src/HOL/TLA/Action.thy
author kuncar
Fri Dec 09 18:07:04 2011 +0100 (2011-12-09)
changeset 45802 b16f976db515
parent 42814 5af15f1e2ef6
child 47968 3119ad2b5ad3
permissions -rw-r--r--
Quotient_Info stores only relation maps
wenzelm@35108
     1
(*  Title:      HOL/TLA/Action.thy 
wenzelm@35108
     2
    Author:     Stephan Merz
wenzelm@35108
     3
    Copyright:  1998 University of Munich
wenzelm@21624
     4
*)
wenzelm@3807
     5
wenzelm@21624
     6
header {* The action level of TLA as an Isabelle theory *}
wenzelm@3807
     7
wenzelm@17309
     8
theory Action
wenzelm@17309
     9
imports Stfun
wenzelm@17309
    10
begin
wenzelm@17309
    11
wenzelm@3807
    12
wenzelm@6255
    13
(** abstract syntax **)
wenzelm@6255
    14
wenzelm@42018
    15
type_synonym 'a trfun = "(state * state) => 'a"
wenzelm@42018
    16
type_synonym action   = "bool trfun"
wenzelm@6255
    17
haftmann@37678
    18
arities prod :: (world, world) world
wenzelm@3807
    19
wenzelm@3807
    20
consts
wenzelm@6255
    21
  (** abstract syntax **)
wenzelm@17309
    22
  before        :: "'a stfun => 'a trfun"
wenzelm@17309
    23
  after         :: "'a stfun => 'a trfun"
wenzelm@17309
    24
  unch          :: "'a stfun => action"
wenzelm@6255
    25
wenzelm@17309
    26
  SqAct         :: "[action, 'a stfun] => action"
wenzelm@17309
    27
  AnAct         :: "[action, 'a stfun] => action"
wenzelm@17309
    28
  enabled       :: "action => stpred"
wenzelm@6255
    29
wenzelm@6255
    30
(** concrete syntax **)
wenzelm@6255
    31
wenzelm@6255
    32
syntax
wenzelm@6255
    33
  (* Syntax for writing action expressions in arbitrary contexts *)
wenzelm@35354
    34
  "_ACT"        :: "lift => 'a"                      ("(ACT _)")
wenzelm@3807
    35
wenzelm@17309
    36
  "_before"     :: "lift => lift"                    ("($_)"  [100] 99)
wenzelm@17309
    37
  "_after"      :: "lift => lift"                    ("(_$)"  [100] 99)
wenzelm@17309
    38
  "_unchanged"  :: "lift => lift"                    ("(unchanged _)" [100] 99)
wenzelm@6255
    39
wenzelm@6255
    40
  (*** Priming: same as "after" ***)
wenzelm@17309
    41
  "_prime"      :: "lift => lift"                    ("(_`)" [100] 99)
wenzelm@6255
    42
wenzelm@17309
    43
  "_SqAct"      :: "[lift, lift] => lift"            ("([_]'_(_))" [0,1000] 99)
wenzelm@17309
    44
  "_AnAct"      :: "[lift, lift] => lift"            ("(<_>'_(_))" [0,1000] 99)
wenzelm@17309
    45
  "_Enabled"    :: "lift => lift"                    ("(Enabled _)" [100] 100)
wenzelm@3807
    46
wenzelm@6255
    47
translations
wenzelm@6255
    48
  "ACT A"            =>   "(A::state*state => _)"
wenzelm@35108
    49
  "_before"          ==   "CONST before"
wenzelm@35108
    50
  "_after"           ==   "CONST after"
wenzelm@9517
    51
  "_prime"           =>   "_after"
wenzelm@35108
    52
  "_unchanged"       ==   "CONST unch"
wenzelm@35108
    53
  "_SqAct"           ==   "CONST SqAct"
wenzelm@35108
    54
  "_AnAct"           ==   "CONST AnAct"
wenzelm@35108
    55
  "_Enabled"         ==   "CONST enabled"
wenzelm@6255
    56
  "w |= [A]_v"       <=   "_SqAct A v w"
wenzelm@6255
    57
  "w |= <A>_v"       <=   "_AnAct A v w"
wenzelm@6255
    58
  "s |= Enabled A"   <=   "_Enabled A s"
wenzelm@6255
    59
  "w |= unchanged f" <=   "_unchanged f w"
wenzelm@3807
    60
wenzelm@17309
    61
axioms
wenzelm@17309
    62
  unl_before:    "(ACT $v) (s,t) == v s"
wenzelm@17309
    63
  unl_after:     "(ACT v$) (s,t) == v t"
wenzelm@3807
    64
wenzelm@17309
    65
  unchanged_def: "(s,t) |= unchanged v == (v t = v s)"
wenzelm@17309
    66
  square_def:    "ACT [A]_v == ACT (A | unchanged v)"
wenzelm@17309
    67
  angle_def:     "ACT <A>_v == ACT (A & ~ unchanged v)"
wenzelm@3807
    68
wenzelm@17309
    69
  enabled_def:   "s |= Enabled A  ==  EX u. (s,u) |= A"
wenzelm@17309
    70
wenzelm@21624
    71
wenzelm@21624
    72
(* The following assertion specializes "intI" for any world type
wenzelm@21624
    73
   which is a pair, not just for "state * state".
wenzelm@21624
    74
*)
wenzelm@21624
    75
wenzelm@21624
    76
lemma actionI [intro!]:
wenzelm@21624
    77
  assumes "!!s t. (s,t) |= A"
wenzelm@21624
    78
  shows "|- A"
haftmann@27104
    79
  apply (rule assms intI prod.induct)+
wenzelm@21624
    80
  done
wenzelm@21624
    81
wenzelm@21624
    82
lemma actionD [dest]: "|- A ==> (s,t) |= A"
wenzelm@21624
    83
  apply (erule intD)
wenzelm@21624
    84
  done
wenzelm@21624
    85
wenzelm@21624
    86
lemma pr_rews [int_rewrite]:
wenzelm@21624
    87
  "|- (#c)` = #c"
wenzelm@21624
    88
  "!!f. |- f<x>` = f<x` >"
wenzelm@21624
    89
  "!!f. |- f<x,y>` = f<x`,y` >"
wenzelm@21624
    90
  "!!f. |- f<x,y,z>` = f<x`,y`,z` >"
wenzelm@21624
    91
  "|- (! x. P x)` = (! x. (P x)`)"
wenzelm@21624
    92
  "|- (? x. P x)` = (? x. (P x)`)"
wenzelm@21624
    93
  by (rule actionI, unfold unl_after intensional_rews, rule refl)+
wenzelm@21624
    94
wenzelm@21624
    95
wenzelm@21624
    96
lemmas act_rews [simp] = unl_before unl_after unchanged_def pr_rews
wenzelm@21624
    97
wenzelm@21624
    98
lemmas action_rews = act_rews intensional_rews
wenzelm@21624
    99
wenzelm@21624
   100
wenzelm@21624
   101
(* ================ Functions to "unlift" action theorems into HOL rules ================ *)
wenzelm@21624
   102
wenzelm@21624
   103
ML {*
wenzelm@21624
   104
(* The following functions are specialized versions of the corresponding
wenzelm@21624
   105
   functions defined in Intensional.ML in that they introduce a
wenzelm@21624
   106
   "world" parameter of the form (s,t) and apply additional rewrites.
wenzelm@21624
   107
*)
wenzelm@21624
   108
wenzelm@21624
   109
fun action_unlift th =
wenzelm@24180
   110
  (rewrite_rule @{thms action_rews} (th RS @{thm actionD}))
wenzelm@21624
   111
    handle THM _ => int_unlift th;
wenzelm@21624
   112
wenzelm@21624
   113
(* Turn  |- A = B  into meta-level rewrite rule  A == B *)
wenzelm@21624
   114
val action_rewrite = int_rewrite
wenzelm@21624
   115
wenzelm@21624
   116
fun action_use th =
wenzelm@21624
   117
    case (concl_of th) of
wenzelm@21624
   118
      Const _ $ (Const ("Intensional.Valid", _) $ _) =>
wenzelm@21624
   119
              (flatten (action_unlift th) handle THM _ => th)
wenzelm@21624
   120
    | _ => th;
wenzelm@21624
   121
*}
wenzelm@21624
   122
wenzelm@42814
   123
attribute_setup action_unlift = {* Scan.succeed (Thm.rule_attribute (K action_unlift)) *}
wenzelm@42814
   124
attribute_setup action_rewrite = {* Scan.succeed (Thm.rule_attribute (K action_rewrite)) *}
wenzelm@42814
   125
attribute_setup action_use = {* Scan.succeed (Thm.rule_attribute (K action_use)) *}
wenzelm@21624
   126
wenzelm@21624
   127
wenzelm@21624
   128
(* =========================== square / angle brackets =========================== *)
wenzelm@21624
   129
wenzelm@21624
   130
lemma idle_squareI: "(s,t) |= unchanged v ==> (s,t) |= [A]_v"
wenzelm@21624
   131
  by (simp add: square_def)
wenzelm@21624
   132
wenzelm@21624
   133
lemma busy_squareI: "(s,t) |= A ==> (s,t) |= [A]_v"
wenzelm@21624
   134
  by (simp add: square_def)
wenzelm@21624
   135
  
wenzelm@21624
   136
lemma squareE [elim]:
wenzelm@21624
   137
  "[| (s,t) |= [A]_v; A (s,t) ==> B (s,t); v t = v s ==> B (s,t) |] ==> B (s,t)"
wenzelm@21624
   138
  apply (unfold square_def action_rews)
wenzelm@21624
   139
  apply (erule disjE)
wenzelm@21624
   140
  apply simp_all
wenzelm@21624
   141
  done
wenzelm@21624
   142
wenzelm@21624
   143
lemma squareCI [intro]: "[| v t ~= v s ==> A (s,t) |] ==> (s,t) |= [A]_v"
wenzelm@21624
   144
  apply (unfold square_def action_rews)
wenzelm@21624
   145
  apply (rule disjCI)
wenzelm@21624
   146
  apply (erule (1) meta_mp)
wenzelm@21624
   147
  done
wenzelm@21624
   148
wenzelm@21624
   149
lemma angleI [intro]: "!!s t. [| A (s,t); v t ~= v s |] ==> (s,t) |= <A>_v"
wenzelm@21624
   150
  by (simp add: angle_def)
wenzelm@21624
   151
wenzelm@21624
   152
lemma angleE [elim]: "[| (s,t) |= <A>_v; [| A (s,t); v t ~= v s |] ==> R |] ==> R"
wenzelm@21624
   153
  apply (unfold angle_def action_rews)
wenzelm@21624
   154
  apply (erule conjE)
wenzelm@21624
   155
  apply simp
wenzelm@21624
   156
  done
wenzelm@21624
   157
wenzelm@21624
   158
lemma square_simulation:
wenzelm@21624
   159
   "!!f. [| |- unchanged f & ~B --> unchanged g;    
wenzelm@21624
   160
            |- A & ~unchanged g --> B               
wenzelm@21624
   161
         |] ==> |- [A]_f --> [B]_g"
wenzelm@21624
   162
  apply clarsimp
wenzelm@21624
   163
  apply (erule squareE)
wenzelm@21624
   164
  apply (auto simp add: square_def)
wenzelm@21624
   165
  done
wenzelm@21624
   166
wenzelm@21624
   167
lemma not_square: "|- (~ [A]_v) = <~A>_v"
wenzelm@21624
   168
  by (auto simp: square_def angle_def)
wenzelm@21624
   169
wenzelm@21624
   170
lemma not_angle: "|- (~ <A>_v) = [~A]_v"
wenzelm@21624
   171
  by (auto simp: square_def angle_def)
wenzelm@21624
   172
wenzelm@21624
   173
wenzelm@21624
   174
(* ============================== Facts about ENABLED ============================== *)
wenzelm@21624
   175
wenzelm@21624
   176
lemma enabledI: "|- A --> $Enabled A"
wenzelm@21624
   177
  by (auto simp add: enabled_def)
wenzelm@21624
   178
wenzelm@21624
   179
lemma enabledE: "[| s |= Enabled A; !!u. A (s,u) ==> Q |] ==> Q"
wenzelm@21624
   180
  apply (unfold enabled_def)
wenzelm@21624
   181
  apply (erule exE)
wenzelm@21624
   182
  apply simp
wenzelm@21624
   183
  done
wenzelm@21624
   184
wenzelm@21624
   185
lemma notEnabledD: "|- ~$Enabled G --> ~ G"
wenzelm@21624
   186
  by (auto simp add: enabled_def)
wenzelm@21624
   187
wenzelm@21624
   188
(* Monotonicity *)
wenzelm@21624
   189
lemma enabled_mono:
wenzelm@21624
   190
  assumes min: "s |= Enabled F"
wenzelm@21624
   191
    and maj: "|- F --> G"
wenzelm@21624
   192
  shows "s |= Enabled G"
wenzelm@21624
   193
  apply (rule min [THEN enabledE])
wenzelm@21624
   194
  apply (rule enabledI [action_use])
wenzelm@21624
   195
  apply (erule maj [action_use])
wenzelm@21624
   196
  done
wenzelm@21624
   197
wenzelm@21624
   198
(* stronger variant *)
wenzelm@21624
   199
lemma enabled_mono2:
wenzelm@21624
   200
  assumes min: "s |= Enabled F"
wenzelm@21624
   201
    and maj: "!!t. F (s,t) ==> G (s,t)"
wenzelm@21624
   202
  shows "s |= Enabled G"
wenzelm@21624
   203
  apply (rule min [THEN enabledE])
wenzelm@21624
   204
  apply (rule enabledI [action_use])
wenzelm@21624
   205
  apply (erule maj)
wenzelm@21624
   206
  done
wenzelm@21624
   207
wenzelm@21624
   208
lemma enabled_disj1: "|- Enabled F --> Enabled (F | G)"
wenzelm@21624
   209
  by (auto elim!: enabled_mono)
wenzelm@21624
   210
wenzelm@21624
   211
lemma enabled_disj2: "|- Enabled G --> Enabled (F | G)"
wenzelm@21624
   212
  by (auto elim!: enabled_mono)
wenzelm@21624
   213
wenzelm@21624
   214
lemma enabled_conj1: "|- Enabled (F & G) --> Enabled F"
wenzelm@21624
   215
  by (auto elim!: enabled_mono)
wenzelm@21624
   216
wenzelm@21624
   217
lemma enabled_conj2: "|- Enabled (F & G) --> Enabled G"
wenzelm@21624
   218
  by (auto elim!: enabled_mono)
wenzelm@21624
   219
wenzelm@21624
   220
lemma enabled_conjE:
wenzelm@21624
   221
    "[| s |= Enabled (F & G); [| s |= Enabled F; s |= Enabled G |] ==> Q |] ==> Q"
wenzelm@21624
   222
  apply (frule enabled_conj1 [action_use])
wenzelm@21624
   223
  apply (drule enabled_conj2 [action_use])
wenzelm@21624
   224
  apply simp
wenzelm@21624
   225
  done
wenzelm@21624
   226
wenzelm@21624
   227
lemma enabled_disjD: "|- Enabled (F | G) --> Enabled F | Enabled G"
wenzelm@21624
   228
  by (auto simp add: enabled_def)
wenzelm@21624
   229
wenzelm@21624
   230
lemma enabled_disj: "|- Enabled (F | G) = (Enabled F | Enabled G)"
wenzelm@21624
   231
  apply clarsimp
wenzelm@21624
   232
  apply (rule iffI)
wenzelm@21624
   233
   apply (erule enabled_disjD [action_use])
wenzelm@21624
   234
  apply (erule disjE enabled_disj1 [action_use] enabled_disj2 [action_use])+
wenzelm@21624
   235
  done
wenzelm@21624
   236
wenzelm@21624
   237
lemma enabled_ex: "|- Enabled (EX x. F x) = (EX x. Enabled (F x))"
wenzelm@21624
   238
  by (force simp add: enabled_def)
wenzelm@21624
   239
wenzelm@21624
   240
wenzelm@21624
   241
(* A rule that combines enabledI and baseE, but generates fewer instantiations *)
wenzelm@21624
   242
lemma base_enabled:
wenzelm@21624
   243
    "[| basevars vs; EX c. ! u. vs u = c --> A(s,u) |] ==> s |= Enabled A"
wenzelm@21624
   244
  apply (erule exE)
wenzelm@21624
   245
  apply (erule baseE)
wenzelm@21624
   246
  apply (rule enabledI [action_use])
wenzelm@21624
   247
  apply (erule allE)
wenzelm@21624
   248
  apply (erule mp)
wenzelm@21624
   249
  apply assumption
wenzelm@21624
   250
  done
wenzelm@21624
   251
wenzelm@21624
   252
(* ======================= action_simp_tac ============================== *)
wenzelm@21624
   253
wenzelm@21624
   254
ML {*
wenzelm@21624
   255
(* A dumb simplification-based tactic with just a little first-order logic:
wenzelm@21624
   256
   should plug in only "very safe" rules that can be applied blindly.
wenzelm@21624
   257
   Note that it applies whatever simplifications are currently active.
wenzelm@21624
   258
*)
wenzelm@21624
   259
fun action_simp_tac ss intros elims =
wenzelm@21624
   260
    asm_full_simp_tac
wenzelm@21624
   261
         (ss setloop ((resolve_tac ((map action_use intros)
wenzelm@24180
   262
                                    @ [refl,impI,conjI,@{thm actionI},@{thm intI},allI]))
wenzelm@21624
   263
                      ORELSE' (eresolve_tac ((map action_use elims)
wenzelm@21624
   264
                                             @ [conjE,disjE,exE]))));
wenzelm@21624
   265
*}
wenzelm@21624
   266
wenzelm@21624
   267
(* ---------------- enabled_tac: tactic to prove (Enabled A) -------------------- *)
wenzelm@21624
   268
wenzelm@21624
   269
ML {*
wenzelm@21624
   270
(* "Enabled A" can be proven as follows:
wenzelm@21624
   271
   - Assume that we know which state variables are "base variables"
wenzelm@21624
   272
     this should be expressed by a theorem of the form "basevars (x,y,z,...)".
wenzelm@21624
   273
   - Resolve this theorem with baseE to introduce a constant for the value of the
wenzelm@21624
   274
     variables in the successor state, and resolve the goal with the result.
wenzelm@21624
   275
   - Resolve with enabledI and do some rewriting.
wenzelm@21624
   276
   - Solve for the unknowns using standard HOL reasoning.
wenzelm@21624
   277
   The following tactic combines these steps except the final one.
wenzelm@21624
   278
*)
wenzelm@21624
   279
wenzelm@42785
   280
fun enabled_tac ctxt base_vars =
wenzelm@42793
   281
  clarsimp_tac (ctxt addSIs [base_vars RS @{thm base_enabled}]);
wenzelm@21624
   282
*}
wenzelm@21624
   283
wenzelm@42785
   284
method_setup enabled = {*
wenzelm@42785
   285
  Attrib.thm >> (fn th => fn ctxt => SIMPLE_METHOD' (enabled_tac ctxt th))
wenzelm@42814
   286
*}
wenzelm@42785
   287
wenzelm@21624
   288
(* Example *)
wenzelm@21624
   289
wenzelm@21624
   290
lemma
wenzelm@21624
   291
  assumes "basevars (x,y,z)"
wenzelm@21624
   292
  shows "|- x --> Enabled ($x & (y$ = #False))"
wenzelm@42785
   293
  apply (enabled assms)
wenzelm@21624
   294
  apply auto
wenzelm@21624
   295
  done
wenzelm@21624
   296
wenzelm@21624
   297
end