wenzelm@11054
|
1 |
(* Title: HOL/Library/Permutation.thy
|
paulson@15005
|
2 |
Author: Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker
|
wenzelm@11054
|
3 |
*)
|
wenzelm@11054
|
4 |
|
wenzelm@14706
|
5 |
header {* Permutations *}
|
wenzelm@11054
|
6 |
|
nipkow@15131
|
7 |
theory Permutation
|
wenzelm@51542
|
8 |
imports Multiset
|
nipkow@15131
|
9 |
begin
|
wenzelm@11054
|
10 |
|
wenzelm@53238
|
11 |
inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ <~~> _" [50, 50] 50) (* FIXME proper infix, without ambiguity!? *)
|
wenzelm@53238
|
12 |
where
|
wenzelm@53238
|
13 |
Nil [intro!]: "[] <~~> []"
|
wenzelm@53238
|
14 |
| swap [intro!]: "y # x # l <~~> x # y # l"
|
wenzelm@53238
|
15 |
| Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys"
|
wenzelm@53238
|
16 |
| trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs"
|
wenzelm@11054
|
17 |
|
wenzelm@11054
|
18 |
lemma perm_refl [iff]: "l <~~> l"
|
wenzelm@17200
|
19 |
by (induct l) auto
|
wenzelm@11054
|
20 |
|
wenzelm@11054
|
21 |
|
wenzelm@11054
|
22 |
subsection {* Some examples of rule induction on permutations *}
|
wenzelm@11054
|
23 |
|
wenzelm@53238
|
24 |
lemma xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []"
|
wenzelm@25379
|
25 |
by (induct xs == "[]::'a list" ys pred: perm) simp_all
|
wenzelm@11054
|
26 |
|
wenzelm@11054
|
27 |
|
wenzelm@11054
|
28 |
text {*
|
wenzelm@11054
|
29 |
\medskip This more general theorem is easier to understand!
|
wenzelm@11054
|
30 |
*}
|
wenzelm@11054
|
31 |
|
wenzelm@53238
|
32 |
lemma perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys"
|
wenzelm@25379
|
33 |
by (induct pred: perm) simp_all
|
wenzelm@11054
|
34 |
|
wenzelm@53238
|
35 |
lemma perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []"
|
wenzelm@17200
|
36 |
by (drule perm_length) auto
|
wenzelm@11054
|
37 |
|
wenzelm@53238
|
38 |
lemma perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs"
|
wenzelm@25379
|
39 |
by (induct pred: perm) auto
|
wenzelm@11054
|
40 |
|
wenzelm@11054
|
41 |
|
wenzelm@11054
|
42 |
subsection {* Ways of making new permutations *}
|
wenzelm@11054
|
43 |
|
wenzelm@11054
|
44 |
text {*
|
wenzelm@11054
|
45 |
We can insert the head anywhere in the list.
|
wenzelm@11054
|
46 |
*}
|
wenzelm@11054
|
47 |
|
wenzelm@11054
|
48 |
lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys"
|
wenzelm@17200
|
49 |
by (induct xs) auto
|
wenzelm@11054
|
50 |
|
wenzelm@11054
|
51 |
lemma perm_append_swap: "xs @ ys <~~> ys @ xs"
|
wenzelm@17200
|
52 |
apply (induct xs)
|
wenzelm@17200
|
53 |
apply simp_all
|
wenzelm@11054
|
54 |
apply (blast intro: perm_append_Cons)
|
wenzelm@11054
|
55 |
done
|
wenzelm@11054
|
56 |
|
wenzelm@11054
|
57 |
lemma perm_append_single: "a # xs <~~> xs @ [a]"
|
wenzelm@17200
|
58 |
by (rule perm.trans [OF _ perm_append_swap]) simp
|
wenzelm@11054
|
59 |
|
wenzelm@11054
|
60 |
lemma perm_rev: "rev xs <~~> xs"
|
wenzelm@17200
|
61 |
apply (induct xs)
|
wenzelm@17200
|
62 |
apply simp_all
|
paulson@11153
|
63 |
apply (blast intro!: perm_append_single intro: perm_sym)
|
wenzelm@11054
|
64 |
done
|
wenzelm@11054
|
65 |
|
wenzelm@53238
|
66 |
lemma perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys"
|
wenzelm@17200
|
67 |
by (induct l) auto
|
wenzelm@11054
|
68 |
|
wenzelm@53238
|
69 |
lemma perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l"
|
wenzelm@17200
|
70 |
by (blast intro!: perm_append_swap perm_append1)
|
wenzelm@11054
|
71 |
|
wenzelm@11054
|
72 |
|
wenzelm@11054
|
73 |
subsection {* Further results *}
|
wenzelm@11054
|
74 |
|
wenzelm@11054
|
75 |
lemma perm_empty [iff]: "([] <~~> xs) = (xs = [])"
|
wenzelm@17200
|
76 |
by (blast intro: perm_empty_imp)
|
wenzelm@11054
|
77 |
|
wenzelm@11054
|
78 |
lemma perm_empty2 [iff]: "(xs <~~> []) = (xs = [])"
|
wenzelm@11054
|
79 |
apply auto
|
wenzelm@11054
|
80 |
apply (erule perm_sym [THEN perm_empty_imp])
|
wenzelm@11054
|
81 |
done
|
wenzelm@11054
|
82 |
|
wenzelm@53238
|
83 |
lemma perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]"
|
wenzelm@25379
|
84 |
by (induct pred: perm) auto
|
wenzelm@11054
|
85 |
|
wenzelm@11054
|
86 |
lemma perm_sing_eq [iff]: "(ys <~~> [y]) = (ys = [y])"
|
wenzelm@17200
|
87 |
by (blast intro: perm_sing_imp)
|
wenzelm@11054
|
88 |
|
wenzelm@11054
|
89 |
lemma perm_sing_eq2 [iff]: "([y] <~~> ys) = (ys = [y])"
|
wenzelm@17200
|
90 |
by (blast dest: perm_sym)
|
wenzelm@11054
|
91 |
|
wenzelm@11054
|
92 |
|
wenzelm@11054
|
93 |
subsection {* Removing elements *}
|
wenzelm@11054
|
94 |
|
wenzelm@53238
|
95 |
lemma perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys"
|
wenzelm@17200
|
96 |
by (induct ys) auto
|
wenzelm@11054
|
97 |
|
wenzelm@11054
|
98 |
|
wenzelm@11054
|
99 |
text {* \medskip Congruence rule *}
|
wenzelm@11054
|
100 |
|
wenzelm@53238
|
101 |
lemma perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys"
|
wenzelm@25379
|
102 |
by (induct pred: perm) auto
|
wenzelm@11054
|
103 |
|
nipkow@36903
|
104 |
lemma remove_hd [simp]: "remove1 z (z # xs) = xs"
|
paulson@15072
|
105 |
by auto
|
wenzelm@11054
|
106 |
|
wenzelm@53238
|
107 |
lemma cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys"
|
wenzelm@17200
|
108 |
by (drule_tac z = z in perm_remove_perm) auto
|
wenzelm@11054
|
109 |
|
wenzelm@11054
|
110 |
lemma cons_perm_eq [iff]: "(z#xs <~~> z#ys) = (xs <~~> ys)"
|
wenzelm@17200
|
111 |
by (blast intro: cons_perm_imp_perm)
|
wenzelm@11054
|
112 |
|
wenzelm@53238
|
113 |
lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys"
|
wenzelm@53238
|
114 |
by (induct zs arbitrary: xs ys rule: rev_induct) auto
|
wenzelm@11054
|
115 |
|
wenzelm@11054
|
116 |
lemma perm_append1_eq [iff]: "(zs @ xs <~~> zs @ ys) = (xs <~~> ys)"
|
wenzelm@17200
|
117 |
by (blast intro: append_perm_imp_perm perm_append1)
|
wenzelm@11054
|
118 |
|
wenzelm@11054
|
119 |
lemma perm_append2_eq [iff]: "(xs @ zs <~~> ys @ zs) = (xs <~~> ys)"
|
wenzelm@11054
|
120 |
apply (safe intro!: perm_append2)
|
wenzelm@11054
|
121 |
apply (rule append_perm_imp_perm)
|
wenzelm@11054
|
122 |
apply (rule perm_append_swap [THEN perm.trans])
|
wenzelm@11054
|
123 |
-- {* the previous step helps this @{text blast} call succeed quickly *}
|
wenzelm@11054
|
124 |
apply (blast intro: perm_append_swap)
|
wenzelm@11054
|
125 |
done
|
wenzelm@11054
|
126 |
|
paulson@15072
|
127 |
lemma multiset_of_eq_perm: "(multiset_of xs = multiset_of ys) = (xs <~~> ys) "
|
wenzelm@17200
|
128 |
apply (rule iffI)
|
wenzelm@17200
|
129 |
apply (erule_tac [2] perm.induct, simp_all add: union_ac)
|
wenzelm@17200
|
130 |
apply (erule rev_mp, rule_tac x=ys in spec)
|
wenzelm@17200
|
131 |
apply (induct_tac xs, auto)
|
nipkow@36903
|
132 |
apply (erule_tac x = "remove1 a x" in allE, drule sym, simp)
|
wenzelm@17200
|
133 |
apply (subgoal_tac "a \<in> set x")
|
wenzelm@53238
|
134 |
apply (drule_tac z = a in perm.Cons)
|
wenzelm@17200
|
135 |
apply (erule perm.trans, rule perm_sym, erule perm_remove)
|
paulson@15005
|
136 |
apply (drule_tac f=set_of in arg_cong, simp)
|
paulson@15005
|
137 |
done
|
paulson@15005
|
138 |
|
wenzelm@53238
|
139 |
lemma multiset_of_le_perm_append: "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)"
|
wenzelm@17200
|
140 |
apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv)
|
paulson@15072
|
141 |
apply (insert surj_multiset_of, drule surjD)
|
paulson@15072
|
142 |
apply (blast intro: sym)+
|
paulson@15072
|
143 |
done
|
paulson@15005
|
144 |
|
wenzelm@53238
|
145 |
lemma perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys"
|
wenzelm@25379
|
146 |
by (metis multiset_of_eq_perm multiset_of_eq_setD)
|
nipkow@25277
|
147 |
|
wenzelm@53238
|
148 |
lemma perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys"
|
wenzelm@25379
|
149 |
apply (induct pred: perm)
|
wenzelm@25379
|
150 |
apply simp_all
|
nipkow@44890
|
151 |
apply fastforce
|
wenzelm@25379
|
152 |
apply (metis perm_set_eq)
|
wenzelm@25379
|
153 |
done
|
nipkow@25277
|
154 |
|
wenzelm@53238
|
155 |
lemma eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys"
|
wenzelm@25379
|
156 |
apply (induct xs arbitrary: ys rule: length_induct)
|
wenzelm@53238
|
157 |
apply (case_tac "remdups xs")
|
wenzelm@53238
|
158 |
apply simp_all
|
wenzelm@53238
|
159 |
apply (subgoal_tac "a \<in> set (remdups ys)")
|
wenzelm@25379
|
160 |
prefer 2 apply (metis set.simps(2) insert_iff set_remdups)
|
wenzelm@25379
|
161 |
apply (drule split_list) apply(elim exE conjE)
|
wenzelm@25379
|
162 |
apply (drule_tac x=list in spec) apply(erule impE) prefer 2
|
wenzelm@25379
|
163 |
apply (drule_tac x="ysa@zs" in spec) apply(erule impE) prefer 2
|
wenzelm@25379
|
164 |
apply simp
|
wenzelm@53238
|
165 |
apply (subgoal_tac "a # list <~~> a # ysa @ zs")
|
wenzelm@25379
|
166 |
apply (metis Cons_eq_appendI perm_append_Cons trans)
|
haftmann@40122
|
167 |
apply (metis Cons Cons_eq_appendI distinct.simps(2)
|
wenzelm@25379
|
168 |
distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff)
|
wenzelm@25379
|
169 |
apply (subgoal_tac "set (a#list) = set (ysa@a#zs) & distinct (a#list) & distinct (ysa@a#zs)")
|
nipkow@44890
|
170 |
apply (fastforce simp add: insert_ident)
|
wenzelm@25379
|
171 |
apply (metis distinct_remdups set_remdups)
|
haftmann@30742
|
172 |
apply (subgoal_tac "length (remdups xs) < Suc (length xs)")
|
haftmann@30742
|
173 |
apply simp
|
haftmann@30742
|
174 |
apply (subgoal_tac "length (remdups xs) \<le> length xs")
|
haftmann@30742
|
175 |
apply simp
|
haftmann@30742
|
176 |
apply (rule length_remdups_leq)
|
wenzelm@25379
|
177 |
done
|
nipkow@25287
|
178 |
|
wenzelm@53238
|
179 |
lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> (set x = set y)"
|
wenzelm@25379
|
180 |
by (metis List.set_remdups perm_set_eq eq_set_perm_remdups)
|
nipkow@25287
|
181 |
|
hoelzl@39075
|
182 |
lemma permutation_Ex_bij:
|
hoelzl@39075
|
183 |
assumes "xs <~~> ys"
|
hoelzl@39075
|
184 |
shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
|
hoelzl@39075
|
185 |
using assms proof induct
|
wenzelm@53238
|
186 |
case Nil
|
wenzelm@53238
|
187 |
then show ?case unfolding bij_betw_def by simp
|
hoelzl@39075
|
188 |
next
|
hoelzl@39075
|
189 |
case (swap y x l)
|
hoelzl@39075
|
190 |
show ?case
|
hoelzl@39075
|
191 |
proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)
|
hoelzl@39075
|
192 |
show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
|
bulwahn@50037
|
193 |
by (auto simp: bij_betw_def)
|
wenzelm@53238
|
194 |
fix i
|
wenzelm@53238
|
195 |
assume "i < length(y#x#l)"
|
hoelzl@39075
|
196 |
show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"
|
hoelzl@39075
|
197 |
by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)
|
hoelzl@39075
|
198 |
qed
|
hoelzl@39075
|
199 |
next
|
hoelzl@39075
|
200 |
case (Cons xs ys z)
|
hoelzl@39075
|
201 |
then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}" and
|
hoelzl@39075
|
202 |
perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" by blast
|
wenzelm@53238
|
203 |
let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0"
|
hoelzl@39075
|
204 |
show ?case
|
hoelzl@39075
|
205 |
proof (intro exI[of _ ?f] allI conjI impI)
|
hoelzl@39075
|
206 |
have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
|
hoelzl@39075
|
207 |
"{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
|
hoelzl@39078
|
208 |
by (simp_all add: lessThan_Suc_eq_insert_0)
|
wenzelm@53238
|
209 |
show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
|
wenzelm@53238
|
210 |
unfolding *
|
hoelzl@39075
|
211 |
proof (rule bij_betw_combine)
|
hoelzl@39075
|
212 |
show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
|
hoelzl@39075
|
213 |
using bij unfolding bij_betw_def
|
hoelzl@39075
|
214 |
by (auto intro!: inj_onI imageI dest: inj_onD simp: image_compose[symmetric] comp_def)
|
hoelzl@39075
|
215 |
qed (auto simp: bij_betw_def)
|
wenzelm@53238
|
216 |
fix i
|
wenzelm@53238
|
217 |
assume "i < length (z#xs)"
|
hoelzl@39075
|
218 |
then show "(z # xs) ! i = (z # ys) ! (?f i)"
|
hoelzl@39075
|
219 |
using perm by (cases i) auto
|
hoelzl@39075
|
220 |
qed
|
hoelzl@39075
|
221 |
next
|
hoelzl@39075
|
222 |
case (trans xs ys zs)
|
hoelzl@39075
|
223 |
then obtain f g where
|
hoelzl@39075
|
224 |
bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}" and
|
hoelzl@39075
|
225 |
perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" by blast
|
hoelzl@39075
|
226 |
show ?case
|
wenzelm@53238
|
227 |
proof (intro exI[of _ "g \<circ> f"] conjI allI impI)
|
hoelzl@39075
|
228 |
show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
|
hoelzl@39075
|
229 |
using bij by (rule bij_betw_trans)
|
hoelzl@39075
|
230 |
fix i assume "i < length xs"
|
hoelzl@39075
|
231 |
with bij have "f i < length ys" unfolding bij_betw_def by force
|
hoelzl@39075
|
232 |
with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i"
|
wenzelm@53238
|
233 |
using trans(1,3)[THEN perm_length] perm by auto
|
hoelzl@39075
|
234 |
qed
|
hoelzl@39075
|
235 |
qed
|
hoelzl@39075
|
236 |
|
wenzelm@11054
|
237 |
end
|