@16908
   725
    g =o O(h)"
avigad@16908
   726
  apply (unfold bigo_def)
avigad@16908
   727
  apply clarsimp
avigad@16908
   728
  apply (rule_tac x = c in exI)
avigad@16908
   729
  apply (rule allI)
avigad@16908
   730
  apply (rule order_trans)
avigad@16908
   731
  apply (erule spec)+
wenzelm@22665
   732
  done
avigad@16908
   733
avigad@16908
   734
lemma bigo_lesseq2: "f =o O(h) ==> ALL x. abs (g x) <= f x ==>
avigad@16908
   735
      g =o O(h)"
avigad@16908
   736
  apply (erule bigo_lesseq1)
avigad@16908
   737
  apply (rule allI)
avigad@16908
   738
  apply (drule_tac x = x in spec)
avigad@16908
   739
  apply (rule order_trans)
avigad@16908
   740
  apply assumption
avigad@16908
   741
  apply (rule abs_ge_self)
wenzelm@22665
   742
  done
avigad@16908
   743
avigad@16908
   744
lemma bigo_lesseq3: "f =o O(h) ==> ALL x. 0 <= g x ==> ALL x. g x <= f x ==>
wenzelm@22665
   745
    g =o O(h)"
avigad@16908
   746
  apply (erule bigo_lesseq2)
avigad@16908
   747
  apply (rule allI)
avigad@16908
   748
  apply (subst abs_of_nonneg)
avigad@16908
   749
  apply (erule spec)+
wenzelm@22665
   750
  done
avigad@16908
   751
avigad@16908
   752
lemma bigo_lesseq4: "f =o O(h) ==>
avigad@16908
   753
    ALL x. 0 <= g x ==> ALL x. g x <= abs (f x) ==>
avigad@16908
   754
      g =o O(h)"
avigad@16908
   755
  apply (erule bigo_lesseq1)
avigad@16908
   756
  apply (rule allI)
avigad@16908
   757
  apply (subst abs_of_nonneg)
avigad@16908
   758
  apply (erule spec)+
wenzelm@22665
   759
  done
avigad@16908
   760
avigad@16908
   761
lemma bigo_lesso1: "ALL x. f x <= g x ==> f <o g =o O(h)"
avigad@16908
   762
  apply (unfold lesso_def)
avigad@16908
   763
  apply (subgoal_tac "(%x. max (f x - g x) 0) = 0")
avigad@16908
   764
  apply (erule ssubst)
avigad@16908
   765
  apply (rule bigo_zero)
avigad@16908
   766
  apply (unfold func_zero)
avigad@16908
   767
  apply (rule ext)
avigad@16908
   768
  apply (simp split: split_max)
wenzelm@22665
   769
  done
avigad@16908
   770
avigad@16908
   771
lemma bigo_lesso2: "f =o g +o O(h) ==>
avigad@16908
   772
    ALL x. 0 <= k x ==> ALL x. k x <= f x ==>
avigad@16908
   773
      k <o g =o O(h)"
avigad@16908
   774
  apply (unfold lesso_def)
avigad@16908
   775
  apply (rule bigo_lesseq4)
avigad@16908
   776
  apply (erule set_plus_imp_minus)
avigad@16908
   777
  apply (rule allI)
avigad@16908
   778
  apply (rule le_maxI2)
avigad@16908
   779
  apply (rule allI)
berghofe@26814
   780
  apply (subst fun_diff_def)
avigad@16908
   781
  apply (case_tac "0 <= k x - g x")
avigad@16908
   782
  apply simp
avigad@16908
   783
  apply (subst abs_of_nonneg)
wenzelm@17199
   784
  apply (drule_tac x = x in spec) back
nipkow@29667
   785
  apply (simp add: algebra_simps)
avigad@16908
   786
  apply (subst diff_minus)+
avigad@16908
   787
  apply (rule add_right_mono)
avigad@16908
   788
  apply (erule spec)
avigad@16908
   789
  apply (rule order_trans) 
avigad@16908
   790
  prefer 2
avigad@16908
   791
  apply (rule abs_ge_zero)
nipkow@29667
   792
  apply (simp add: algebra_simps)
wenzelm@22665
   793
  done
avigad@16908
   794
avigad@16908
   795
lemma bigo_lesso3: "f =o g +o O(h) ==>
avigad@16908
   796
    ALL x. 0 <= k x ==> ALL x. g x <= k x ==>
avigad@16908
   797
      f <o k =o O(h)"
avigad@16908
   798
  apply (unfold lesso_def)
avigad@16908
   799
  apply (rule bigo_lesseq4)
avigad@16908
   800
  apply (erule set_plus_imp_minus)
avigad@16908
   801
  apply (rule allI)
avigad@16908
   802
  apply (rule le_maxI2)
avigad@16908
   803
  apply (rule allI)
berghofe@26814
   804
  apply (subst fun_diff_def)
avigad@16908
   805
  apply (case_tac "0 <= f x - k x")
avigad@16908
   806
  apply simp
avigad@16908
   807
  apply (subst abs_of_nonneg)
wenzelm@17199
   808
  apply (drule_tac x = x in spec) back
nipkow@29667
   809
  apply (simp add: algebra_simps)
avigad@16908
   810
  apply (subst diff_minus)+
avigad@16908
   811
  apply (rule add_left_mono)
avigad@16908
   812
  apply (rule le_imp_neg_le)
avigad@16908
   813
  apply (erule spec)
avigad@16908
   814
  apply (rule order_trans) 
avigad@16908
   815
  prefer 2
avigad@16908
   816
  apply (rule abs_ge_zero)
nipkow@29667
   817
  apply (simp add: algebra_simps)
wenzelm@22665
   818
  done
avigad@16908
   819
haftmann@35028
   820
lemma bigo_lesso4: "f <o g =o O(k::'a=>'b::linordered_field) ==>
avigad@16908
   821
    g =o h +o O(k) ==> f <o h =o O(k)"
avigad@16908
   822
  apply (unfold lesso_def)
avigad@16908
   823
  apply (drule set_plus_imp_minus)
wenzelm@17199
   824
  apply (drule bigo_abs5) back
berghofe@26814
   825
  apply (simp add: fun_diff_def)
avigad@16908
   826
  apply (drule bigo_useful_add)
avigad@16908
   827
  apply assumption
wenzelm@17199
   828
  apply (erule bigo_lesseq2) back
avigad@16908
   829
  apply (rule allI)
nipkow@29667
   830
  apply (auto simp add: func_plus fun_diff_def algebra_simps
avigad@16908
   831
    split: split_max abs_split)
wenzelm@22665
   832
  done
avigad@16908
   833
avigad@16908
   834
lemma bigo_lesso5: "f <o g =o O(h) ==>
avigad@16908
   835
    EX C. ALL x. f x <= g x + C * abs(h x)"
avigad@16908
   836
  apply (simp only: lesso_def bigo_alt_def)
avigad@16908
   837
  apply clarsimp
avigad@16908
   838
  apply (rule_tac x = c in exI)
avigad@16908
   839
  apply (rule allI)
avigad@16908
   840
  apply (drule_tac x = x in spec)
avigad@16908
   841
  apply (subgoal_tac "abs(max (f x - g x) 0) = max (f x - g x) 0")
nipkow@29667
   842
  apply (clarsimp simp add: algebra_simps) 
avigad@16908
   843
  apply (rule abs_of_nonneg)
avigad@16908
   844
  apply (rule le_maxI2)
wenzelm@22665
   845
  done
avigad@16908
   846
avigad@16908
   847
lemma lesso_add: "f <o g =o O(h) ==>
avigad@16908
   848
      k <o l =o O(h) ==> (f + k) <o (g + l) =o O(h)"
avigad@16908
   849
  apply (unfold lesso_def)
avigad@16908
   850
  apply (rule bigo_lesseq3)
avigad@16908
   851
  apply (erule bigo_useful_add)
avigad@16908
   852
  apply assumption
avigad@16908
   853
  apply (force split: split_max)
avigad@16908
   854
  apply (auto split: split_max simp add: func_plus)
wenzelm@22665
   855
  done
avigad@16908
   856
haftmann@29786
   857
lemma bigo_LIMSEQ1: "f =o O(g) ==> g ----> 0 ==> f ----> (0::real)"
huffman@31337
   858
  apply (simp add: LIMSEQ_iff bigo_alt_def)
haftmann@29786
   859
  apply clarify
haftmann@29786
   860
  apply (drule_tac x = "r / c" in spec)
haftmann@29786
   861
  apply (drule mp)
haftmann@29786
   862
  apply (erule divide_pos_pos)
haftmann@29786
   863
  apply assumption
haftmann@29786
   864
  apply clarify
haftmann@29786
   865
  apply (rule_tac x = no in exI)
haftmann@29786
   866
  apply (rule allI)
haftmann@29786
   867
  apply (drule_tac x = n in spec)+
haftmann@29786
   868
  apply (rule impI)
haftmann@29786
   869
  apply (drule mp)
haftmann@29786
   870
  apply assumption
haftmann@29786
   871
  apply (rule order_le_less_trans)
haftmann@29786
   872
  apply assumption
haftmann@29786
   873
  apply (rule order_less_le_trans)
haftmann@29786
   874
  apply (subgoal_tac "c * abs(g n) < c * (r / c)")
haftmann@29786
   875
  apply assumption
haftmann@29786
   876
  apply (erule mult_strict_left_mono)
haftmann@29786
   877
  apply assumption
haftmann@29786
   878
  apply simp
haftmann@29786
   879
done
haftmann@29786
   880
haftmann@29786
   881
lemma bigo_LIMSEQ2: "f =o g +o O(h) ==> h ----> 0 ==> f ----> a 
haftmann@29786
   882
    ==> g ----> (a::real)"
haftmann@29786
   883
  apply (drule set_plus_imp_minus)
haftmann@29786
   884
  apply (drule bigo_LIMSEQ1)
haftmann@29786
   885
  apply assumption
haftmann@29786
   886
  apply (simp only: fun_diff_def)
haftmann@29786
   887
  apply (erule LIMSEQ_diff_approach_zero2)
haftmann@29786
   888
  apply assumption
haftmann@29786
   889
done
haftmann@29786
   890
avigad@16908
   891
end