src/HOL/FunDef.thy
author nipkow
Fri Mar 06 17:38:47 2009 +0100 (2009-03-06)
changeset 30313 b2441b0c8d38
parent 29580 117b88da143c
child 30428 14f469e70eab
permissions -rw-r--r--
added lemmas
wenzelm@20324
     1
(*  Title:      HOL/FunDef.thy
wenzelm@20324
     2
    Author:     Alexander Krauss, TU Muenchen
wenzelm@22816
     3
*)
wenzelm@20324
     4
krauss@29125
     5
header {* Function Definitions and Termination Proofs *}
wenzelm@20324
     6
krauss@19564
     7
theory FunDef
krauss@26748
     8
imports Wellfounded
wenzelm@22816
     9
uses
krauss@29125
    10
  "Tools/prop_logic.ML"
krauss@29125
    11
  "Tools/sat_solver.ML"
krauss@23203
    12
  ("Tools/function_package/fundef_lib.ML")
wenzelm@22816
    13
  ("Tools/function_package/fundef_common.ML")
wenzelm@22816
    14
  ("Tools/function_package/inductive_wrap.ML")
wenzelm@22816
    15
  ("Tools/function_package/context_tree.ML")
wenzelm@22816
    16
  ("Tools/function_package/fundef_core.ML")
krauss@25556
    17
  ("Tools/function_package/sum_tree.ML")
wenzelm@22816
    18
  ("Tools/function_package/mutual.ML")
wenzelm@22816
    19
  ("Tools/function_package/pattern_split.ML")
wenzelm@22816
    20
  ("Tools/function_package/fundef_package.ML")
wenzelm@22816
    21
  ("Tools/function_package/auto_term.ML")
krauss@26875
    22
  ("Tools/function_package/measure_functions.ML")
krauss@26748
    23
  ("Tools/function_package/lexicographic_order.ML")
krauss@26748
    24
  ("Tools/function_package/fundef_datatype.ML")
krauss@27271
    25
  ("Tools/function_package/induction_scheme.ML")
krauss@29125
    26
  ("Tools/function_package/termination.ML")
krauss@29125
    27
  ("Tools/function_package/decompose.ML")
krauss@29125
    28
  ("Tools/function_package/descent.ML")
krauss@29125
    29
  ("Tools/function_package/scnp_solve.ML")
krauss@29125
    30
  ("Tools/function_package/scnp_reconstruct.ML")
krauss@19564
    31
begin
krauss@19564
    32
krauss@29125
    33
subsection {* Definitions with default value. *}
krauss@20536
    34
krauss@20536
    35
definition
wenzelm@21404
    36
  THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
krauss@20536
    37
  "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
krauss@20536
    38
krauss@20536
    39
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
wenzelm@22816
    40
  by (simp add: theI' THE_default_def)
krauss@20536
    41
wenzelm@22816
    42
lemma THE_default1_equality:
wenzelm@22816
    43
    "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
wenzelm@22816
    44
  by (simp add: the1_equality THE_default_def)
krauss@20536
    45
krauss@20536
    46
lemma THE_default_none:
wenzelm@22816
    47
    "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
wenzelm@22816
    48
  by (simp add:THE_default_def)
krauss@20536
    49
krauss@20536
    50
krauss@19564
    51
lemma fundef_ex1_existence:
wenzelm@22816
    52
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    53
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    54
  shows "G x (f x)"
wenzelm@22816
    55
  apply (simp only: f_def)
wenzelm@22816
    56
  apply (rule THE_defaultI')
wenzelm@22816
    57
  apply (rule ex1)
wenzelm@22816
    58
  done
krauss@21051
    59
krauss@19564
    60
lemma fundef_ex1_uniqueness:
wenzelm@22816
    61
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    62
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    63
  assumes elm: "G x (h x)"
wenzelm@22816
    64
  shows "h x = f x"
wenzelm@22816
    65
  apply (simp only: f_def)
wenzelm@22816
    66
  apply (rule THE_default1_equality [symmetric])
wenzelm@22816
    67
   apply (rule ex1)
wenzelm@22816
    68
  apply (rule elm)
wenzelm@22816
    69
  done
krauss@19564
    70
krauss@19564
    71
lemma fundef_ex1_iff:
wenzelm@22816
    72
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    73
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    74
  shows "(G x y) = (f x = y)"
krauss@20536
    75
  apply (auto simp:ex1 f_def THE_default1_equality)
wenzelm@22816
    76
  apply (rule THE_defaultI')
wenzelm@22816
    77
  apply (rule ex1)
wenzelm@22816
    78
  done
krauss@19564
    79
krauss@20654
    80
lemma fundef_default_value:
wenzelm@22816
    81
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    82
  assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
wenzelm@22816
    83
  assumes "\<not> D x"
wenzelm@22816
    84
  shows "f x = d x"
krauss@20654
    85
proof -
krauss@21051
    86
  have "\<not>(\<exists>y. G x y)"
krauss@20654
    87
  proof
krauss@21512
    88
    assume "\<exists>y. G x y"
krauss@21512
    89
    hence "D x" using graph ..
krauss@21512
    90
    with `\<not> D x` show False ..
krauss@20654
    91
  qed
krauss@21051
    92
  hence "\<not>(\<exists>!y. G x y)" by blast
wenzelm@22816
    93
krauss@20654
    94
  thus ?thesis
krauss@20654
    95
    unfolding f_def
krauss@20654
    96
    by (rule THE_default_none)
krauss@20654
    97
qed
krauss@20654
    98
berghofe@23739
    99
definition in_rel_def[simp]:
berghofe@23739
   100
  "in_rel R x y == (x, y) \<in> R"
berghofe@23739
   101
berghofe@23739
   102
lemma wf_in_rel:
berghofe@23739
   103
  "wf R \<Longrightarrow> wfP (in_rel R)"
berghofe@23739
   104
  by (simp add: wfP_def)
berghofe@23739
   105
krauss@23203
   106
use "Tools/function_package/fundef_lib.ML"
krauss@19564
   107
use "Tools/function_package/fundef_common.ML"
krauss@20523
   108
use "Tools/function_package/inductive_wrap.ML"
krauss@19564
   109
use "Tools/function_package/context_tree.ML"
krauss@22166
   110
use "Tools/function_package/fundef_core.ML"
krauss@25556
   111
use "Tools/function_package/sum_tree.ML"
krauss@19770
   112
use "Tools/function_package/mutual.ML"
krauss@20270
   113
use "Tools/function_package/pattern_split.ML"
krauss@21319
   114
use "Tools/function_package/auto_term.ML"
krauss@19564
   115
use "Tools/function_package/fundef_package.ML"
krauss@26748
   116
use "Tools/function_package/fundef_datatype.ML"
krauss@27271
   117
use "Tools/function_package/induction_scheme.ML"
krauss@19564
   118
krauss@25567
   119
setup {* 
krauss@25567
   120
  FundefPackage.setup 
krauss@29125
   121
  #> FundefDatatype.setup
krauss@25567
   122
  #> InductionScheme.setup
krauss@25567
   123
*}
krauss@19770
   124
krauss@29125
   125
subsection {* Measure Functions *}
krauss@29125
   126
krauss@29125
   127
inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
krauss@29125
   128
where is_measure_trivial: "is_measure f"
krauss@29125
   129
krauss@29125
   130
use "Tools/function_package/measure_functions.ML"
krauss@29125
   131
setup MeasureFunctions.setup
krauss@29125
   132
krauss@29125
   133
lemma measure_size[measure_function]: "is_measure size"
krauss@29125
   134
by (rule is_measure_trivial)
krauss@29125
   135
krauss@29125
   136
lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
krauss@29125
   137
by (rule is_measure_trivial)
krauss@29125
   138
lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
krauss@29125
   139
by (rule is_measure_trivial)
krauss@29125
   140
krauss@29125
   141
use "Tools/function_package/lexicographic_order.ML"
krauss@29125
   142
setup LexicographicOrder.setup 
krauss@29125
   143
krauss@29125
   144
krauss@29125
   145
subsection {* Congruence Rules *}
krauss@29125
   146
haftmann@22838
   147
lemma let_cong [fundef_cong]:
haftmann@22838
   148
  "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
wenzelm@22816
   149
  unfolding Let_def by blast
krauss@22622
   150
wenzelm@22816
   151
lemmas [fundef_cong] =
haftmann@22838
   152
  if_cong image_cong INT_cong UN_cong
haftmann@22838
   153
  bex_cong ball_cong imp_cong
krauss@19564
   154
wenzelm@22816
   155
lemma split_cong [fundef_cong]:
haftmann@22838
   156
  "(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q
wenzelm@22816
   157
    \<Longrightarrow> split f p = split g q"
wenzelm@22816
   158
  by (auto simp: split_def)
krauss@19934
   159
wenzelm@22816
   160
lemma comp_cong [fundef_cong]:
haftmann@22838
   161
  "f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'"
wenzelm@22816
   162
  unfolding o_apply .
krauss@19934
   163
krauss@29125
   164
subsection {* Simp rules for termination proofs *}
krauss@26875
   165
krauss@26749
   166
lemma termination_basic_simps[termination_simp]:
krauss@26749
   167
  "x < (y::nat) \<Longrightarrow> x < y + z" 
krauss@26749
   168
  "x < z \<Longrightarrow> x < y + z"
krauss@26875
   169
  "x \<le> y \<Longrightarrow> x \<le> y + (z::nat)"
krauss@26875
   170
  "x \<le> z \<Longrightarrow> x \<le> y + (z::nat)"
krauss@26875
   171
  "x < y \<Longrightarrow> x \<le> (y::nat)"
krauss@26749
   172
by arith+
krauss@26749
   173
krauss@26875
   174
declare le_imp_less_Suc[termination_simp]
krauss@26875
   175
krauss@26875
   176
lemma prod_size_simp[termination_simp]:
krauss@26875
   177
  "prod_size f g p = f (fst p) + g (snd p) + Suc 0"
krauss@26875
   178
by (induct p) auto
krauss@26875
   179
krauss@29125
   180
subsection {* Decomposition *}
krauss@29125
   181
krauss@29125
   182
lemma less_by_empty: 
krauss@29125
   183
  "A = {} \<Longrightarrow> A \<subseteq> B"
krauss@29125
   184
and  union_comp_emptyL:
krauss@29125
   185
  "\<lbrakk> A O C = {}; B O C = {} \<rbrakk> \<Longrightarrow> (A \<union> B) O C = {}"
krauss@29125
   186
and union_comp_emptyR:
krauss@29125
   187
  "\<lbrakk> A O B = {}; A O C = {} \<rbrakk> \<Longrightarrow> A O (B \<union> C) = {}"
krauss@29125
   188
and wf_no_loop: 
krauss@29125
   189
  "R O R = {} \<Longrightarrow> wf R"
krauss@29125
   190
by (auto simp add: wf_comp_self[of R])
krauss@29125
   191
krauss@29125
   192
krauss@29125
   193
subsection {* Reduction Pairs *}
krauss@29125
   194
krauss@29125
   195
definition
krauss@29125
   196
  "reduction_pair P = (wf (fst P) \<and> snd P O fst P \<subseteq> fst P)"
krauss@29125
   197
krauss@29125
   198
lemma reduction_pairI[intro]: "wf R \<Longrightarrow> S O R \<subseteq> R \<Longrightarrow> reduction_pair (R, S)"
krauss@29125
   199
unfolding reduction_pair_def by auto
krauss@29125
   200
krauss@29125
   201
lemma reduction_pair_lemma:
krauss@29125
   202
  assumes rp: "reduction_pair P"
krauss@29125
   203
  assumes "R \<subseteq> fst P"
krauss@29125
   204
  assumes "S \<subseteq> snd P"
krauss@29125
   205
  assumes "wf S"
krauss@29125
   206
  shows "wf (R \<union> S)"
krauss@29125
   207
proof -
krauss@29125
   208
  from rp `S \<subseteq> snd P` have "wf (fst P)" "S O fst P \<subseteq> fst P"
krauss@29125
   209
    unfolding reduction_pair_def by auto
krauss@29125
   210
  with `wf S` have "wf (fst P \<union> S)" 
krauss@29125
   211
    by (auto intro: wf_union_compatible)
krauss@29125
   212
  moreover from `R \<subseteq> fst P` have "R \<union> S \<subseteq> fst P \<union> S" by auto
krauss@29125
   213
  ultimately show ?thesis by (rule wf_subset) 
krauss@29125
   214
qed
krauss@29125
   215
krauss@29125
   216
definition
krauss@29125
   217
  "rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))"
krauss@29125
   218
krauss@29125
   219
lemma rp_inv_image_rp:
krauss@29125
   220
  "reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)"
krauss@29125
   221
  unfolding reduction_pair_def rp_inv_image_def split_def
krauss@29125
   222
  by force
krauss@29125
   223
krauss@29125
   224
krauss@29125
   225
subsection {* Concrete orders for SCNP termination proofs *}
krauss@29125
   226
krauss@29125
   227
definition "pair_less = less_than <*lex*> less_than"
krauss@29125
   228
definition "pair_leq = pair_less^="
krauss@29125
   229
definition "max_strict = max_ext pair_less"
krauss@29125
   230
definition "max_weak = max_ext pair_leq \<union> {({}, {})}"
krauss@29125
   231
definition "min_strict = min_ext pair_less"
krauss@29125
   232
definition "min_weak = min_ext pair_leq \<union> {({}, {})}"
krauss@29125
   233
krauss@29125
   234
lemma wf_pair_less[simp]: "wf pair_less"
krauss@29125
   235
  by (auto simp: pair_less_def)
krauss@29125
   236
wenzelm@29127
   237
text {* Introduction rules for @{text pair_less}/@{text pair_leq} *}
krauss@29125
   238
lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
krauss@29125
   239
  and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
krauss@29125
   240
  and pair_lessI1: "a < b  \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
krauss@29125
   241
  and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
krauss@29125
   242
  unfolding pair_leq_def pair_less_def by auto
krauss@29125
   243
krauss@29125
   244
text {* Introduction rules for max *}
krauss@29125
   245
lemma smax_emptyI: 
krauss@29125
   246
  "finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict" 
krauss@29125
   247
  and smax_insertI: 
krauss@29125
   248
  "\<lbrakk>y \<in> Y; (x, y) \<in> pair_less; (X, Y) \<in> max_strict\<rbrakk> \<Longrightarrow> (insert x X, Y) \<in> max_strict"
krauss@29125
   249
  and wmax_emptyI: 
krauss@29125
   250
  "finite X \<Longrightarrow> ({}, X) \<in> max_weak" 
krauss@29125
   251
  and wmax_insertI:
krauss@29125
   252
  "\<lbrakk>y \<in> YS; (x, y) \<in> pair_leq; (XS, YS) \<in> max_weak\<rbrakk> \<Longrightarrow> (insert x XS, YS) \<in> max_weak" 
krauss@29125
   253
unfolding max_strict_def max_weak_def by (auto elim!: max_ext.cases)
krauss@29125
   254
krauss@29125
   255
text {* Introduction rules for min *}
krauss@29125
   256
lemma smin_emptyI: 
krauss@29125
   257
  "X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict" 
krauss@29125
   258
  and smin_insertI: 
krauss@29125
   259
  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_less; (XS, YS) \<in> min_strict\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_strict"
krauss@29125
   260
  and wmin_emptyI: 
krauss@29125
   261
  "(X, {}) \<in> min_weak" 
krauss@29125
   262
  and wmin_insertI: 
krauss@29125
   263
  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_leq; (XS, YS) \<in> min_weak\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_weak" 
krauss@29125
   264
by (auto simp: min_strict_def min_weak_def min_ext_def)
krauss@29125
   265
krauss@29125
   266
text {* Reduction Pairs *}
krauss@29125
   267
krauss@29125
   268
lemma max_ext_compat: 
krauss@29125
   269
  assumes "S O R \<subseteq> R"
krauss@29125
   270
  shows "(max_ext S \<union> {({},{})}) O max_ext R \<subseteq> max_ext R"
krauss@29125
   271
using assms 
krauss@29125
   272
apply auto
krauss@29125
   273
apply (elim max_ext.cases)
krauss@29125
   274
apply rule
krauss@29125
   275
apply auto[3]
krauss@29125
   276
apply (drule_tac x=xa in meta_spec)
krauss@29125
   277
apply simp
krauss@29125
   278
apply (erule bexE)
krauss@29125
   279
apply (drule_tac x=xb in meta_spec)
krauss@29125
   280
by auto
krauss@29125
   281
krauss@29125
   282
lemma max_rpair_set: "reduction_pair (max_strict, max_weak)"
krauss@29125
   283
  unfolding max_strict_def max_weak_def 
krauss@29125
   284
apply (intro reduction_pairI max_ext_wf)
krauss@29125
   285
apply simp
krauss@29125
   286
apply (rule max_ext_compat)
krauss@29125
   287
by (auto simp: pair_less_def pair_leq_def)
krauss@29125
   288
krauss@29125
   289
lemma min_ext_compat: 
krauss@29125
   290
  assumes "S O R \<subseteq> R"
krauss@29125
   291
  shows "(min_ext S \<union> {({},{})}) O min_ext R \<subseteq> min_ext R"
krauss@29125
   292
using assms 
krauss@29125
   293
apply (auto simp: min_ext_def)
krauss@29125
   294
apply (drule_tac x=ya in bspec, assumption)
krauss@29125
   295
apply (erule bexE)
krauss@29125
   296
apply (drule_tac x=xc in bspec)
krauss@29125
   297
apply assumption
krauss@29125
   298
by auto
krauss@29125
   299
krauss@29125
   300
lemma min_rpair_set: "reduction_pair (min_strict, min_weak)"
krauss@29125
   301
  unfolding min_strict_def min_weak_def 
krauss@29125
   302
apply (intro reduction_pairI min_ext_wf)
krauss@29125
   303
apply simp
krauss@29125
   304
apply (rule min_ext_compat)
krauss@29125
   305
by (auto simp: pair_less_def pair_leq_def)
krauss@29125
   306
krauss@29125
   307
krauss@29125
   308
subsection {* Tool setup *}
krauss@29125
   309
krauss@29125
   310
use "Tools/function_package/termination.ML"
krauss@29125
   311
use "Tools/function_package/decompose.ML"
krauss@29125
   312
use "Tools/function_package/descent.ML"
krauss@29125
   313
use "Tools/function_package/scnp_solve.ML"
krauss@29125
   314
use "Tools/function_package/scnp_reconstruct.ML"
krauss@29125
   315
krauss@29125
   316
setup {* ScnpReconstruct.setup *}
krauss@29125
   317
(*
krauss@29125
   318
setup {*
krauss@29125
   319
  Context.theory_map (FundefCommon.set_termination_prover (ScnpReconstruct.decomp_scnp 
krauss@29125
   320
  [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS])) 
krauss@29125
   321
*}
krauss@29125
   322
*)
krauss@29125
   323
krauss@29125
   324
krauss@26875
   325
krauss@19564
   326
end