src/HOL/Tools/Qelim/cooper.ML
author haftmann
Tue Oct 20 16:13:01 2009 +0200 (2009-10-20)
changeset 33037 b22e44496dc2
parent 33002 f3f02f36a3e2
child 33038 8f9594c31de4
permissions -rw-r--r--
replaced old_style infixes eq_set, subset, union, inter and variants by generic versions
haftmann@24584
     1
(*  Title:      HOL/Tools/Qelim/cooper.ML
wenzelm@23466
     2
    Author:     Amine Chaieb, TU Muenchen
wenzelm@23466
     3
*)
wenzelm@23466
     4
wenzelm@23466
     5
signature COOPER =
wenzelm@23466
     6
 sig
wenzelm@23484
     7
  val cooper_conv : Proof.context -> conv
wenzelm@23466
     8
  exception COOPER of string * exn
wenzelm@23466
     9
end;
wenzelm@23466
    10
wenzelm@23466
    11
structure Cooper: COOPER =
wenzelm@23466
    12
struct
haftmann@23689
    13
wenzelm@23466
    14
open Conv;
haftmann@23689
    15
open Normalizer;
haftmann@23689
    16
wenzelm@23466
    17
exception COOPER of string * exn;
wenzelm@27018
    18
fun simp_thms_conv ctxt =
wenzelm@27018
    19
  Simplifier.rewrite (Simplifier.context ctxt HOL_basic_ss addsimps simp_thms);
wenzelm@23484
    20
val FWD = Drule.implies_elim_list;
wenzelm@23466
    21
wenzelm@23466
    22
val true_tm = @{cterm "True"};
wenzelm@23466
    23
val false_tm = @{cterm "False"};
wenzelm@23466
    24
val zdvd1_eq = @{thm "zdvd1_eq"};
wenzelm@23466
    25
val presburger_ss = @{simpset} addsimps [zdvd1_eq];
wenzelm@30595
    26
val lin_ss = presburger_ss addsimps (@{thm dvd_eq_mod_eq_0} :: zdvd1_eq :: @{thms zadd_ac});
haftmann@23689
    27
wenzelm@23466
    28
val iT = HOLogic.intT
wenzelm@23466
    29
val bT = HOLogic.boolT;
wenzelm@23466
    30
val dest_numeral = HOLogic.dest_number #> snd;
wenzelm@23466
    31
wenzelm@32429
    32
val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] =
wenzelm@23466
    33
    map(instantiate' [SOME @{ctyp "int"}] []) @{thms "minf"};
wenzelm@23466
    34
wenzelm@32429
    35
val [infDconj, infDdisj, infDdvd,infDndvd,infDP] =
wenzelm@23466
    36
    map(instantiate' [SOME @{ctyp "int"}] []) @{thms "inf_period"};
wenzelm@23466
    37
wenzelm@32429
    38
val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] =
wenzelm@23466
    39
    map (instantiate' [SOME @{ctyp "int"}] []) @{thms "pinf"};
wenzelm@23466
    40
wenzelm@23466
    41
val [miP, piP] = map (instantiate' [SOME @{ctyp "bool"}] []) [miP, piP];
wenzelm@23466
    42
wenzelm@23466
    43
val infDP = instantiate' (map SOME [@{ctyp "int"}, @{ctyp "bool"}]) [] infDP;
wenzelm@23466
    44
wenzelm@32429
    45
val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle,
wenzelm@23466
    46
      asetgt, asetge, asetdvd, asetndvd,asetP],
wenzelm@32429
    47
     [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle,
wenzelm@23466
    48
      bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]]  = [@{thms "aset"}, @{thms "bset"}];
wenzelm@23466
    49
wenzelm@32429
    50
val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"},
wenzelm@23466
    51
                                @{thm "plusinfinity"}, @{thm "cppi"}];
wenzelm@23466
    52
wenzelm@23466
    53
val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"};
wenzelm@23466
    54
wenzelm@32429
    55
val [zdvd_mono,simp_from_to,all_not_ex] =
wenzelm@23466
    56
     [@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}];
wenzelm@23466
    57
wenzelm@23466
    58
val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"};
wenzelm@23466
    59
wenzelm@23466
    60
val eval_ss = presburger_ss addsimps [simp_from_to] delsimps [insert_iff,bex_triv];
wenzelm@23466
    61
val eval_conv = Simplifier.rewrite eval_ss;
wenzelm@23466
    62
haftmann@23689
    63
(* recognising cterm without moving to terms *)
wenzelm@23466
    64
wenzelm@32429
    65
datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm
wenzelm@23466
    66
            | Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm
wenzelm@23466
    67
            | Dvd of cterm*cterm | NDvd of cterm*cterm | Nox
wenzelm@23466
    68
wenzelm@32429
    69
fun whatis x ct =
wenzelm@32429
    70
( case (term_of ct) of
wenzelm@23466
    71
  Const("op &",_)$_$_ => And (Thm.dest_binop ct)
wenzelm@23466
    72
| Const ("op |",_)$_$_ => Or (Thm.dest_binop ct)
wenzelm@23466
    73
| Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox
wenzelm@32429
    74
| Const (@{const_name Not},_) $ (Const ("op =",_)$y$_) =>
wenzelm@23466
    75
  if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox
haftmann@23881
    76
| Const (@{const_name HOL.less}, _) $ y$ z =>
wenzelm@32429
    77
   if term_of x aconv y then Lt (Thm.dest_arg ct)
wenzelm@23466
    78
   else if term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox
wenzelm@32429
    79
| Const (@{const_name HOL.less_eq}, _) $ y $ z =>
wenzelm@32429
    80
   if term_of x aconv y then Le (Thm.dest_arg ct)
wenzelm@23466
    81
   else if term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox
haftmann@27651
    82
| Const (@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$y$_) =>
wenzelm@32429
    83
   if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox
haftmann@32603
    84
| Const (@{const_name Not},_) $ (Const (@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$y$_)) =>
wenzelm@32429
    85
   if term_of x aconv y then
wenzelm@32429
    86
   NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox
wenzelm@23466
    87
| _ => Nox)
wenzelm@32429
    88
  handle CTERM _ => Nox;
wenzelm@23466
    89
wenzelm@32429
    90
fun get_pmi_term t =
wenzelm@32429
    91
  let val (x,eq) =
wenzelm@23466
    92
     (Thm.dest_abs NONE o Thm.dest_arg o snd o Thm.dest_abs NONE o Thm.dest_arg)
wenzelm@23466
    93
        (Thm.dest_arg t)
wenzelm@23466
    94
in (Thm.cabs x o Thm.dest_arg o Thm.dest_arg) eq end;
wenzelm@23466
    95
wenzelm@23466
    96
val get_pmi = get_pmi_term o cprop_of;
wenzelm@23466
    97
wenzelm@32429
    98
val p_v' = @{cpat "?P' :: int => bool"};
wenzelm@23466
    99
val q_v' = @{cpat "?Q' :: int => bool"};
wenzelm@23466
   100
val p_v = @{cpat "?P:: int => bool"};
wenzelm@23466
   101
val q_v = @{cpat "?Q:: int => bool"};
wenzelm@23466
   102
wenzelm@32429
   103
fun myfwd (th1, th2, th3) p q
wenzelm@32429
   104
      [(th_1,th_2,th_3), (th_1',th_2',th_3')] =
wenzelm@32429
   105
  let
wenzelm@23466
   106
   val (mp', mq') = (get_pmi th_1, get_pmi th_1')
wenzelm@32429
   107
   val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1)
wenzelm@23466
   108
                   [th_1, th_1']
wenzelm@23466
   109
   val infD_th = FWD (instantiate ([],[(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3']
wenzelm@23466
   110
   val set_th = FWD (instantiate ([],[(p_v,p), (q_v,q)]) th2) [th_2, th_2']
wenzelm@23466
   111
  in (mi_th, set_th, infD_th)
wenzelm@23466
   112
  end;
wenzelm@23466
   113
wenzelm@23466
   114
val inst' = fn cts => instantiate' [] (map SOME cts);
wenzelm@23466
   115
val infDTrue = instantiate' [] [SOME true_tm] infDP;
wenzelm@23466
   116
val infDFalse = instantiate' [] [SOME false_tm] infDP;
wenzelm@23466
   117
wenzelm@23466
   118
val cadd =  @{cterm "op + :: int => _"}
wenzelm@23466
   119
val cmulC =  @{cterm "op * :: int => _"}
wenzelm@23466
   120
val cminus =  @{cterm "op - :: int => _"}
haftmann@23689
   121
val cone =  @{cterm "1 :: int"}
wenzelm@23466
   122
val cneg = @{cterm "uminus :: int => _"}
wenzelm@23466
   123
val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg]
haftmann@23689
   124
val [zero, one] = [@{term "0 :: int"}, @{term "1 :: int"}];
wenzelm@23466
   125
wenzelm@32429
   126
val is_numeral = can dest_numeral;
wenzelm@23466
   127
wenzelm@32429
   128
fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n));
wenzelm@23466
   129
fun numeral2 f m n = HOLogic.mk_number iT (f (dest_numeral m) (dest_numeral n));
wenzelm@23466
   130
wenzelm@32429
   131
val [minus1,plus1] =
wenzelm@23466
   132
    map (fn c => fn t => Thm.capply (Thm.capply c t) cone) [cminus,cadd];
wenzelm@23466
   133
wenzelm@32429
   134
fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle,
wenzelm@23466
   135
                           asetgt, asetge,asetdvd,asetndvd,asetP,
wenzelm@23466
   136
                           infDdvd, infDndvd, asetconj,
wenzelm@23466
   137
                           asetdisj, infDconj, infDdisj] cp =
wenzelm@23466
   138
 case (whatis x cp) of
wenzelm@23466
   139
  And (p,q) => ([p,q], myfwd (piconj, asetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
wenzelm@23466
   140
| Or (p,q) => ([p,q], myfwd (pidisj, asetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
wenzelm@23466
   141
| Eq t => ([], K (inst' [t] pieq, FWD (inst' [t] aseteq) [inS (plus1 t)], infDFalse))
wenzelm@23466
   142
| NEq t => ([], K (inst' [t] pineq, FWD (inst' [t] asetneq) [inS t], infDTrue))
wenzelm@23466
   143
| Lt t => ([], K (inst' [t] pilt, FWD (inst' [t] asetlt) [inS t], infDFalse))
wenzelm@23466
   144
| Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse))
wenzelm@23466
   145
| Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue))
wenzelm@23466
   146
| Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue))
wenzelm@32429
   147
| Dvd (d,s) =>
wenzelm@23466
   148
   ([],let val dd = dvd d
wenzelm@32429
   149
       in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end)
wenzelm@23466
   150
| NDvd(d,s) => ([],let val dd = dvd d
wenzelm@32429
   151
        in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
wenzelm@23466
   152
| _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP));
wenzelm@23466
   153
wenzelm@23466
   154
fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt,
wenzelm@23466
   155
                           bsetge,bsetdvd,bsetndvd,bsetP,
wenzelm@23466
   156
                           infDdvd, infDndvd, bsetconj,
wenzelm@23466
   157
                           bsetdisj, infDconj, infDdisj] cp =
wenzelm@23466
   158
 case (whatis x cp) of
wenzelm@23466
   159
  And (p,q) => ([p,q], myfwd (miconj, bsetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
wenzelm@23466
   160
| Or (p,q) => ([p,q], myfwd (midisj, bsetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
wenzelm@23466
   161
| Eq t => ([], K (inst' [t] mieq, FWD (inst' [t] bseteq) [inS (minus1 t)], infDFalse))
wenzelm@23466
   162
| NEq t => ([], K (inst' [t] mineq, FWD (inst' [t] bsetneq) [inS t], infDTrue))
wenzelm@23466
   163
| Lt t => ([], K (inst' [t] milt, (inst' [t] bsetlt), infDTrue))
wenzelm@23466
   164
| Le t => ([], K (inst' [t] mile, (inst' [t] bsetle), infDTrue))
wenzelm@23466
   165
| Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse))
wenzelm@23466
   166
| Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse))
wenzelm@23466
   167
| Dvd (d,s) => ([],let val dd = dvd d
wenzelm@32429
   168
        in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end)
wenzelm@23466
   169
| NDvd (d,s) => ([],let val dd = dvd d
wenzelm@32429
   170
        in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
wenzelm@23466
   171
| _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP))
wenzelm@23466
   172
wenzelm@23466
   173
    (* Canonical linear form for terms, formulae etc.. *)
wenzelm@32429
   174
fun provelin ctxt t = Goal.prove ctxt [] [] t
haftmann@31101
   175
  (fn _ => EVERY [simp_tac lin_ss 1, TRY (Lin_Arith.tac ctxt 1)]);
wenzelm@32429
   176
fun linear_cmul 0 tm = zero
wenzelm@32429
   177
  | linear_cmul n tm = case tm of
haftmann@25768
   178
      Const (@{const_name HOL.plus}, _) $ a $ b => addC $ linear_cmul n a $ linear_cmul n b
haftmann@25768
   179
    | Const (@{const_name HOL.times}, _) $ c $ x => mulC $ numeral1 (fn m => n * m) c $ x
haftmann@25768
   180
    | Const (@{const_name HOL.minus}, _) $ a $ b => subC $ linear_cmul n a $ linear_cmul n b
haftmann@25768
   181
    | (m as Const (@{const_name HOL.uminus}, _)) $ a => m $ linear_cmul n a
haftmann@25768
   182
    | _ => numeral1 (fn m => n * m) tm;
wenzelm@32429
   183
fun earlier [] x y = false
wenzelm@32429
   184
  | earlier (h::t) x y =
wenzelm@32429
   185
    if h aconv y then false else if h aconv x then true else earlier t x y;
wenzelm@23466
   186
wenzelm@32429
   187
fun linear_add vars tm1 tm2 = case (tm1, tm2) of
haftmann@25768
   188
    (Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c1 $ x1) $ r1,
haftmann@25768
   189
    Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) =>
wenzelm@32429
   190
   if x1 = x2 then
wenzelm@33002
   191
     let val c = numeral2 Integer.add c1 c2
haftmann@25768
   192
      in if c = zero then linear_add vars r1 r2
haftmann@25768
   193
         else addC$(mulC$c$x1)$(linear_add vars r1 r2)
wenzelm@32429
   194
     end
haftmann@25768
   195
     else if earlier vars x1 x2 then addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2
haftmann@25768
   196
   else addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2
haftmann@25768
   197
 | (Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c1 $ x1) $ r1, _) =>
haftmann@25768
   198
      addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2
wenzelm@32429
   199
 | (_, Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) =>
haftmann@25768
   200
      addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2
wenzelm@33002
   201
 | (_, _) => numeral2 Integer.add tm1 tm2;
wenzelm@32429
   202
wenzelm@32429
   203
fun linear_neg tm = linear_cmul ~1 tm;
wenzelm@32429
   204
fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2);
wenzelm@23466
   205
wenzelm@23466
   206
wenzelm@32429
   207
fun lint vars tm =  if is_numeral tm then tm  else case tm of
haftmann@25768
   208
  Const (@{const_name HOL.uminus}, _) $ t => linear_neg (lint vars t)
haftmann@25768
   209
| Const (@{const_name HOL.plus}, _) $ s $ t => linear_add vars (lint vars s) (lint vars t)
haftmann@25768
   210
| Const (@{const_name HOL.minus}, _) $ s $ t => linear_sub vars (lint vars s) (lint vars t)
haftmann@25768
   211
| Const (@{const_name HOL.times}, _) $ s $ t =>
wenzelm@32429
   212
  let val s' = lint vars s
wenzelm@32429
   213
      val t' = lint vars t
wenzelm@32429
   214
  in if is_numeral s' then (linear_cmul (dest_numeral s') t')
wenzelm@32429
   215
     else if is_numeral t' then (linear_cmul (dest_numeral t') s')
wenzelm@23466
   216
     else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm]))
wenzelm@32429
   217
  end
haftmann@25768
   218
 | _ => addC $ (mulC $ one $ tm) $ zero;
wenzelm@23466
   219
wenzelm@32429
   220
fun lin (vs as x::_) (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.less}, T) $ s $ t)) =
haftmann@25768
   221
    lin vs (Const (@{const_name HOL.less_eq}, T) $ t $ s)
wenzelm@32429
   222
  | lin (vs as x::_) (Const (@{const_name Not},_) $ (Const(@{const_name HOL.less_eq}, T) $ s $ t)) =
haftmann@25768
   223
    lin vs (Const (@{const_name HOL.less}, T) $ t $ s)
haftmann@25768
   224
  | lin vs (Const (@{const_name Not},T)$t) = Const (@{const_name Not},T)$ (lin vs t)
wenzelm@32429
   225
  | lin (vs as x::_) (Const(@{const_name Ring_and_Field.dvd},_)$d$t) =
haftmann@27651
   226
    HOLogic.mk_binrel @{const_name Ring_and_Field.dvd} (numeral1 abs d, lint vs t)
wenzelm@32429
   227
  | lin (vs as x::_) ((b as Const("op =",_))$s$t) =
wenzelm@32429
   228
     (case lint vs (subC$t$s) of
wenzelm@32429
   229
      (t as a$(m$c$y)$r) =>
wenzelm@23466
   230
        if x <> y then b$zero$t
wenzelm@23466
   231
        else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
wenzelm@23466
   232
        else b$(m$c$y)$(linear_neg r)
wenzelm@23466
   233
      | t => b$zero$t)
wenzelm@32429
   234
  | lin (vs as x::_) (b$s$t) =
wenzelm@32429
   235
     (case lint vs (subC$t$s) of
wenzelm@32429
   236
      (t as a$(m$c$y)$r) =>
wenzelm@23466
   237
        if x <> y then b$zero$t
wenzelm@23466
   238
        else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
wenzelm@23466
   239
        else b$(linear_neg r)$(m$c$y)
wenzelm@23466
   240
      | t => b$zero$t)
wenzelm@23466
   241
  | lin vs fm = fm;
wenzelm@23466
   242
wenzelm@32429
   243
fun lint_conv ctxt vs ct =
wenzelm@23466
   244
let val t = term_of ct
wenzelm@23466
   245
in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop))
wenzelm@23466
   246
             RS eq_reflection
wenzelm@23466
   247
end;
wenzelm@23466
   248
boehmes@32398
   249
fun is_intrel_type T = T = @{typ "int => int => bool"};
boehmes@32398
   250
boehmes@32398
   251
fun is_intrel (b$_$_) = is_intrel_type (fastype_of b)
boehmes@32398
   252
  | is_intrel (@{term "Not"}$(b$_$_)) = is_intrel_type (fastype_of b)
wenzelm@23466
   253
  | is_intrel _ = false;
wenzelm@32429
   254
haftmann@25768
   255
fun linearize_conv ctxt vs ct = case term_of ct of
wenzelm@32429
   256
  Const(@{const_name Ring_and_Field.dvd},_)$d$t =>
wenzelm@32429
   257
  let
wenzelm@23466
   258
    val th = binop_conv (lint_conv ctxt vs) ct
wenzelm@23466
   259
    val (d',t') = Thm.dest_binop (Thm.rhs_of th)
wenzelm@23466
   260
    val (dt',tt') = (term_of d', term_of t')
wenzelm@32429
   261
  in if is_numeral dt' andalso is_numeral tt'
wenzelm@23466
   262
     then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th
wenzelm@32429
   263
     else
wenzelm@32429
   264
     let
wenzelm@32429
   265
      val dth =
wenzelm@32429
   266
      ((if dest_numeral (term_of d') < 0 then
wenzelm@23466
   267
          Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs)))
wenzelm@23466
   268
                           (Thm.transitive th (inst' [d',t'] dvd_uminus))
wenzelm@23466
   269
        else th) handle TERM _ => th)
wenzelm@23466
   270
      val d'' = Thm.rhs_of dth |> Thm.dest_arg1
wenzelm@23466
   271
     in
wenzelm@32429
   272
      case tt' of
wenzelm@32429
   273
        Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$_)$_ =>
wenzelm@23466
   274
        let val x = dest_numeral c
wenzelm@23466
   275
        in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs)))
wenzelm@23466
   276
                                       (Thm.transitive dth (inst' [d'',t'] dvd_uminus'))
wenzelm@23466
   277
        else dth end
wenzelm@23466
   278
      | _ => dth
wenzelm@23466
   279
     end
wenzelm@23466
   280
  end
haftmann@27651
   281
| Const (@{const_name Not},_)$(Const(@{const_name Ring_and_Field.dvd},_)$_$_) => arg_conv (linearize_conv ctxt vs) ct
wenzelm@32429
   282
| t => if is_intrel t
wenzelm@23466
   283
      then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop))
wenzelm@23466
   284
       RS eq_reflection
wenzelm@23466
   285
      else reflexive ct;
wenzelm@23466
   286
wenzelm@23466
   287
val dvdc = @{cterm "op dvd :: int => _"};
wenzelm@23466
   288
wenzelm@32429
   289
fun unify ctxt q =
wenzelm@23466
   290
 let
wenzelm@23466
   291
  val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs NONE
wenzelm@32429
   292
  val x = term_of cx
wenzelm@24630
   293
  val ins = insert (op = : int * int -> bool)
wenzelm@32429
   294
  fun h (acc,dacc) t =
wenzelm@23466
   295
   case (term_of t) of
wenzelm@32429
   296
    Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ =>
haftmann@23881
   297
    if x aconv y andalso member (op =)
haftmann@23881
   298
      ["op =", @{const_name HOL.less}, @{const_name HOL.less_eq}] s
wenzelm@23466
   299
    then (ins (dest_numeral c) acc,dacc) else (acc,dacc)
wenzelm@32429
   300
  | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) =>
haftmann@23881
   301
    if x aconv y andalso member (op =)
wenzelm@32429
   302
       [@{const_name HOL.less}, @{const_name HOL.less_eq}] s
wenzelm@23466
   303
    then (ins (dest_numeral c) acc, dacc) else (acc,dacc)
wenzelm@32429
   304
  | Const(@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_) =>
wenzelm@23466
   305
    if x aconv y then (acc,ins (dest_numeral c) dacc) else (acc,dacc)
wenzelm@23466
   306
  | Const("op &",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
wenzelm@23466
   307
  | Const("op |",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
haftmann@25768
   308
  | Const (@{const_name Not},_)$_ => h (acc,dacc) (Thm.dest_arg t)
wenzelm@23466
   309
  | _ => (acc, dacc)
wenzelm@23466
   310
  val (cs,ds) = h ([],[]) p
haftmann@33037
   311
  val l = Integer.lcms (gen_union (op =) (cs, ds))
wenzelm@32429
   312
  fun cv k ct =
wenzelm@32429
   313
    let val (tm as b$s$t) = term_of ct
wenzelm@23466
   314
    in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t))
wenzelm@23466
   315
         |> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end
wenzelm@32429
   316
  fun nzprop x =
wenzelm@32429
   317
   let
wenzelm@32429
   318
    val th =
wenzelm@32429
   319
     Simplifier.rewrite lin_ss
wenzelm@32429
   320
      (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"}
wenzelm@32429
   321
           (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (Numeral.mk_cnumber @{ctyp "int"} x))
haftmann@23689
   322
           @{cterm "0::int"})))
wenzelm@23466
   323
   in equal_elim (Thm.symmetric th) TrueI end;
wenzelm@32429
   324
  val notz =
wenzelm@32429
   325
    let val tab = fold Inttab.update
wenzelm@32429
   326
          (ds ~~ (map (fn x => nzprop (l div x)) ds)) Inttab.empty
wenzelm@32429
   327
    in
wenzelm@32429
   328
      fn ct => valOf (Inttab.lookup tab (ct |> term_of |> dest_numeral))
wenzelm@32429
   329
        handle Option =>
wenzelm@32429
   330
          (writeln ("noz: Theorems-Table contains no entry for " ^
wenzelm@32429
   331
              Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option)
wenzelm@32429
   332
    end
wenzelm@32429
   333
  fun unit_conv t =
wenzelm@23466
   334
   case (term_of t) of
wenzelm@23466
   335
   Const("op &",_)$_$_ => binop_conv unit_conv t
wenzelm@23466
   336
  | Const("op |",_)$_$_ => binop_conv unit_conv t
haftmann@25768
   337
  | Const (@{const_name Not},_)$_ => arg_conv unit_conv t
wenzelm@32429
   338
  | Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ =>
haftmann@23881
   339
    if x=y andalso member (op =)
haftmann@23881
   340
      ["op =", @{const_name HOL.less}, @{const_name HOL.less_eq}] s
wenzelm@24630
   341
    then cv (l div dest_numeral c) t else Thm.reflexive t
wenzelm@32429
   342
  | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) =>
haftmann@23881
   343
    if x=y andalso member (op =)
haftmann@23881
   344
      [@{const_name HOL.less}, @{const_name HOL.less_eq}] s
wenzelm@24630
   345
    then cv (l div dest_numeral c) t else Thm.reflexive t
wenzelm@32429
   346
  | Const(@{const_name Ring_and_Field.dvd},_)$d$(r as (Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_)) =>
wenzelm@32429
   347
    if x=y then
wenzelm@32429
   348
      let
wenzelm@24630
   349
       val k = l div dest_numeral c
wenzelm@23466
   350
       val kt = HOLogic.mk_number iT k
wenzelm@32429
   351
       val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t]
wenzelm@23466
   352
             ((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono)
wenzelm@23466
   353
       val (d',t') = (mulC$kt$d, mulC$kt$r)
wenzelm@23466
   354
       val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop))
wenzelm@23466
   355
                   RS eq_reflection
wenzelm@23466
   356
       val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop))
wenzelm@23466
   357
                 RS eq_reflection
wenzelm@32429
   358
      in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end
wenzelm@23466
   359
    else Thm.reflexive t
wenzelm@23466
   360
  | _ => Thm.reflexive t
wenzelm@23466
   361
  val uth = unit_conv p
haftmann@23689
   362
  val clt =  Numeral.mk_cnumber @{ctyp "int"} l
wenzelm@23466
   363
  val ltx = Thm.capply (Thm.capply cmulC clt) cx
wenzelm@23466
   364
  val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth)
wenzelm@23466
   365
  val th' = inst' [Thm.cabs ltx (Thm.rhs_of uth), clt] unity_coeff_ex
wenzelm@32429
   366
  val thf = transitive th
wenzelm@23466
   367
      (transitive (symmetric (beta_conversion true (cprop_of th' |> Thm.dest_arg1))) th')
wenzelm@23466
   368
  val (lth,rth) = Thm.dest_comb (cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true
wenzelm@23466
   369
                  ||> beta_conversion true |>> Thm.symmetric
wenzelm@23466
   370
 in transitive (transitive lth thf) rth end;
wenzelm@23466
   371
wenzelm@23466
   372
wenzelm@23466
   373
val emptyIS = @{cterm "{}::int set"};
wenzelm@23466
   374
val insert_tm = @{cterm "insert :: int => _"};
wenzelm@23466
   375
val mem_tm = Const("op :",[iT , HOLogic.mk_setT iT] ---> bT);
wenzelm@23466
   376
fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS;
wenzelm@23466
   377
val cTrp = @{cterm "Trueprop"};
wenzelm@23466
   378
val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1;
wenzelm@32429
   379
val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg
wenzelm@23466
   380
                                      |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg)
wenzelm@23466
   381
                      [asetP,bsetP];
wenzelm@23466
   382
wenzelm@23466
   383
val D_tm = @{cpat "?D::int"};
wenzelm@23466
   384
wenzelm@32429
   385
fun cooperex_conv ctxt vs q =
wenzelm@32429
   386
let
wenzelm@23466
   387
wenzelm@23466
   388
 val uth = unify ctxt q
wenzelm@23466
   389
 val (x,p) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of uth))
wenzelm@23466
   390
 val ins = insert (op aconvc)
wenzelm@32429
   391
 fun h t (bacc,aacc,dacc) =
wenzelm@23466
   392
  case (whatis x t) of
wenzelm@23466
   393
    And (p,q) => h q (h p (bacc,aacc,dacc))
wenzelm@23466
   394
  | Or (p,q) => h q  (h p (bacc,aacc,dacc))
wenzelm@32429
   395
  | Eq t => (ins (minus1 t) bacc,
wenzelm@23466
   396
             ins (plus1 t) aacc,dacc)
wenzelm@32429
   397
  | NEq t => (ins t bacc,
wenzelm@23466
   398
              ins t aacc, dacc)
wenzelm@23466
   399
  | Lt t => (bacc, ins t aacc, dacc)
wenzelm@23466
   400
  | Le t => (bacc, ins (plus1 t) aacc,dacc)
wenzelm@23466
   401
  | Gt t => (ins t bacc, aacc,dacc)
wenzelm@23466
   402
  | Ge t => (ins (minus1 t) bacc, aacc,dacc)
wenzelm@24630
   403
  | Dvd (d,s) => (bacc,aacc,insert (op =) (term_of d |> dest_numeral) dacc)
wenzelm@24630
   404
  | NDvd (d,s) => (bacc,aacc,insert (op =) (term_of d|> dest_numeral) dacc)
wenzelm@23466
   405
  | _ => (bacc, aacc, dacc)
wenzelm@23466
   406
 val (b0,a0,ds) = h p ([],[],[])
wenzelm@24630
   407
 val d = Integer.lcms ds
wenzelm@23582
   408
 val cd = Numeral.mk_cnumber @{ctyp "int"} d
wenzelm@23466
   409
 val dt = term_of cd
wenzelm@32429
   410
 fun divprop x =
wenzelm@32429
   411
   let
wenzelm@32429
   412
    val th =
wenzelm@32429
   413
     Simplifier.rewrite lin_ss
wenzelm@32429
   414
      (Thm.capply @{cterm Trueprop}
wenzelm@23582
   415
           (Thm.capply (Thm.capply dvdc (Numeral.mk_cnumber @{ctyp "int"} x)) cd))
wenzelm@23466
   416
   in equal_elim (Thm.symmetric th) TrueI end;
wenzelm@32429
   417
 val dvd =
wenzelm@32429
   418
   let val tab = fold Inttab.update (ds ~~ (map divprop ds)) Inttab.empty in
wenzelm@32429
   419
     fn ct => valOf (Inttab.lookup tab (term_of ct |> dest_numeral))
wenzelm@32429
   420
       handle Option =>
wenzelm@32429
   421
        (writeln ("dvd: Theorems-Table contains no entry for" ^
wenzelm@32429
   422
            Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option)
wenzelm@32429
   423
   end
wenzelm@32429
   424
 val dp =
wenzelm@32429
   425
   let val th = Simplifier.rewrite lin_ss
wenzelm@32429
   426
      (Thm.capply @{cterm Trueprop}
wenzelm@23466
   427
           (Thm.capply (Thm.capply @{cterm "op < :: int => _"} @{cterm "0::int"}) cd))
wenzelm@23466
   428
   in equal_elim (Thm.symmetric th) TrueI end;
wenzelm@23466
   429
    (* A and B set *)
wenzelm@32429
   430
   local
wenzelm@23466
   431
     val insI1 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI1"}
wenzelm@23466
   432
     val insI2 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI2"}
wenzelm@23466
   433
   in
wenzelm@32429
   434
    fun provein x S =
wenzelm@23466
   435
     case term_of S of
haftmann@32264
   436
        Const(@{const_name Orderings.bot}, _) => error "Unexpected error in Cooper, please email Amine Chaieb"
wenzelm@32429
   437
      | Const(@{const_name insert}, _) $ y $ _ =>
wenzelm@23466
   438
         let val (cy,S') = Thm.dest_binop S
wenzelm@23466
   439
         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
wenzelm@32429
   440
         else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2)
wenzelm@23466
   441
                           (provein x S')
wenzelm@23466
   442
         end
wenzelm@23466
   443
   end
wenzelm@32429
   444
wenzelm@23466
   445
 val al = map (lint vs o term_of) a0
wenzelm@23466
   446
 val bl = map (lint vs o term_of) b0
wenzelm@32429
   447
 val (sl,s0,f,abths,cpth) =
wenzelm@32429
   448
   if length (distinct (op aconv) bl) <= length (distinct (op aconv) al)
wenzelm@32429
   449
   then
wenzelm@23466
   450
    (bl,b0,decomp_minf,
wenzelm@32429
   451
     fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp)
wenzelm@23466
   452
                     [bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@
wenzelm@32429
   453
                   (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]))
wenzelm@23466
   454
                        [bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj,
wenzelm@23466
   455
                         bsetdisj,infDconj, infDdisj]),
wenzelm@32429
   456
                       cpmi)
wenzelm@32429
   457
     else (al,a0,decomp_pinf,fn A =>
wenzelm@23466
   458
          (map (fn th => implies_elim (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]) th) dp)
wenzelm@23466
   459
                   [aseteq,asetneq,asetlt, asetle, asetgt,asetge])@
wenzelm@32429
   460
                   (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]))
wenzelm@23466
   461
                   [asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj,
wenzelm@23466
   462
                         asetdisj,infDconj, infDdisj]),cppi)
wenzelm@32429
   463
 val cpth =
wenzelm@23466
   464
  let
wenzelm@32429
   465
   val sths = map (fn (tl,t0) =>
wenzelm@32429
   466
                      if tl = term_of t0
wenzelm@23466
   467
                      then instantiate' [SOME @{ctyp "int"}] [SOME t0] refl
wenzelm@32429
   468
                      else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0)
wenzelm@32429
   469
                                 |> HOLogic.mk_Trueprop))
wenzelm@23466
   470
                   (sl ~~ s0)
wenzelm@23466
   471
   val csl = distinct (op aconvc) (map (cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths)
wenzelm@23466
   472
   val S = mkISet csl
wenzelm@32429
   473
   val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab)
wenzelm@23466
   474
                    csl Termtab.empty
wenzelm@23466
   475
   val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp
wenzelm@32429
   476
   val inS =
wenzelm@32429
   477
     let
wenzelm@32429
   478
      fun transmem th0 th1 =
wenzelm@32429
   479
       Thm.equal_elim
wenzelm@32429
   480
        (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule
wenzelm@23466
   481
               ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1
wenzelm@23466
   482
      val tab = fold Termtab.update
wenzelm@32429
   483
        (map (fn eq =>
wenzelm@32429
   484
                let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop
wenzelm@32429
   485
                    val th = if term_of s = term_of t
wenzelm@23466
   486
                             then valOf(Termtab.lookup inStab (term_of s))
wenzelm@32429
   487
                             else FWD (instantiate' [] [SOME s, SOME t] eqelem_th)
wenzelm@23466
   488
                                [eq, valOf(Termtab.lookup inStab (term_of s))]
wenzelm@23466
   489
                 in (term_of t, th) end)
wenzelm@23466
   490
                  sths) Termtab.empty
wenzelm@32429
   491
        in
wenzelm@32429
   492
          fn ct => valOf (Termtab.lookup tab (term_of ct))
wenzelm@32429
   493
            handle Option =>
wenzelm@32429
   494
              (writeln ("inS: No theorem for " ^ Syntax.string_of_term ctxt (Thm.term_of ct));
wenzelm@32429
   495
                raise Option)
wenzelm@23466
   496
        end
wenzelm@23466
   497
       val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p
wenzelm@23466
   498
   in [dp, inf, nb, pd] MRS cpth
wenzelm@23466
   499
   end
wenzelm@23466
   500
 val cpth' = Thm.transitive uth (cpth RS eq_reflection)
wenzelm@27018
   501
in Thm.transitive cpth' ((simp_thms_conv ctxt then_conv eval_conv) (Thm.rhs_of cpth'))
wenzelm@23466
   502
end;
wenzelm@23466
   503
wenzelm@32429
   504
fun literals_conv bops uops env cv =
wenzelm@23466
   505
 let fun h t =
wenzelm@32429
   506
  case (term_of t) of
wenzelm@23466
   507
   b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t
wenzelm@23466
   508
 | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t
wenzelm@23466
   509
 | _ => cv env t
wenzelm@23466
   510
 in h end;
wenzelm@23466
   511
wenzelm@23466
   512
fun integer_nnf_conv ctxt env =
wenzelm@23466
   513
 nnf_conv then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt);
wenzelm@23466
   514
wenzelm@23466
   515
local
wenzelm@32429
   516
 val pcv = Simplifier.rewrite
wenzelm@32429
   517
     (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4))
wenzelm@23466
   518
                      @ [not_all,all_not_ex, ex_disj_distrib]))
wenzelm@23466
   519
 val postcv = Simplifier.rewrite presburger_ss
wenzelm@32429
   520
 fun conv ctxt p =
wenzelm@24298
   521
  let val _ = ()
wenzelm@23466
   522
  in
wenzelm@32429
   523
   Qelim.gen_qelim_conv pcv postcv pcv (cons o term_of)
wenzelm@32429
   524
      (OldTerm.term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt)
wenzelm@32429
   525
      (cooperex_conv ctxt) p
wenzelm@23466
   526
  end
wenzelm@23466
   527
  handle  CTERM s => raise COOPER ("Cooper Failed", CTERM s)
wenzelm@32429
   528
        | THM s => raise COOPER ("Cooper Failed", THM s)
wenzelm@32429
   529
        | TYPE s => raise COOPER ("Cooper Failed", TYPE s)
wenzelm@32429
   530
in val cooper_conv = conv
wenzelm@23466
   531
end;
wenzelm@23466
   532
end;
wenzelm@23466
   533
wenzelm@23466
   534
wenzelm@23466
   535
wenzelm@23466
   536
structure Coopereif =
wenzelm@23466
   537
struct
wenzelm@23466
   538
haftmann@23713
   539
open GeneratedCooper;
haftmann@23713
   540
haftmann@23713
   541
fun cooper s = raise Cooper.COOPER ("Cooper oracle failed", ERROR s);
haftmann@23713
   542
fun i_of_term vs t = case t
haftmann@23713
   543
 of Free (xn, xT) => (case AList.lookup (op aconv) vs t
haftmann@23713
   544
     of NONE   => cooper "Variable not found in the list!"
haftmann@23713
   545
      | SOME n => Bound n)
haftmann@23713
   546
  | @{term "0::int"} => C 0
haftmann@23713
   547
  | @{term "1::int"} => C 1
wenzelm@24630
   548
  | Term.Bound i => Bound i
haftmann@23713
   549
  | Const(@{const_name HOL.uminus},_)$t' => Neg (i_of_term vs t')
haftmann@23713
   550
  | Const(@{const_name HOL.plus},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2)
haftmann@23713
   551
  | Const(@{const_name HOL.minus},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2)
wenzelm@32429
   552
  | Const(@{const_name HOL.times},_)$t1$t2 =>
haftmann@23713
   553
     (Mul (HOLogic.dest_number t1 |> snd, i_of_term vs t2)
wenzelm@32429
   554
    handle TERM _ =>
haftmann@23713
   555
       (Mul (HOLogic.dest_number t2 |> snd, i_of_term vs t1)
haftmann@23713
   556
        handle TERM _ => cooper "Reification: Unsupported kind of multiplication"))
wenzelm@32429
   557
  | _ => (C (HOLogic.dest_number t |> snd)
haftmann@23713
   558
           handle TERM _ => cooper "Reification: unknown term");
haftmann@23689
   559
haftmann@23713
   560
fun qf_of_term ps vs t =  case t
haftmann@23713
   561
 of Const("True",_) => T
haftmann@23713
   562
  | Const("False",_) => F
haftmann@23881
   563
  | Const(@{const_name HOL.less},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2))
haftmann@23881
   564
  | Const(@{const_name HOL.less_eq},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2))
wenzelm@32429
   565
  | Const(@{const_name Ring_and_Field.dvd},_)$t1$t2 =>
wenzelm@28397
   566
      (Dvd(HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle _ => cooper "Reification: unsupported dvd")  (* FIXME avoid handle _ *)
haftmann@23713
   567
  | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2))
haftmann@29787
   568
  | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2)
haftmann@23713
   569
  | Const("op &",_)$t1$t2 => And(qf_of_term ps vs t1,qf_of_term ps vs t2)
haftmann@23713
   570
  | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2)
haftmann@29787
   571
  | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2)
haftmann@29787
   572
  | Const (@{const_name Not},_)$t' => Not(qf_of_term ps vs t')
wenzelm@32429
   573
  | Const("Ex",_)$Abs(xn,xT,p) =>
haftmann@23713
   574
     let val (xn',p') = variant_abs (xn,xT,p)
haftmann@23713
   575
         val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs)
haftmann@23713
   576
     in E (qf_of_term ps vs' p')
haftmann@23713
   577
     end
wenzelm@32429
   578
  | Const("All",_)$Abs(xn,xT,p) =>
haftmann@23713
   579
     let val (xn',p') = variant_abs (xn,xT,p)
haftmann@23713
   580
         val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs)
haftmann@23713
   581
     in A (qf_of_term ps vs' p')
haftmann@23713
   582
     end
wenzelm@32429
   583
  | _ =>(case AList.lookup (op aconv) ps t of
haftmann@23713
   584
           NONE => cooper "Reification: unknown term!"
haftmann@23713
   585
         | SOME n => Closed n);
wenzelm@23466
   586
wenzelm@23466
   587
local
wenzelm@23466
   588
 val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"},
wenzelm@32429
   589
             @{term "op = :: int => _"}, @{term "op < :: int => _"},
wenzelm@32429
   590
             @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"},
wenzelm@23466
   591
             @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}]
wenzelm@23466
   592
fun ty t = Bool.not (fastype_of t = HOLogic.boolT)
wenzelm@23466
   593
in
wenzelm@23466
   594
fun term_bools acc t =
wenzelm@32429
   595
case t of
wenzelm@32429
   596
    (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b
wenzelm@23466
   597
            else insert (op aconv) t acc
wenzelm@32429
   598
  | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a
wenzelm@23466
   599
            else insert (op aconv) t acc
wenzelm@23466
   600
  | Abs p => term_bools acc (snd (variant_abs p))
wenzelm@23466
   601
  | _ => if ty t orelse t mem ops then acc else insert (op aconv) t acc
wenzelm@23466
   602
end;
wenzelm@32429
   603
wenzelm@23466
   604
fun myassoc2 l v =
wenzelm@23466
   605
    case l of
wenzelm@32429
   606
  [] => NONE
haftmann@23689
   607
      | (x,v')::xs => if v = v' then SOME x
wenzelm@32429
   608
          else myassoc2 xs v;
wenzelm@23466
   609
haftmann@23713
   610
fun term_of_i vs t = case t
haftmann@23713
   611
 of C i => HOLogic.mk_number HOLogic.intT i
haftmann@23713
   612
  | Bound n => the (myassoc2 vs n)
haftmann@23713
   613
  | Neg t' => @{term "uminus :: int => _"} $ term_of_i vs t'
haftmann@23713
   614
  | Add (t1, t2) => @{term "op + :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2
haftmann@23713
   615
  | Sub (t1, t2) => @{term "op - :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2
haftmann@23713
   616
  | Mul (i, t2) => @{term "op * :: int => _"} $
haftmann@23713
   617
      HOLogic.mk_number HOLogic.intT i $ term_of_i vs t2
haftmann@29787
   618
  | Cn (n, i, t') => term_of_i vs (Add (Mul (i, Bound n), t'));
wenzelm@23466
   619
wenzelm@32429
   620
fun term_of_qf ps vs t =
wenzelm@32429
   621
 case t of
wenzelm@32429
   622
   T => HOLogic.true_const
wenzelm@23466
   623
 | F => HOLogic.false_const
wenzelm@23466
   624
 | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
wenzelm@23466
   625
 | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"}
wenzelm@23466
   626
 | Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
wenzelm@23466
   627
 | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
wenzelm@23466
   628
 | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
haftmann@29787
   629
 | NEq t' => term_of_qf ps vs (Not (Eq t'))
wenzelm@32429
   630
 | Dvd(i,t') => @{term "op dvd :: int => _ "} $
haftmann@23713
   631
    HOLogic.mk_number HOLogic.intT i $ term_of_i vs t'
haftmann@29787
   632
 | NDvd(i,t')=> term_of_qf ps vs (Not(Dvd(i,t')))
haftmann@29787
   633
 | Not t' => HOLogic.Not$(term_of_qf ps vs t')
wenzelm@23466
   634
 | And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
wenzelm@23466
   635
 | Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
haftmann@29787
   636
 | Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
haftmann@29787
   637
 | Iff(t1,t2) => @{term "op = :: bool => _"} $ term_of_qf ps vs t1 $ term_of_qf ps vs t2
haftmann@23713
   638
 | Closed n => the (myassoc2 ps n)
haftmann@29787
   639
 | NClosed n => term_of_qf ps vs (Not (Closed n))
haftmann@29787
   640
 | _ => cooper "If this is raised, Isabelle/HOL or code generator is inconsistent!";
wenzelm@23466
   641
wenzelm@28290
   642
fun cooper_oracle ct =
haftmann@23713
   643
  let
wenzelm@28290
   644
    val thy = Thm.theory_of_cterm ct;
wenzelm@28290
   645
    val t = Thm.term_of ct;
wenzelm@29265
   646
    val (vs, ps) = pairself (map_index swap) (OldTerm.term_frees t, term_bools [] t);
haftmann@23713
   647
  in
wenzelm@28290
   648
    Thm.cterm_of thy (Logic.mk_equals (HOLogic.mk_Trueprop t,
wenzelm@28290
   649
      HOLogic.mk_Trueprop (term_of_qf ps vs (pa (qf_of_term ps vs t)))))
haftmann@23713
   650
  end;
wenzelm@23466
   651
wenzelm@23466
   652
end;