wenzelm@30122
|
1 |
(* Title: HOL/RComplete.thy
|
wenzelm@30122
|
2 |
Author: Jacques D. Fleuriot, University of Edinburgh
|
wenzelm@30122
|
3 |
Author: Larry Paulson, University of Cambridge
|
wenzelm@30122
|
4 |
Author: Jeremy Avigad, Carnegie Mellon University
|
wenzelm@30122
|
5 |
Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
|
wenzelm@16893
|
6 |
*)
|
paulson@5078
|
7 |
|
wenzelm@16893
|
8 |
header {* Completeness of the Reals; Floor and Ceiling Functions *}
|
paulson@14365
|
9 |
|
nipkow@15131
|
10 |
theory RComplete
|
nipkow@15140
|
11 |
imports Lubs RealDef
|
nipkow@15131
|
12 |
begin
|
paulson@14365
|
13 |
|
paulson@14365
|
14 |
lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
|
wenzelm@16893
|
15 |
by simp
|
paulson@14365
|
16 |
|
paulson@14365
|
17 |
|
wenzelm@16893
|
18 |
subsection {* Completeness of Positive Reals *}
|
wenzelm@16893
|
19 |
|
wenzelm@16893
|
20 |
text {*
|
wenzelm@16893
|
21 |
Supremum property for the set of positive reals
|
wenzelm@16893
|
22 |
|
wenzelm@16893
|
23 |
Let @{text "P"} be a non-empty set of positive reals, with an upper
|
wenzelm@16893
|
24 |
bound @{text "y"}. Then @{text "P"} has a least upper bound
|
wenzelm@16893
|
25 |
(written @{text "S"}).
|
paulson@14365
|
26 |
|
wenzelm@16893
|
27 |
FIXME: Can the premise be weakened to @{text "\<forall>x \<in> P. x\<le> y"}?
|
wenzelm@16893
|
28 |
*}
|
wenzelm@16893
|
29 |
|
wenzelm@16893
|
30 |
lemma posreal_complete:
|
wenzelm@16893
|
31 |
assumes positive_P: "\<forall>x \<in> P. (0::real) < x"
|
wenzelm@16893
|
32 |
and not_empty_P: "\<exists>x. x \<in> P"
|
wenzelm@16893
|
33 |
and upper_bound_Ex: "\<exists>y. \<forall>x \<in> P. x<y"
|
wenzelm@16893
|
34 |
shows "\<exists>S. \<forall>y. (\<exists>x \<in> P. y < x) = (y < S)"
|
wenzelm@16893
|
35 |
proof (rule exI, rule allI)
|
wenzelm@16893
|
36 |
fix y
|
wenzelm@16893
|
37 |
let ?pP = "{w. real_of_preal w \<in> P}"
|
paulson@14365
|
38 |
|
wenzelm@16893
|
39 |
show "(\<exists>x\<in>P. y < x) = (y < real_of_preal (psup ?pP))"
|
wenzelm@16893
|
40 |
proof (cases "0 < y")
|
wenzelm@16893
|
41 |
assume neg_y: "\<not> 0 < y"
|
wenzelm@16893
|
42 |
show ?thesis
|
wenzelm@16893
|
43 |
proof
|
wenzelm@16893
|
44 |
assume "\<exists>x\<in>P. y < x"
|
wenzelm@16893
|
45 |
have "\<forall>x. y < real_of_preal x"
|
wenzelm@16893
|
46 |
using neg_y by (rule real_less_all_real2)
|
wenzelm@16893
|
47 |
thus "y < real_of_preal (psup ?pP)" ..
|
wenzelm@16893
|
48 |
next
|
wenzelm@16893
|
49 |
assume "y < real_of_preal (psup ?pP)"
|
wenzelm@16893
|
50 |
obtain "x" where x_in_P: "x \<in> P" using not_empty_P ..
|
wenzelm@16893
|
51 |
hence "0 < x" using positive_P by simp
|
wenzelm@16893
|
52 |
hence "y < x" using neg_y by simp
|
wenzelm@16893
|
53 |
thus "\<exists>x \<in> P. y < x" using x_in_P ..
|
wenzelm@16893
|
54 |
qed
|
wenzelm@16893
|
55 |
next
|
wenzelm@16893
|
56 |
assume pos_y: "0 < y"
|
paulson@14365
|
57 |
|
wenzelm@16893
|
58 |
then obtain py where y_is_py: "y = real_of_preal py"
|
wenzelm@16893
|
59 |
by (auto simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
60 |
|
wenzelm@23389
|
61 |
obtain a where "a \<in> P" using not_empty_P ..
|
wenzelm@23389
|
62 |
with positive_P have a_pos: "0 < a" ..
|
wenzelm@16893
|
63 |
then obtain pa where "a = real_of_preal pa"
|
wenzelm@16893
|
64 |
by (auto simp add: real_gt_zero_preal_Ex)
|
wenzelm@23389
|
65 |
hence "pa \<in> ?pP" using `a \<in> P` by auto
|
wenzelm@16893
|
66 |
hence pP_not_empty: "?pP \<noteq> {}" by auto
|
paulson@14365
|
67 |
|
wenzelm@16893
|
68 |
obtain sup where sup: "\<forall>x \<in> P. x < sup"
|
wenzelm@16893
|
69 |
using upper_bound_Ex ..
|
wenzelm@23389
|
70 |
from this and `a \<in> P` have "a < sup" ..
|
wenzelm@16893
|
71 |
hence "0 < sup" using a_pos by arith
|
wenzelm@16893
|
72 |
then obtain possup where "sup = real_of_preal possup"
|
wenzelm@16893
|
73 |
by (auto simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
74 |
hence "\<forall>X \<in> ?pP. X \<le> possup"
|
wenzelm@16893
|
75 |
using sup by (auto simp add: real_of_preal_lessI)
|
wenzelm@16893
|
76 |
with pP_not_empty have psup: "\<And>Z. (\<exists>X \<in> ?pP. Z < X) = (Z < psup ?pP)"
|
wenzelm@16893
|
77 |
by (rule preal_complete)
|
wenzelm@16893
|
78 |
|
wenzelm@16893
|
79 |
show ?thesis
|
wenzelm@16893
|
80 |
proof
|
wenzelm@16893
|
81 |
assume "\<exists>x \<in> P. y < x"
|
wenzelm@16893
|
82 |
then obtain x where x_in_P: "x \<in> P" and y_less_x: "y < x" ..
|
wenzelm@16893
|
83 |
hence "0 < x" using pos_y by arith
|
wenzelm@16893
|
84 |
then obtain px where x_is_px: "x = real_of_preal px"
|
wenzelm@16893
|
85 |
by (auto simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
86 |
|
wenzelm@16893
|
87 |
have py_less_X: "\<exists>X \<in> ?pP. py < X"
|
wenzelm@16893
|
88 |
proof
|
wenzelm@16893
|
89 |
show "py < px" using y_is_py and x_is_px and y_less_x
|
wenzelm@16893
|
90 |
by (simp add: real_of_preal_lessI)
|
wenzelm@16893
|
91 |
show "px \<in> ?pP" using x_in_P and x_is_px by simp
|
wenzelm@16893
|
92 |
qed
|
paulson@14365
|
93 |
|
wenzelm@16893
|
94 |
have "(\<exists>X \<in> ?pP. py < X) ==> (py < psup ?pP)"
|
wenzelm@16893
|
95 |
using psup by simp
|
wenzelm@16893
|
96 |
hence "py < psup ?pP" using py_less_X by simp
|
wenzelm@16893
|
97 |
thus "y < real_of_preal (psup {w. real_of_preal w \<in> P})"
|
wenzelm@16893
|
98 |
using y_is_py and pos_y by (simp add: real_of_preal_lessI)
|
wenzelm@16893
|
99 |
next
|
wenzelm@16893
|
100 |
assume y_less_psup: "y < real_of_preal (psup ?pP)"
|
paulson@14365
|
101 |
|
wenzelm@16893
|
102 |
hence "py < psup ?pP" using y_is_py
|
wenzelm@16893
|
103 |
by (simp add: real_of_preal_lessI)
|
wenzelm@16893
|
104 |
then obtain "X" where py_less_X: "py < X" and X_in_pP: "X \<in> ?pP"
|
wenzelm@16893
|
105 |
using psup by auto
|
wenzelm@16893
|
106 |
then obtain x where x_is_X: "x = real_of_preal X"
|
wenzelm@16893
|
107 |
by (simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
108 |
hence "y < x" using py_less_X and y_is_py
|
wenzelm@16893
|
109 |
by (simp add: real_of_preal_lessI)
|
wenzelm@16893
|
110 |
|
wenzelm@16893
|
111 |
moreover have "x \<in> P" using x_is_X and X_in_pP by simp
|
wenzelm@16893
|
112 |
|
wenzelm@16893
|
113 |
ultimately show "\<exists> x \<in> P. y < x" ..
|
wenzelm@16893
|
114 |
qed
|
wenzelm@16893
|
115 |
qed
|
wenzelm@16893
|
116 |
qed
|
wenzelm@16893
|
117 |
|
wenzelm@16893
|
118 |
text {*
|
wenzelm@16893
|
119 |
\medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc.
|
wenzelm@16893
|
120 |
*}
|
paulson@14365
|
121 |
|
paulson@14365
|
122 |
lemma real_isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::real)"
|
wenzelm@16893
|
123 |
apply (frule isLub_isUb)
|
wenzelm@16893
|
124 |
apply (frule_tac x = y in isLub_isUb)
|
wenzelm@16893
|
125 |
apply (blast intro!: order_antisym dest!: isLub_le_isUb)
|
wenzelm@16893
|
126 |
done
|
paulson@14365
|
127 |
|
paulson@5078
|
128 |
|
wenzelm@16893
|
129 |
text {*
|
wenzelm@16893
|
130 |
\medskip Completeness theorem for the positive reals (again).
|
wenzelm@16893
|
131 |
*}
|
wenzelm@16893
|
132 |
|
wenzelm@16893
|
133 |
lemma posreals_complete:
|
wenzelm@16893
|
134 |
assumes positive_S: "\<forall>x \<in> S. 0 < x"
|
wenzelm@16893
|
135 |
and not_empty_S: "\<exists>x. x \<in> S"
|
wenzelm@16893
|
136 |
and upper_bound_Ex: "\<exists>u. isUb (UNIV::real set) S u"
|
wenzelm@16893
|
137 |
shows "\<exists>t. isLub (UNIV::real set) S t"
|
wenzelm@16893
|
138 |
proof
|
wenzelm@16893
|
139 |
let ?pS = "{w. real_of_preal w \<in> S}"
|
wenzelm@16893
|
140 |
|
wenzelm@16893
|
141 |
obtain u where "isUb UNIV S u" using upper_bound_Ex ..
|
wenzelm@16893
|
142 |
hence sup: "\<forall>x \<in> S. x \<le> u" by (simp add: isUb_def setle_def)
|
wenzelm@16893
|
143 |
|
wenzelm@16893
|
144 |
obtain x where x_in_S: "x \<in> S" using not_empty_S ..
|
wenzelm@16893
|
145 |
hence x_gt_zero: "0 < x" using positive_S by simp
|
wenzelm@16893
|
146 |
have "x \<le> u" using sup and x_in_S ..
|
wenzelm@16893
|
147 |
hence "0 < u" using x_gt_zero by arith
|
wenzelm@16893
|
148 |
|
wenzelm@16893
|
149 |
then obtain pu where u_is_pu: "u = real_of_preal pu"
|
wenzelm@16893
|
150 |
by (auto simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
151 |
|
wenzelm@16893
|
152 |
have pS_less_pu: "\<forall>pa \<in> ?pS. pa \<le> pu"
|
wenzelm@16893
|
153 |
proof
|
wenzelm@16893
|
154 |
fix pa
|
wenzelm@16893
|
155 |
assume "pa \<in> ?pS"
|
wenzelm@16893
|
156 |
then obtain a where "a \<in> S" and "a = real_of_preal pa"
|
wenzelm@16893
|
157 |
by simp
|
wenzelm@16893
|
158 |
moreover hence "a \<le> u" using sup by simp
|
wenzelm@16893
|
159 |
ultimately show "pa \<le> pu"
|
wenzelm@16893
|
160 |
using sup and u_is_pu by (simp add: real_of_preal_le_iff)
|
wenzelm@16893
|
161 |
qed
|
paulson@14365
|
162 |
|
wenzelm@16893
|
163 |
have "\<forall>y \<in> S. y \<le> real_of_preal (psup ?pS)"
|
wenzelm@16893
|
164 |
proof
|
wenzelm@16893
|
165 |
fix y
|
wenzelm@16893
|
166 |
assume y_in_S: "y \<in> S"
|
wenzelm@16893
|
167 |
hence "0 < y" using positive_S by simp
|
wenzelm@16893
|
168 |
then obtain py where y_is_py: "y = real_of_preal py"
|
wenzelm@16893
|
169 |
by (auto simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
170 |
hence py_in_pS: "py \<in> ?pS" using y_in_S by simp
|
wenzelm@16893
|
171 |
with pS_less_pu have "py \<le> psup ?pS"
|
wenzelm@16893
|
172 |
by (rule preal_psup_le)
|
wenzelm@16893
|
173 |
thus "y \<le> real_of_preal (psup ?pS)"
|
wenzelm@16893
|
174 |
using y_is_py by (simp add: real_of_preal_le_iff)
|
wenzelm@16893
|
175 |
qed
|
wenzelm@16893
|
176 |
|
wenzelm@16893
|
177 |
moreover {
|
wenzelm@16893
|
178 |
fix x
|
wenzelm@16893
|
179 |
assume x_ub_S: "\<forall>y\<in>S. y \<le> x"
|
wenzelm@16893
|
180 |
have "real_of_preal (psup ?pS) \<le> x"
|
wenzelm@16893
|
181 |
proof -
|
wenzelm@16893
|
182 |
obtain "s" where s_in_S: "s \<in> S" using not_empty_S ..
|
wenzelm@16893
|
183 |
hence s_pos: "0 < s" using positive_S by simp
|
wenzelm@16893
|
184 |
|
wenzelm@16893
|
185 |
hence "\<exists> ps. s = real_of_preal ps" by (simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
186 |
then obtain "ps" where s_is_ps: "s = real_of_preal ps" ..
|
wenzelm@16893
|
187 |
hence ps_in_pS: "ps \<in> {w. real_of_preal w \<in> S}" using s_in_S by simp
|
wenzelm@16893
|
188 |
|
wenzelm@16893
|
189 |
from x_ub_S have "s \<le> x" using s_in_S ..
|
wenzelm@16893
|
190 |
hence "0 < x" using s_pos by simp
|
wenzelm@16893
|
191 |
hence "\<exists> px. x = real_of_preal px" by (simp add: real_gt_zero_preal_Ex)
|
wenzelm@16893
|
192 |
then obtain "px" where x_is_px: "x = real_of_preal px" ..
|
wenzelm@16893
|
193 |
|
wenzelm@16893
|
194 |
have "\<forall>pe \<in> ?pS. pe \<le> px"
|
wenzelm@16893
|
195 |
proof
|
wenzelm@16893
|
196 |
fix pe
|
wenzelm@16893
|
197 |
assume "pe \<in> ?pS"
|
wenzelm@16893
|
198 |
hence "real_of_preal pe \<in> S" by simp
|
wenzelm@16893
|
199 |
hence "real_of_preal pe \<le> x" using x_ub_S by simp
|
wenzelm@16893
|
200 |
thus "pe \<le> px" using x_is_px by (simp add: real_of_preal_le_iff)
|
wenzelm@16893
|
201 |
qed
|
wenzelm@16893
|
202 |
|
wenzelm@16893
|
203 |
moreover have "?pS \<noteq> {}" using ps_in_pS by auto
|
wenzelm@16893
|
204 |
ultimately have "(psup ?pS) \<le> px" by (simp add: psup_le_ub)
|
wenzelm@16893
|
205 |
thus "real_of_preal (psup ?pS) \<le> x" using x_is_px by (simp add: real_of_preal_le_iff)
|
wenzelm@16893
|
206 |
qed
|
wenzelm@16893
|
207 |
}
|
wenzelm@16893
|
208 |
ultimately show "isLub UNIV S (real_of_preal (psup ?pS))"
|
wenzelm@16893
|
209 |
by (simp add: isLub_def leastP_def isUb_def setle_def setge_def)
|
wenzelm@16893
|
210 |
qed
|
wenzelm@16893
|
211 |
|
wenzelm@16893
|
212 |
text {*
|
wenzelm@16893
|
213 |
\medskip reals Completeness (again!)
|
wenzelm@16893
|
214 |
*}
|
paulson@14365
|
215 |
|
wenzelm@16893
|
216 |
lemma reals_complete:
|
wenzelm@16893
|
217 |
assumes notempty_S: "\<exists>X. X \<in> S"
|
wenzelm@16893
|
218 |
and exists_Ub: "\<exists>Y. isUb (UNIV::real set) S Y"
|
wenzelm@16893
|
219 |
shows "\<exists>t. isLub (UNIV :: real set) S t"
|
wenzelm@16893
|
220 |
proof -
|
wenzelm@16893
|
221 |
obtain X where X_in_S: "X \<in> S" using notempty_S ..
|
wenzelm@16893
|
222 |
obtain Y where Y_isUb: "isUb (UNIV::real set) S Y"
|
wenzelm@16893
|
223 |
using exists_Ub ..
|
wenzelm@16893
|
224 |
let ?SHIFT = "{z. \<exists>x \<in>S. z = x + (-X) + 1} \<inter> {x. 0 < x}"
|
wenzelm@16893
|
225 |
|
wenzelm@16893
|
226 |
{
|
wenzelm@16893
|
227 |
fix x
|
wenzelm@16893
|
228 |
assume "isUb (UNIV::real set) S x"
|
wenzelm@16893
|
229 |
hence S_le_x: "\<forall> y \<in> S. y <= x"
|
wenzelm@16893
|
230 |
by (simp add: isUb_def setle_def)
|
wenzelm@16893
|
231 |
{
|
wenzelm@16893
|
232 |
fix s
|
wenzelm@16893
|
233 |
assume "s \<in> {z. \<exists>x\<in>S. z = x + - X + 1}"
|
wenzelm@16893
|
234 |
hence "\<exists> x \<in> S. s = x + -X + 1" ..
|
wenzelm@16893
|
235 |
then obtain x1 where "x1 \<in> S" and "s = x1 + (-X) + 1" ..
|
wenzelm@16893
|
236 |
moreover hence "x1 \<le> x" using S_le_x by simp
|
wenzelm@16893
|
237 |
ultimately have "s \<le> x + - X + 1" by arith
|
wenzelm@16893
|
238 |
}
|
wenzelm@16893
|
239 |
then have "isUb (UNIV::real set) ?SHIFT (x + (-X) + 1)"
|
wenzelm@16893
|
240 |
by (auto simp add: isUb_def setle_def)
|
wenzelm@16893
|
241 |
} note S_Ub_is_SHIFT_Ub = this
|
wenzelm@16893
|
242 |
|
wenzelm@16893
|
243 |
hence "isUb UNIV ?SHIFT (Y + (-X) + 1)" using Y_isUb by simp
|
wenzelm@16893
|
244 |
hence "\<exists>Z. isUb UNIV ?SHIFT Z" ..
|
wenzelm@16893
|
245 |
moreover have "\<forall>y \<in> ?SHIFT. 0 < y" by auto
|
wenzelm@16893
|
246 |
moreover have shifted_not_empty: "\<exists>u. u \<in> ?SHIFT"
|
wenzelm@16893
|
247 |
using X_in_S and Y_isUb by auto
|
wenzelm@16893
|
248 |
ultimately obtain t where t_is_Lub: "isLub UNIV ?SHIFT t"
|
wenzelm@16893
|
249 |
using posreals_complete [of ?SHIFT] by blast
|
wenzelm@16893
|
250 |
|
wenzelm@16893
|
251 |
show ?thesis
|
wenzelm@16893
|
252 |
proof
|
wenzelm@16893
|
253 |
show "isLub UNIV S (t + X + (-1))"
|
wenzelm@16893
|
254 |
proof (rule isLubI2)
|
wenzelm@16893
|
255 |
{
|
wenzelm@16893
|
256 |
fix x
|
wenzelm@16893
|
257 |
assume "isUb (UNIV::real set) S x"
|
wenzelm@16893
|
258 |
hence "isUb (UNIV::real set) (?SHIFT) (x + (-X) + 1)"
|
wenzelm@16893
|
259 |
using S_Ub_is_SHIFT_Ub by simp
|
wenzelm@16893
|
260 |
hence "t \<le> (x + (-X) + 1)"
|
wenzelm@16893
|
261 |
using t_is_Lub by (simp add: isLub_le_isUb)
|
wenzelm@16893
|
262 |
hence "t + X + -1 \<le> x" by arith
|
wenzelm@16893
|
263 |
}
|
wenzelm@16893
|
264 |
then show "(t + X + -1) <=* Collect (isUb UNIV S)"
|
wenzelm@16893
|
265 |
by (simp add: setgeI)
|
wenzelm@16893
|
266 |
next
|
wenzelm@16893
|
267 |
show "isUb UNIV S (t + X + -1)"
|
wenzelm@16893
|
268 |
proof -
|
wenzelm@16893
|
269 |
{
|
wenzelm@16893
|
270 |
fix y
|
wenzelm@16893
|
271 |
assume y_in_S: "y \<in> S"
|
wenzelm@16893
|
272 |
have "y \<le> t + X + -1"
|
wenzelm@16893
|
273 |
proof -
|
wenzelm@16893
|
274 |
obtain "u" where u_in_shift: "u \<in> ?SHIFT" using shifted_not_empty ..
|
wenzelm@16893
|
275 |
hence "\<exists> x \<in> S. u = x + - X + 1" by simp
|
wenzelm@16893
|
276 |
then obtain "x" where x_and_u: "u = x + - X + 1" ..
|
wenzelm@16893
|
277 |
have u_le_t: "u \<le> t" using u_in_shift and t_is_Lub by (simp add: isLubD2)
|
wenzelm@16893
|
278 |
|
wenzelm@16893
|
279 |
show ?thesis
|
wenzelm@16893
|
280 |
proof cases
|
wenzelm@16893
|
281 |
assume "y \<le> x"
|
wenzelm@16893
|
282 |
moreover have "x = u + X + - 1" using x_and_u by arith
|
wenzelm@16893
|
283 |
moreover have "u + X + - 1 \<le> t + X + -1" using u_le_t by arith
|
wenzelm@16893
|
284 |
ultimately show "y \<le> t + X + -1" by arith
|
wenzelm@16893
|
285 |
next
|
wenzelm@16893
|
286 |
assume "~(y \<le> x)"
|
wenzelm@16893
|
287 |
hence x_less_y: "x < y" by arith
|
wenzelm@16893
|
288 |
|
wenzelm@16893
|
289 |
have "x + (-X) + 1 \<in> ?SHIFT" using x_and_u and u_in_shift by simp
|
wenzelm@16893
|
290 |
hence "0 < x + (-X) + 1" by simp
|
wenzelm@16893
|
291 |
hence "0 < y + (-X) + 1" using x_less_y by arith
|
wenzelm@16893
|
292 |
hence "y + (-X) + 1 \<in> ?SHIFT" using y_in_S by simp
|
wenzelm@16893
|
293 |
hence "y + (-X) + 1 \<le> t" using t_is_Lub by (simp add: isLubD2)
|
wenzelm@16893
|
294 |
thus ?thesis by simp
|
wenzelm@16893
|
295 |
qed
|
wenzelm@16893
|
296 |
qed
|
wenzelm@16893
|
297 |
}
|
wenzelm@16893
|
298 |
then show ?thesis by (simp add: isUb_def setle_def)
|
wenzelm@16893
|
299 |
qed
|
wenzelm@16893
|
300 |
qed
|
wenzelm@16893
|
301 |
qed
|
wenzelm@16893
|
302 |
qed
|
paulson@14365
|
303 |
|
paulson@14365
|
304 |
|
wenzelm@16893
|
305 |
subsection {* The Archimedean Property of the Reals *}
|
wenzelm@16893
|
306 |
|
wenzelm@16893
|
307 |
theorem reals_Archimedean:
|
wenzelm@16893
|
308 |
assumes x_pos: "0 < x"
|
wenzelm@16893
|
309 |
shows "\<exists>n. inverse (real (Suc n)) < x"
|
wenzelm@16893
|
310 |
proof (rule ccontr)
|
wenzelm@16893
|
311 |
assume contr: "\<not> ?thesis"
|
wenzelm@16893
|
312 |
have "\<forall>n. x * real (Suc n) <= 1"
|
wenzelm@16893
|
313 |
proof
|
wenzelm@16893
|
314 |
fix n
|
wenzelm@16893
|
315 |
from contr have "x \<le> inverse (real (Suc n))"
|
wenzelm@16893
|
316 |
by (simp add: linorder_not_less)
|
wenzelm@16893
|
317 |
hence "x \<le> (1 / (real (Suc n)))"
|
wenzelm@16893
|
318 |
by (simp add: inverse_eq_divide)
|
wenzelm@16893
|
319 |
moreover have "0 \<le> real (Suc n)"
|
wenzelm@16893
|
320 |
by (rule real_of_nat_ge_zero)
|
wenzelm@16893
|
321 |
ultimately have "x * real (Suc n) \<le> (1 / real (Suc n)) * real (Suc n)"
|
wenzelm@16893
|
322 |
by (rule mult_right_mono)
|
wenzelm@16893
|
323 |
thus "x * real (Suc n) \<le> 1" by simp
|
wenzelm@16893
|
324 |
qed
|
wenzelm@16893
|
325 |
hence "{z. \<exists>n. z = x * (real (Suc n))} *<= 1"
|
wenzelm@16893
|
326 |
by (simp add: setle_def, safe, rule spec)
|
wenzelm@16893
|
327 |
hence "isUb (UNIV::real set) {z. \<exists>n. z = x * (real (Suc n))} 1"
|
wenzelm@16893
|
328 |
by (simp add: isUbI)
|
wenzelm@16893
|
329 |
hence "\<exists>Y. isUb (UNIV::real set) {z. \<exists>n. z = x* (real (Suc n))} Y" ..
|
wenzelm@16893
|
330 |
moreover have "\<exists>X. X \<in> {z. \<exists>n. z = x* (real (Suc n))}" by auto
|
wenzelm@16893
|
331 |
ultimately have "\<exists>t. isLub UNIV {z. \<exists>n. z = x * real (Suc n)} t"
|
wenzelm@16893
|
332 |
by (simp add: reals_complete)
|
wenzelm@16893
|
333 |
then obtain "t" where
|
wenzelm@16893
|
334 |
t_is_Lub: "isLub UNIV {z. \<exists>n. z = x * real (Suc n)} t" ..
|
wenzelm@16893
|
335 |
|
wenzelm@16893
|
336 |
have "\<forall>n::nat. x * real n \<le> t + - x"
|
wenzelm@16893
|
337 |
proof
|
wenzelm@16893
|
338 |
fix n
|
wenzelm@16893
|
339 |
from t_is_Lub have "x * real (Suc n) \<le> t"
|
wenzelm@16893
|
340 |
by (simp add: isLubD2)
|
wenzelm@16893
|
341 |
hence "x * (real n) + x \<le> t"
|
wenzelm@16893
|
342 |
by (simp add: right_distrib real_of_nat_Suc)
|
wenzelm@16893
|
343 |
thus "x * (real n) \<le> t + - x" by arith
|
wenzelm@16893
|
344 |
qed
|
paulson@14365
|
345 |
|
wenzelm@16893
|
346 |
hence "\<forall>m. x * real (Suc m) \<le> t + - x" by simp
|
wenzelm@16893
|
347 |
hence "{z. \<exists>n. z = x * (real (Suc n))} *<= (t + - x)"
|
wenzelm@16893
|
348 |
by (auto simp add: setle_def)
|
wenzelm@16893
|
349 |
hence "isUb (UNIV::real set) {z. \<exists>n. z = x * (real (Suc n))} (t + (-x))"
|
wenzelm@16893
|
350 |
by (simp add: isUbI)
|
wenzelm@16893
|
351 |
hence "t \<le> t + - x"
|
wenzelm@16893
|
352 |
using t_is_Lub by (simp add: isLub_le_isUb)
|
wenzelm@16893
|
353 |
thus False using x_pos by arith
|
wenzelm@16893
|
354 |
qed
|
wenzelm@16893
|
355 |
|
wenzelm@16893
|
356 |
text {*
|
wenzelm@16893
|
357 |
There must be other proofs, e.g. @{text "Suc"} of the largest
|
wenzelm@16893
|
358 |
integer in the cut representing @{text "x"}.
|
wenzelm@16893
|
359 |
*}
|
paulson@14365
|
360 |
|
paulson@14365
|
361 |
lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)"
|
wenzelm@16893
|
362 |
proof cases
|
wenzelm@16893
|
363 |
assume "x \<le> 0"
|
wenzelm@16893
|
364 |
hence "x < real (1::nat)" by simp
|
wenzelm@16893
|
365 |
thus ?thesis ..
|
wenzelm@16893
|
366 |
next
|
wenzelm@16893
|
367 |
assume "\<not> x \<le> 0"
|
wenzelm@16893
|
368 |
hence x_greater_zero: "0 < x" by simp
|
wenzelm@16893
|
369 |
hence "0 < inverse x" by simp
|
wenzelm@16893
|
370 |
then obtain n where "inverse (real (Suc n)) < inverse x"
|
wenzelm@16893
|
371 |
using reals_Archimedean by blast
|
wenzelm@16893
|
372 |
hence "inverse (real (Suc n)) * x < inverse x * x"
|
wenzelm@16893
|
373 |
using x_greater_zero by (rule mult_strict_right_mono)
|
wenzelm@16893
|
374 |
hence "inverse (real (Suc n)) * x < 1"
|
huffman@23008
|
375 |
using x_greater_zero by simp
|
wenzelm@16893
|
376 |
hence "real (Suc n) * (inverse (real (Suc n)) * x) < real (Suc n) * 1"
|
wenzelm@16893
|
377 |
by (rule mult_strict_left_mono) simp
|
wenzelm@16893
|
378 |
hence "x < real (Suc n)"
|
nipkow@29667
|
379 |
by (simp add: algebra_simps)
|
wenzelm@16893
|
380 |
thus "\<exists>(n::nat). x < real n" ..
|
wenzelm@16893
|
381 |
qed
|
paulson@14365
|
382 |
|
huffman@30097
|
383 |
instance real :: archimedean_field
|
huffman@30097
|
384 |
proof
|
huffman@30097
|
385 |
fix r :: real
|
huffman@30097
|
386 |
obtain n :: nat where "r < real n"
|
huffman@30097
|
387 |
using reals_Archimedean2 ..
|
huffman@30097
|
388 |
then have "r \<le> of_int (int n)"
|
huffman@30097
|
389 |
unfolding real_eq_of_nat by simp
|
huffman@30097
|
390 |
then show "\<exists>z. r \<le> of_int z" ..
|
huffman@30097
|
391 |
qed
|
huffman@30097
|
392 |
|
wenzelm@16893
|
393 |
lemma reals_Archimedean3:
|
wenzelm@16893
|
394 |
assumes x_greater_zero: "0 < x"
|
wenzelm@16893
|
395 |
shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x"
|
huffman@30097
|
396 |
unfolding real_of_nat_def using `0 < x`
|
huffman@30097
|
397 |
by (auto intro: ex_less_of_nat_mult)
|
paulson@14365
|
398 |
|
avigad@16819
|
399 |
lemma reals_Archimedean6:
|
avigad@16819
|
400 |
"0 \<le> r ==> \<exists>(n::nat). real (n - 1) \<le> r & r < real (n)"
|
huffman@30097
|
401 |
unfolding real_of_nat_def
|
huffman@30097
|
402 |
apply (rule exI [where x="nat (floor r + 1)"])
|
huffman@30097
|
403 |
apply (insert floor_correct [of r])
|
huffman@30097
|
404 |
apply (simp add: nat_add_distrib of_nat_nat)
|
avigad@16819
|
405 |
done
|
avigad@16819
|
406 |
|
avigad@16819
|
407 |
lemma reals_Archimedean6a: "0 \<le> r ==> \<exists>n. real (n) \<le> r & r < real (Suc n)"
|
wenzelm@16893
|
408 |
by (drule reals_Archimedean6) auto
|
avigad@16819
|
409 |
|
avigad@16819
|
410 |
lemma reals_Archimedean_6b_int:
|
avigad@16819
|
411 |
"0 \<le> r ==> \<exists>n::int. real n \<le> r & r < real (n+1)"
|
huffman@30097
|
412 |
unfolding real_of_int_def by (rule floor_exists)
|
avigad@16819
|
413 |
|
avigad@16819
|
414 |
lemma reals_Archimedean_6c_int:
|
avigad@16819
|
415 |
"r < 0 ==> \<exists>n::int. real n \<le> r & r < real (n+1)"
|
huffman@30097
|
416 |
unfolding real_of_int_def by (rule floor_exists)
|
avigad@16819
|
417 |
|
avigad@16819
|
418 |
|
nipkow@28091
|
419 |
subsection{*Density of the Rational Reals in the Reals*}
|
nipkow@28091
|
420 |
|
nipkow@28091
|
421 |
text{* This density proof is due to Stefan Richter and was ported by TN. The
|
nipkow@28091
|
422 |
original source is \emph{Real Analysis} by H.L. Royden.
|
nipkow@28091
|
423 |
It employs the Archimedean property of the reals. *}
|
nipkow@28091
|
424 |
|
nipkow@28091
|
425 |
lemma Rats_dense_in_nn_real: fixes x::real
|
nipkow@28091
|
426 |
assumes "0\<le>x" and "x<y" shows "\<exists>r \<in> \<rat>. x<r \<and> r<y"
|
nipkow@28091
|
427 |
proof -
|
nipkow@28091
|
428 |
from `x<y` have "0 < y-x" by simp
|
nipkow@28091
|
429 |
with reals_Archimedean obtain q::nat
|
nipkow@28091
|
430 |
where q: "inverse (real q) < y-x" and "0 < real q" by auto
|
nipkow@28091
|
431 |
def p \<equiv> "LEAST n. y \<le> real (Suc n)/real q"
|
nipkow@28091
|
432 |
from reals_Archimedean2 obtain n::nat where "y * real q < real n" by auto
|
nipkow@28091
|
433 |
with `0 < real q` have ex: "y \<le> real n/real q" (is "?P n")
|
nipkow@28091
|
434 |
by (simp add: pos_less_divide_eq[THEN sym])
|
nipkow@28091
|
435 |
also from assms have "\<not> y \<le> real (0::nat) / real q" by simp
|
nipkow@28091
|
436 |
ultimately have main: "(LEAST n. y \<le> real n/real q) = Suc p"
|
nipkow@28091
|
437 |
by (unfold p_def) (rule Least_Suc)
|
nipkow@28091
|
438 |
also from ex have "?P (LEAST x. ?P x)" by (rule LeastI)
|
nipkow@28091
|
439 |
ultimately have suc: "y \<le> real (Suc p) / real q" by simp
|
nipkow@28091
|
440 |
def r \<equiv> "real p/real q"
|
nipkow@28091
|
441 |
have "x = y-(y-x)" by simp
|
nipkow@28091
|
442 |
also from suc q have "\<dots> < real (Suc p)/real q - inverse (real q)" by arith
|
nipkow@28091
|
443 |
also have "\<dots> = real p / real q"
|
nipkow@28091
|
444 |
by (simp only: inverse_eq_divide real_diff_def real_of_nat_Suc
|
nipkow@28091
|
445 |
minus_divide_left add_divide_distrib[THEN sym]) simp
|
nipkow@28091
|
446 |
finally have "x<r" by (unfold r_def)
|
nipkow@28091
|
447 |
have "p<Suc p" .. also note main[THEN sym]
|
nipkow@28091
|
448 |
finally have "\<not> ?P p" by (rule not_less_Least)
|
nipkow@28091
|
449 |
hence "r<y" by (simp add: r_def)
|
nipkow@28091
|
450 |
from r_def have "r \<in> \<rat>" by simp
|
nipkow@28091
|
451 |
with `x<r` `r<y` show ?thesis by fast
|
nipkow@28091
|
452 |
qed
|
nipkow@28091
|
453 |
|
nipkow@28091
|
454 |
theorem Rats_dense_in_real: fixes x y :: real
|
nipkow@28091
|
455 |
assumes "x<y" shows "\<exists>r \<in> \<rat>. x<r \<and> r<y"
|
nipkow@28091
|
456 |
proof -
|
nipkow@28091
|
457 |
from reals_Archimedean2 obtain n::nat where "-x < real n" by auto
|
nipkow@28091
|
458 |
hence "0 \<le> x + real n" by arith
|
nipkow@28091
|
459 |
also from `x<y` have "x + real n < y + real n" by arith
|
nipkow@28091
|
460 |
ultimately have "\<exists>r \<in> \<rat>. x + real n < r \<and> r < y + real n"
|
nipkow@28091
|
461 |
by(rule Rats_dense_in_nn_real)
|
nipkow@28091
|
462 |
then obtain r where "r \<in> \<rat>" and r2: "x + real n < r"
|
nipkow@28091
|
463 |
and r3: "r < y + real n"
|
nipkow@28091
|
464 |
by blast
|
nipkow@28091
|
465 |
have "r - real n = r + real (int n)/real (-1::int)" by simp
|
nipkow@28091
|
466 |
also from `r\<in>\<rat>` have "r + real (int n)/real (-1::int) \<in> \<rat>" by simp
|
nipkow@28091
|
467 |
also from r2 have "x < r - real n" by arith
|
nipkow@28091
|
468 |
moreover from r3 have "r - real n < y" by arith
|
nipkow@28091
|
469 |
ultimately show ?thesis by fast
|
nipkow@28091
|
470 |
qed
|
nipkow@28091
|
471 |
|
nipkow@28091
|
472 |
|
paulson@14641
|
473 |
subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
|
paulson@14641
|
474 |
|
paulson@14641
|
475 |
lemma number_of_less_real_of_int_iff [simp]:
|
paulson@14641
|
476 |
"((number_of n) < real (m::int)) = (number_of n < m)"
|
paulson@14641
|
477 |
apply auto
|
paulson@14641
|
478 |
apply (rule real_of_int_less_iff [THEN iffD1])
|
paulson@14641
|
479 |
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
|
paulson@14641
|
480 |
done
|
paulson@14641
|
481 |
|
paulson@14641
|
482 |
lemma number_of_less_real_of_int_iff2 [simp]:
|
paulson@14641
|
483 |
"(real (m::int) < (number_of n)) = (m < number_of n)"
|
paulson@14641
|
484 |
apply auto
|
paulson@14641
|
485 |
apply (rule real_of_int_less_iff [THEN iffD1])
|
paulson@14641
|
486 |
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
|
paulson@14641
|
487 |
done
|
paulson@14641
|
488 |
|
paulson@14641
|
489 |
lemma number_of_le_real_of_int_iff [simp]:
|
paulson@14641
|
490 |
"((number_of n) \<le> real (m::int)) = (number_of n \<le> m)"
|
paulson@14641
|
491 |
by (simp add: linorder_not_less [symmetric])
|
paulson@14641
|
492 |
|
paulson@14641
|
493 |
lemma number_of_le_real_of_int_iff2 [simp]:
|
paulson@14641
|
494 |
"(real (m::int) \<le> (number_of n)) = (m \<le> number_of n)"
|
paulson@14641
|
495 |
by (simp add: linorder_not_less [symmetric])
|
paulson@14641
|
496 |
|
huffman@30097
|
497 |
lemma floor_real_of_nat_zero: "floor (real (0::nat)) = 0"
|
huffman@30097
|
498 |
by auto (* delete? *)
|
paulson@14641
|
499 |
|
huffman@24355
|
500 |
lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
|
huffman@30097
|
501 |
unfolding real_of_nat_def by simp
|
paulson@14641
|
502 |
|
huffman@24355
|
503 |
lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
|
huffman@30102
|
504 |
unfolding real_of_nat_def by (simp add: floor_minus)
|
paulson@14641
|
505 |
|
paulson@14641
|
506 |
lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
|
huffman@30097
|
507 |
unfolding real_of_int_def by simp
|
paulson@14641
|
508 |
|
paulson@14641
|
509 |
lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
|
huffman@30102
|
510 |
unfolding real_of_int_def by (simp add: floor_minus)
|
paulson@14641
|
511 |
|
paulson@14641
|
512 |
lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)"
|
huffman@30097
|
513 |
unfolding real_of_int_def by (rule floor_exists)
|
paulson@14641
|
514 |
|
paulson@14641
|
515 |
lemma lemma_floor:
|
paulson@14641
|
516 |
assumes a1: "real m \<le> r" and a2: "r < real n + 1"
|
paulson@14641
|
517 |
shows "m \<le> (n::int)"
|
paulson@14641
|
518 |
proof -
|
wenzelm@23389
|
519 |
have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
|
wenzelm@23389
|
520 |
also have "... = real (n + 1)" by simp
|
wenzelm@23389
|
521 |
finally have "m < n + 1" by (simp only: real_of_int_less_iff)
|
paulson@14641
|
522 |
thus ?thesis by arith
|
paulson@14641
|
523 |
qed
|
paulson@14641
|
524 |
|
paulson@14641
|
525 |
lemma real_of_int_floor_le [simp]: "real (floor r) \<le> r"
|
huffman@30097
|
526 |
unfolding real_of_int_def by (rule of_int_floor_le)
|
paulson@14641
|
527 |
|
paulson@14641
|
528 |
lemma lemma_floor2: "real n < real (x::int) + 1 ==> n \<le> x"
|
paulson@14641
|
529 |
by (auto intro: lemma_floor)
|
paulson@14641
|
530 |
|
paulson@14641
|
531 |
lemma real_of_int_floor_cancel [simp]:
|
paulson@14641
|
532 |
"(real (floor x) = x) = (\<exists>n::int. x = real n)"
|
huffman@30097
|
533 |
using floor_real_of_int by metis
|
paulson@14641
|
534 |
|
paulson@14641
|
535 |
lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
|
huffman@30097
|
536 |
unfolding real_of_int_def using floor_unique [of n x] by simp
|
paulson@14641
|
537 |
|
paulson@14641
|
538 |
lemma floor_eq2: "[| real n \<le> x; x < real n + 1 |] ==> floor x = n"
|
huffman@30097
|
539 |
unfolding real_of_int_def by (rule floor_unique)
|
paulson@14641
|
540 |
|
paulson@14641
|
541 |
lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
|
paulson@14641
|
542 |
apply (rule inj_int [THEN injD])
|
paulson@14641
|
543 |
apply (simp add: real_of_nat_Suc)
|
nipkow@15539
|
544 |
apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
|
paulson@14641
|
545 |
done
|
paulson@14641
|
546 |
|
paulson@14641
|
547 |
lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat(floor x) = n"
|
paulson@14641
|
548 |
apply (drule order_le_imp_less_or_eq)
|
paulson@14641
|
549 |
apply (auto intro: floor_eq3)
|
paulson@14641
|
550 |
done
|
paulson@14641
|
551 |
|
huffman@30097
|
552 |
lemma floor_number_of_eq:
|
paulson@14641
|
553 |
"floor(number_of n :: real) = (number_of n :: int)"
|
huffman@30097
|
554 |
by (rule floor_number_of) (* already declared [simp] *)
|
avigad@16819
|
555 |
|
paulson@14641
|
556 |
lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real(floor r)"
|
huffman@30097
|
557 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
avigad@16819
|
558 |
|
avigad@16819
|
559 |
lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
|
huffman@30097
|
560 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
paulson@14641
|
561 |
|
paulson@14641
|
562 |
lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real(floor r) + 1"
|
huffman@30097
|
563 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
paulson@14641
|
564 |
|
avigad@16819
|
565 |
lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
|
huffman@30097
|
566 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
paulson@14641
|
567 |
|
avigad@16819
|
568 |
lemma le_floor: "real a <= x ==> a <= floor x"
|
huffman@30097
|
569 |
unfolding real_of_int_def by (simp add: le_floor_iff)
|
avigad@16819
|
570 |
|
avigad@16819
|
571 |
lemma real_le_floor: "a <= floor x ==> real a <= x"
|
huffman@30097
|
572 |
unfolding real_of_int_def by (simp add: le_floor_iff)
|
avigad@16819
|
573 |
|
avigad@16819
|
574 |
lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
|
huffman@30097
|
575 |
unfolding real_of_int_def by (rule le_floor_iff)
|
avigad@16819
|
576 |
|
huffman@30097
|
577 |
lemma le_floor_eq_number_of:
|
avigad@16819
|
578 |
"(number_of n <= floor x) = (number_of n <= x)"
|
huffman@30097
|
579 |
by (rule number_of_le_floor) (* already declared [simp] *)
|
avigad@16819
|
580 |
|
huffman@30097
|
581 |
lemma le_floor_eq_zero: "(0 <= floor x) = (0 <= x)"
|
huffman@30097
|
582 |
by (rule zero_le_floor) (* already declared [simp] *)
|
avigad@16819
|
583 |
|
huffman@30097
|
584 |
lemma le_floor_eq_one: "(1 <= floor x) = (1 <= x)"
|
huffman@30097
|
585 |
by (rule one_le_floor) (* already declared [simp] *)
|
avigad@16819
|
586 |
|
avigad@16819
|
587 |
lemma floor_less_eq: "(floor x < a) = (x < real a)"
|
huffman@30097
|
588 |
unfolding real_of_int_def by (rule floor_less_iff)
|
avigad@16819
|
589 |
|
huffman@30097
|
590 |
lemma floor_less_eq_number_of:
|
avigad@16819
|
591 |
"(floor x < number_of n) = (x < number_of n)"
|
huffman@30097
|
592 |
by (rule floor_less_number_of) (* already declared [simp] *)
|
avigad@16819
|
593 |
|
huffman@30097
|
594 |
lemma floor_less_eq_zero: "(floor x < 0) = (x < 0)"
|
huffman@30097
|
595 |
by (rule floor_less_zero) (* already declared [simp] *)
|
avigad@16819
|
596 |
|
huffman@30097
|
597 |
lemma floor_less_eq_one: "(floor x < 1) = (x < 1)"
|
huffman@30097
|
598 |
by (rule floor_less_one) (* already declared [simp] *)
|
avigad@16819
|
599 |
|
avigad@16819
|
600 |
lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
|
huffman@30097
|
601 |
unfolding real_of_int_def by (rule less_floor_iff)
|
avigad@16819
|
602 |
|
huffman@30097
|
603 |
lemma less_floor_eq_number_of:
|
avigad@16819
|
604 |
"(number_of n < floor x) = (number_of n + 1 <= x)"
|
huffman@30097
|
605 |
by (rule number_of_less_floor) (* already declared [simp] *)
|
avigad@16819
|
606 |
|
huffman@30097
|
607 |
lemma less_floor_eq_zero: "(0 < floor x) = (1 <= x)"
|
huffman@30097
|
608 |
by (rule zero_less_floor) (* already declared [simp] *)
|
avigad@16819
|
609 |
|
huffman@30097
|
610 |
lemma less_floor_eq_one: "(1 < floor x) = (2 <= x)"
|
huffman@30097
|
611 |
by (rule one_less_floor) (* already declared [simp] *)
|
avigad@16819
|
612 |
|
avigad@16819
|
613 |
lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
|
huffman@30097
|
614 |
unfolding real_of_int_def by (rule floor_le_iff)
|
avigad@16819
|
615 |
|
huffman@30097
|
616 |
lemma floor_le_eq_number_of:
|
avigad@16819
|
617 |
"(floor x <= number_of n) = (x < number_of n + 1)"
|
huffman@30097
|
618 |
by (rule floor_le_number_of) (* already declared [simp] *)
|
avigad@16819
|
619 |
|
huffman@30097
|
620 |
lemma floor_le_eq_zero: "(floor x <= 0) = (x < 1)"
|
huffman@30097
|
621 |
by (rule floor_le_zero) (* already declared [simp] *)
|
avigad@16819
|
622 |
|
huffman@30097
|
623 |
lemma floor_le_eq_one: "(floor x <= 1) = (x < 2)"
|
huffman@30097
|
624 |
by (rule floor_le_one) (* already declared [simp] *)
|
avigad@16819
|
625 |
|
avigad@16819
|
626 |
lemma floor_add [simp]: "floor (x + real a) = floor x + a"
|
huffman@30097
|
627 |
unfolding real_of_int_def by (rule floor_add_of_int)
|
avigad@16819
|
628 |
|
avigad@16819
|
629 |
lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
|
huffman@30097
|
630 |
unfolding real_of_int_def by (rule floor_diff_of_int)
|
avigad@16819
|
631 |
|
huffman@30097
|
632 |
lemma floor_subtract_number_of: "floor (x - number_of n) =
|
avigad@16819
|
633 |
floor x - number_of n"
|
huffman@30097
|
634 |
by (rule floor_diff_number_of) (* already declared [simp] *)
|
avigad@16819
|
635 |
|
huffman@30097
|
636 |
lemma floor_subtract_one: "floor (x - 1) = floor x - 1"
|
huffman@30097
|
637 |
by (rule floor_diff_one) (* already declared [simp] *)
|
paulson@14641
|
638 |
|
huffman@24355
|
639 |
lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
|
huffman@30097
|
640 |
unfolding real_of_nat_def by simp
|
paulson@14641
|
641 |
|
huffman@30097
|
642 |
lemma ceiling_real_of_nat_zero: "ceiling (real (0::nat)) = 0"
|
huffman@30097
|
643 |
by auto (* delete? *)
|
paulson@14641
|
644 |
|
paulson@14641
|
645 |
lemma ceiling_floor [simp]: "ceiling (real (floor r)) = floor r"
|
huffman@30097
|
646 |
unfolding real_of_int_def by simp
|
paulson@14641
|
647 |
|
paulson@14641
|
648 |
lemma floor_ceiling [simp]: "floor (real (ceiling r)) = ceiling r"
|
huffman@30097
|
649 |
unfolding real_of_int_def by simp
|
paulson@14641
|
650 |
|
paulson@14641
|
651 |
lemma real_of_int_ceiling_ge [simp]: "r \<le> real (ceiling r)"
|
huffman@30097
|
652 |
unfolding real_of_int_def by (rule le_of_int_ceiling)
|
paulson@14641
|
653 |
|
huffman@30097
|
654 |
lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
|
huffman@30097
|
655 |
unfolding real_of_int_def by simp
|
paulson@14641
|
656 |
|
paulson@14641
|
657 |
lemma real_of_int_ceiling_cancel [simp]:
|
paulson@14641
|
658 |
"(real (ceiling x) = x) = (\<exists>n::int. x = real n)"
|
huffman@30097
|
659 |
using ceiling_real_of_int by metis
|
paulson@14641
|
660 |
|
paulson@14641
|
661 |
lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
|
huffman@30097
|
662 |
unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
|
paulson@14641
|
663 |
|
paulson@14641
|
664 |
lemma ceiling_eq2: "[| real n < x; x \<le> real n + 1 |] ==> ceiling x = n + 1"
|
huffman@30097
|
665 |
unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
|
paulson@14641
|
666 |
|
paulson@14641
|
667 |
lemma ceiling_eq3: "[| real n - 1 < x; x \<le> real n |] ==> ceiling x = n"
|
huffman@30097
|
668 |
unfolding real_of_int_def using ceiling_unique [of n x] by simp
|
paulson@14641
|
669 |
|
huffman@30097
|
670 |
lemma ceiling_number_of_eq:
|
paulson@14641
|
671 |
"ceiling (number_of n :: real) = (number_of n)"
|
huffman@30097
|
672 |
by (rule ceiling_number_of) (* already declared [simp] *)
|
avigad@16819
|
673 |
|
paulson@14641
|
674 |
lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 \<le> r"
|
huffman@30097
|
675 |
unfolding real_of_int_def using ceiling_correct [of r] by simp
|
paulson@14641
|
676 |
|
paulson@14641
|
677 |
lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) \<le> r + 1"
|
huffman@30097
|
678 |
unfolding real_of_int_def using ceiling_correct [of r] by simp
|
paulson@14641
|
679 |
|
avigad@16819
|
680 |
lemma ceiling_le: "x <= real a ==> ceiling x <= a"
|
huffman@30097
|
681 |
unfolding real_of_int_def by (simp add: ceiling_le_iff)
|
avigad@16819
|
682 |
|
avigad@16819
|
683 |
lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
|
huffman@30097
|
684 |
unfolding real_of_int_def by (simp add: ceiling_le_iff)
|
avigad@16819
|
685 |
|
avigad@16819
|
686 |
lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
|
huffman@30097
|
687 |
unfolding real_of_int_def by (rule ceiling_le_iff)
|
avigad@16819
|
688 |
|
huffman@30097
|
689 |
lemma ceiling_le_eq_number_of:
|
avigad@16819
|
690 |
"(ceiling x <= number_of n) = (x <= number_of n)"
|
huffman@30097
|
691 |
by (rule ceiling_le_number_of) (* already declared [simp] *)
|
avigad@16819
|
692 |
|
huffman@30097
|
693 |
lemma ceiling_le_zero_eq: "(ceiling x <= 0) = (x <= 0)"
|
huffman@30097
|
694 |
by (rule ceiling_le_zero) (* already declared [simp] *)
|
avigad@16819
|
695 |
|
huffman@30097
|
696 |
lemma ceiling_le_eq_one: "(ceiling x <= 1) = (x <= 1)"
|
huffman@30097
|
697 |
by (rule ceiling_le_one) (* already declared [simp] *)
|
avigad@16819
|
698 |
|
avigad@16819
|
699 |
lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
|
huffman@30097
|
700 |
unfolding real_of_int_def by (rule less_ceiling_iff)
|
avigad@16819
|
701 |
|
huffman@30097
|
702 |
lemma less_ceiling_eq_number_of:
|
avigad@16819
|
703 |
"(number_of n < ceiling x) = (number_of n < x)"
|
huffman@30097
|
704 |
by (rule number_of_less_ceiling) (* already declared [simp] *)
|
avigad@16819
|
705 |
|
huffman@30097
|
706 |
lemma less_ceiling_eq_zero: "(0 < ceiling x) = (0 < x)"
|
huffman@30097
|
707 |
by (rule zero_less_ceiling) (* already declared [simp] *)
|
avigad@16819
|
708 |
|
huffman@30097
|
709 |
lemma less_ceiling_eq_one: "(1 < ceiling x) = (1 < x)"
|
huffman@30097
|
710 |
by (rule one_less_ceiling) (* already declared [simp] *)
|
avigad@16819
|
711 |
|
avigad@16819
|
712 |
lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
|
huffman@30097
|
713 |
unfolding real_of_int_def by (rule ceiling_less_iff)
|
avigad@16819
|
714 |
|
huffman@30097
|
715 |
lemma ceiling_less_eq_number_of:
|
avigad@16819
|
716 |
"(ceiling x < number_of n) = (x <= number_of n - 1)"
|
huffman@30097
|
717 |
by (rule ceiling_less_number_of) (* already declared [simp] *)
|
avigad@16819
|
718 |
|
huffman@30097
|
719 |
lemma ceiling_less_eq_zero: "(ceiling x < 0) = (x <= -1)"
|
huffman@30097
|
720 |
by (rule ceiling_less_zero) (* already declared [simp] *)
|
avigad@16819
|
721 |
|
huffman@30097
|
722 |
lemma ceiling_less_eq_one: "(ceiling x < 1) = (x <= 0)"
|
huffman@30097
|
723 |
by (rule ceiling_less_one) (* already declared [simp] *)
|
avigad@16819
|
724 |
|
avigad@16819
|
725 |
lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
|
huffman@30097
|
726 |
unfolding real_of_int_def by (rule le_ceiling_iff)
|
avigad@16819
|
727 |
|
huffman@30097
|
728 |
lemma le_ceiling_eq_number_of:
|
avigad@16819
|
729 |
"(number_of n <= ceiling x) = (number_of n - 1 < x)"
|
huffman@30097
|
730 |
by (rule number_of_le_ceiling) (* already declared [simp] *)
|
avigad@16819
|
731 |
|
huffman@30097
|
732 |
lemma le_ceiling_eq_zero: "(0 <= ceiling x) = (-1 < x)"
|
huffman@30097
|
733 |
by (rule zero_le_ceiling) (* already declared [simp] *)
|
avigad@16819
|
734 |
|
huffman@30097
|
735 |
lemma le_ceiling_eq_one: "(1 <= ceiling x) = (0 < x)"
|
huffman@30097
|
736 |
by (rule one_le_ceiling) (* already declared [simp] *)
|
avigad@16819
|
737 |
|
avigad@16819
|
738 |
lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
|
huffman@30097
|
739 |
unfolding real_of_int_def by (rule ceiling_add_of_int)
|
avigad@16819
|
740 |
|
avigad@16819
|
741 |
lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
|
huffman@30097
|
742 |
unfolding real_of_int_def by (rule ceiling_diff_of_int)
|
avigad@16819
|
743 |
|
huffman@30097
|
744 |
lemma ceiling_subtract_number_of: "ceiling (x - number_of n) =
|
avigad@16819
|
745 |
ceiling x - number_of n"
|
huffman@30097
|
746 |
by (rule ceiling_diff_number_of) (* already declared [simp] *)
|
avigad@16819
|
747 |
|
huffman@30097
|
748 |
lemma ceiling_subtract_one: "ceiling (x - 1) = ceiling x - 1"
|
huffman@30097
|
749 |
by (rule ceiling_diff_one) (* already declared [simp] *)
|
huffman@30097
|
750 |
|
avigad@16819
|
751 |
|
avigad@16819
|
752 |
subsection {* Versions for the natural numbers *}
|
avigad@16819
|
753 |
|
wenzelm@19765
|
754 |
definition
|
wenzelm@21404
|
755 |
natfloor :: "real => nat" where
|
wenzelm@19765
|
756 |
"natfloor x = nat(floor x)"
|
wenzelm@21404
|
757 |
|
wenzelm@21404
|
758 |
definition
|
wenzelm@21404
|
759 |
natceiling :: "real => nat" where
|
wenzelm@19765
|
760 |
"natceiling x = nat(ceiling x)"
|
avigad@16819
|
761 |
|
avigad@16819
|
762 |
lemma natfloor_zero [simp]: "natfloor 0 = 0"
|
avigad@16819
|
763 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
764 |
|
avigad@16819
|
765 |
lemma natfloor_one [simp]: "natfloor 1 = 1"
|
avigad@16819
|
766 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
767 |
|
avigad@16819
|
768 |
lemma zero_le_natfloor [simp]: "0 <= natfloor x"
|
avigad@16819
|
769 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
770 |
|
avigad@16819
|
771 |
lemma natfloor_number_of_eq [simp]: "natfloor (number_of n) = number_of n"
|
avigad@16819
|
772 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
773 |
|
avigad@16819
|
774 |
lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
|
avigad@16819
|
775 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
776 |
|
avigad@16819
|
777 |
lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
|
avigad@16819
|
778 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
779 |
|
avigad@16819
|
780 |
lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
|
avigad@16819
|
781 |
apply (unfold natfloor_def)
|
avigad@16819
|
782 |
apply (subgoal_tac "floor x <= floor 0")
|
avigad@16819
|
783 |
apply simp
|
huffman@30097
|
784 |
apply (erule floor_mono)
|
avigad@16819
|
785 |
done
|
avigad@16819
|
786 |
|
avigad@16819
|
787 |
lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
|
avigad@16819
|
788 |
apply (case_tac "0 <= x")
|
avigad@16819
|
789 |
apply (subst natfloor_def)+
|
avigad@16819
|
790 |
apply (subst nat_le_eq_zle)
|
avigad@16819
|
791 |
apply force
|
huffman@30097
|
792 |
apply (erule floor_mono)
|
avigad@16819
|
793 |
apply (subst natfloor_neg)
|
avigad@16819
|
794 |
apply simp
|
avigad@16819
|
795 |
apply simp
|
avigad@16819
|
796 |
done
|
avigad@16819
|
797 |
|
avigad@16819
|
798 |
lemma le_natfloor: "real x <= a ==> x <= natfloor a"
|
avigad@16819
|
799 |
apply (unfold natfloor_def)
|
avigad@16819
|
800 |
apply (subst nat_int [THEN sym])
|
avigad@16819
|
801 |
apply (subst nat_le_eq_zle)
|
avigad@16819
|
802 |
apply simp
|
avigad@16819
|
803 |
apply (rule le_floor)
|
avigad@16819
|
804 |
apply simp
|
avigad@16819
|
805 |
done
|
avigad@16819
|
806 |
|
avigad@16819
|
807 |
lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
|
avigad@16819
|
808 |
apply (rule iffI)
|
avigad@16819
|
809 |
apply (rule order_trans)
|
avigad@16819
|
810 |
prefer 2
|
avigad@16819
|
811 |
apply (erule real_natfloor_le)
|
avigad@16819
|
812 |
apply (subst real_of_nat_le_iff)
|
avigad@16819
|
813 |
apply assumption
|
avigad@16819
|
814 |
apply (erule le_natfloor)
|
avigad@16819
|
815 |
done
|
avigad@16819
|
816 |
|
wenzelm@16893
|
817 |
lemma le_natfloor_eq_number_of [simp]:
|
avigad@16819
|
818 |
"~ neg((number_of n)::int) ==> 0 <= x ==>
|
avigad@16819
|
819 |
(number_of n <= natfloor x) = (number_of n <= x)"
|
avigad@16819
|
820 |
apply (subst le_natfloor_eq, assumption)
|
avigad@16819
|
821 |
apply simp
|
avigad@16819
|
822 |
done
|
avigad@16819
|
823 |
|
avigad@16820
|
824 |
lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
|
avigad@16819
|
825 |
apply (case_tac "0 <= x")
|
avigad@16819
|
826 |
apply (subst le_natfloor_eq, assumption, simp)
|
avigad@16819
|
827 |
apply (rule iffI)
|
wenzelm@16893
|
828 |
apply (subgoal_tac "natfloor x <= natfloor 0")
|
avigad@16819
|
829 |
apply simp
|
avigad@16819
|
830 |
apply (rule natfloor_mono)
|
avigad@16819
|
831 |
apply simp
|
avigad@16819
|
832 |
apply simp
|
avigad@16819
|
833 |
done
|
avigad@16819
|
834 |
|
avigad@16819
|
835 |
lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
|
avigad@16819
|
836 |
apply (unfold natfloor_def)
|
avigad@16819
|
837 |
apply (subst nat_int [THEN sym]);back;
|
avigad@16819
|
838 |
apply (subst eq_nat_nat_iff)
|
avigad@16819
|
839 |
apply simp
|
avigad@16819
|
840 |
apply simp
|
avigad@16819
|
841 |
apply (rule floor_eq2)
|
avigad@16819
|
842 |
apply auto
|
avigad@16819
|
843 |
done
|
avigad@16819
|
844 |
|
avigad@16819
|
845 |
lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
|
avigad@16819
|
846 |
apply (case_tac "0 <= x")
|
avigad@16819
|
847 |
apply (unfold natfloor_def)
|
avigad@16819
|
848 |
apply simp
|
avigad@16819
|
849 |
apply simp_all
|
avigad@16819
|
850 |
done
|
avigad@16819
|
851 |
|
avigad@16819
|
852 |
lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
|
nipkow@29667
|
853 |
using real_natfloor_add_one_gt by (simp add: algebra_simps)
|
avigad@16819
|
854 |
|
avigad@16819
|
855 |
lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
|
avigad@16819
|
856 |
apply (subgoal_tac "z < real(natfloor z) + 1")
|
avigad@16819
|
857 |
apply arith
|
avigad@16819
|
858 |
apply (rule real_natfloor_add_one_gt)
|
avigad@16819
|
859 |
done
|
avigad@16819
|
860 |
|
avigad@16819
|
861 |
lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
|
avigad@16819
|
862 |
apply (unfold natfloor_def)
|
huffman@24355
|
863 |
apply (subgoal_tac "real a = real (int a)")
|
avigad@16819
|
864 |
apply (erule ssubst)
|
huffman@23309
|
865 |
apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq)
|
avigad@16819
|
866 |
apply simp
|
avigad@16819
|
867 |
done
|
avigad@16819
|
868 |
|
wenzelm@16893
|
869 |
lemma natfloor_add_number_of [simp]:
|
wenzelm@16893
|
870 |
"~neg ((number_of n)::int) ==> 0 <= x ==>
|
avigad@16819
|
871 |
natfloor (x + number_of n) = natfloor x + number_of n"
|
avigad@16819
|
872 |
apply (subst natfloor_add [THEN sym])
|
avigad@16819
|
873 |
apply simp_all
|
avigad@16819
|
874 |
done
|
avigad@16819
|
875 |
|
avigad@16819
|
876 |
lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
|
avigad@16819
|
877 |
apply (subst natfloor_add [THEN sym])
|
avigad@16819
|
878 |
apply assumption
|
avigad@16819
|
879 |
apply simp
|
avigad@16819
|
880 |
done
|
avigad@16819
|
881 |
|
wenzelm@16893
|
882 |
lemma natfloor_subtract [simp]: "real a <= x ==>
|
avigad@16819
|
883 |
natfloor(x - real a) = natfloor x - a"
|
avigad@16819
|
884 |
apply (unfold natfloor_def)
|
huffman@24355
|
885 |
apply (subgoal_tac "real a = real (int a)")
|
avigad@16819
|
886 |
apply (erule ssubst)
|
huffman@23309
|
887 |
apply (simp del: real_of_int_of_nat_eq)
|
avigad@16819
|
888 |
apply simp
|
avigad@16819
|
889 |
done
|
avigad@16819
|
890 |
|
avigad@16819
|
891 |
lemma natceiling_zero [simp]: "natceiling 0 = 0"
|
avigad@16819
|
892 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
893 |
|
avigad@16819
|
894 |
lemma natceiling_one [simp]: "natceiling 1 = 1"
|
avigad@16819
|
895 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
896 |
|
avigad@16819
|
897 |
lemma zero_le_natceiling [simp]: "0 <= natceiling x"
|
avigad@16819
|
898 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
899 |
|
avigad@16819
|
900 |
lemma natceiling_number_of_eq [simp]: "natceiling (number_of n) = number_of n"
|
avigad@16819
|
901 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
902 |
|
avigad@16819
|
903 |
lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
|
avigad@16819
|
904 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
905 |
|
avigad@16819
|
906 |
lemma real_natceiling_ge: "x <= real(natceiling x)"
|
avigad@16819
|
907 |
apply (unfold natceiling_def)
|
avigad@16819
|
908 |
apply (case_tac "x < 0")
|
avigad@16819
|
909 |
apply simp
|
avigad@16819
|
910 |
apply (subst real_nat_eq_real)
|
avigad@16819
|
911 |
apply (subgoal_tac "ceiling 0 <= ceiling x")
|
avigad@16819
|
912 |
apply simp
|
huffman@30097
|
913 |
apply (rule ceiling_mono)
|
avigad@16819
|
914 |
apply simp
|
avigad@16819
|
915 |
apply simp
|
avigad@16819
|
916 |
done
|
avigad@16819
|
917 |
|
avigad@16819
|
918 |
lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
|
avigad@16819
|
919 |
apply (unfold natceiling_def)
|
avigad@16819
|
920 |
apply simp
|
avigad@16819
|
921 |
done
|
avigad@16819
|
922 |
|
avigad@16819
|
923 |
lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
|
avigad@16819
|
924 |
apply (case_tac "0 <= x")
|
avigad@16819
|
925 |
apply (subst natceiling_def)+
|
avigad@16819
|
926 |
apply (subst nat_le_eq_zle)
|
avigad@16819
|
927 |
apply (rule disjI2)
|
avigad@16819
|
928 |
apply (subgoal_tac "real (0::int) <= real(ceiling y)")
|
avigad@16819
|
929 |
apply simp
|
avigad@16819
|
930 |
apply (rule order_trans)
|
avigad@16819
|
931 |
apply simp
|
avigad@16819
|
932 |
apply (erule order_trans)
|
avigad@16819
|
933 |
apply simp
|
huffman@30097
|
934 |
apply (erule ceiling_mono)
|
avigad@16819
|
935 |
apply (subst natceiling_neg)
|
avigad@16819
|
936 |
apply simp_all
|
avigad@16819
|
937 |
done
|
avigad@16819
|
938 |
|
avigad@16819
|
939 |
lemma natceiling_le: "x <= real a ==> natceiling x <= a"
|
avigad@16819
|
940 |
apply (unfold natceiling_def)
|
avigad@16819
|
941 |
apply (case_tac "x < 0")
|
avigad@16819
|
942 |
apply simp
|
avigad@16819
|
943 |
apply (subst nat_int [THEN sym]);back;
|
avigad@16819
|
944 |
apply (subst nat_le_eq_zle)
|
avigad@16819
|
945 |
apply simp
|
avigad@16819
|
946 |
apply (rule ceiling_le)
|
avigad@16819
|
947 |
apply simp
|
avigad@16819
|
948 |
done
|
avigad@16819
|
949 |
|
avigad@16819
|
950 |
lemma natceiling_le_eq: "0 <= x ==> (natceiling x <= a) = (x <= real a)"
|
avigad@16819
|
951 |
apply (rule iffI)
|
avigad@16819
|
952 |
apply (rule order_trans)
|
avigad@16819
|
953 |
apply (rule real_natceiling_ge)
|
avigad@16819
|
954 |
apply (subst real_of_nat_le_iff)
|
avigad@16819
|
955 |
apply assumption
|
avigad@16819
|
956 |
apply (erule natceiling_le)
|
avigad@16819
|
957 |
done
|
avigad@16819
|
958 |
|
wenzelm@16893
|
959 |
lemma natceiling_le_eq_number_of [simp]:
|
avigad@16820
|
960 |
"~ neg((number_of n)::int) ==> 0 <= x ==>
|
avigad@16820
|
961 |
(natceiling x <= number_of n) = (x <= number_of n)"
|
avigad@16819
|
962 |
apply (subst natceiling_le_eq, assumption)
|
avigad@16819
|
963 |
apply simp
|
avigad@16819
|
964 |
done
|
avigad@16819
|
965 |
|
avigad@16820
|
966 |
lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
|
avigad@16819
|
967 |
apply (case_tac "0 <= x")
|
avigad@16819
|
968 |
apply (subst natceiling_le_eq)
|
avigad@16819
|
969 |
apply assumption
|
avigad@16819
|
970 |
apply simp
|
avigad@16819
|
971 |
apply (subst natceiling_neg)
|
avigad@16819
|
972 |
apply simp
|
avigad@16819
|
973 |
apply simp
|
avigad@16819
|
974 |
done
|
avigad@16819
|
975 |
|
avigad@16819
|
976 |
lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
|
avigad@16819
|
977 |
apply (unfold natceiling_def)
|
wenzelm@19850
|
978 |
apply (simplesubst nat_int [THEN sym]) back back
|
avigad@16819
|
979 |
apply (subgoal_tac "nat(int n) + 1 = nat(int n + 1)")
|
avigad@16819
|
980 |
apply (erule ssubst)
|
avigad@16819
|
981 |
apply (subst eq_nat_nat_iff)
|
avigad@16819
|
982 |
apply (subgoal_tac "ceiling 0 <= ceiling x")
|
avigad@16819
|
983 |
apply simp
|
huffman@30097
|
984 |
apply (rule ceiling_mono)
|
avigad@16819
|
985 |
apply force
|
avigad@16819
|
986 |
apply force
|
avigad@16819
|
987 |
apply (rule ceiling_eq2)
|
avigad@16819
|
988 |
apply (simp, simp)
|
avigad@16819
|
989 |
apply (subst nat_add_distrib)
|
avigad@16819
|
990 |
apply auto
|
avigad@16819
|
991 |
done
|
avigad@16819
|
992 |
|
wenzelm@16893
|
993 |
lemma natceiling_add [simp]: "0 <= x ==>
|
avigad@16819
|
994 |
natceiling (x + real a) = natceiling x + a"
|
avigad@16819
|
995 |
apply (unfold natceiling_def)
|
huffman@24355
|
996 |
apply (subgoal_tac "real a = real (int a)")
|
avigad@16819
|
997 |
apply (erule ssubst)
|
huffman@23309
|
998 |
apply (simp del: real_of_int_of_nat_eq)
|
avigad@16819
|
999 |
apply (subst nat_add_distrib)
|
avigad@16819
|
1000 |
apply (subgoal_tac "0 = ceiling 0")
|
avigad@16819
|
1001 |
apply (erule ssubst)
|
huffman@30097
|
1002 |
apply (erule ceiling_mono)
|
avigad@16819
|
1003 |
apply simp_all
|
avigad@16819
|
1004 |
done
|
avigad@16819
|
1005 |
|
wenzelm@16893
|
1006 |
lemma natceiling_add_number_of [simp]:
|
wenzelm@16893
|
1007 |
"~ neg ((number_of n)::int) ==> 0 <= x ==>
|
avigad@16820
|
1008 |
natceiling (x + number_of n) = natceiling x + number_of n"
|
avigad@16819
|
1009 |
apply (subst natceiling_add [THEN sym])
|
avigad@16819
|
1010 |
apply simp_all
|
avigad@16819
|
1011 |
done
|
avigad@16819
|
1012 |
|
avigad@16819
|
1013 |
lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
|
avigad@16819
|
1014 |
apply (subst natceiling_add [THEN sym])
|
avigad@16819
|
1015 |
apply assumption
|
avigad@16819
|
1016 |
apply simp
|
avigad@16819
|
1017 |
done
|
avigad@16819
|
1018 |
|
wenzelm@16893
|
1019 |
lemma natceiling_subtract [simp]: "real a <= x ==>
|
avigad@16819
|
1020 |
natceiling(x - real a) = natceiling x - a"
|
avigad@16819
|
1021 |
apply (unfold natceiling_def)
|
huffman@24355
|
1022 |
apply (subgoal_tac "real a = real (int a)")
|
avigad@16819
|
1023 |
apply (erule ssubst)
|
huffman@23309
|
1024 |
apply (simp del: real_of_int_of_nat_eq)
|
avigad@16819
|
1025 |
apply simp
|
avigad@16819
|
1026 |
done
|
avigad@16819
|
1027 |
|
nipkow@25162
|
1028 |
lemma natfloor_div_nat: "1 <= x ==> y > 0 ==>
|
avigad@16819
|
1029 |
natfloor (x / real y) = natfloor x div y"
|
avigad@16819
|
1030 |
proof -
|
nipkow@25162
|
1031 |
assume "1 <= (x::real)" and "(y::nat) > 0"
|
avigad@16819
|
1032 |
have "natfloor x = (natfloor x) div y * y + (natfloor x) mod y"
|
avigad@16819
|
1033 |
by simp
|
wenzelm@16893
|
1034 |
then have a: "real(natfloor x) = real ((natfloor x) div y) * real y +
|
avigad@16819
|
1035 |
real((natfloor x) mod y)"
|
avigad@16819
|
1036 |
by (simp only: real_of_nat_add [THEN sym] real_of_nat_mult [THEN sym])
|
avigad@16819
|
1037 |
have "x = real(natfloor x) + (x - real(natfloor x))"
|
avigad@16819
|
1038 |
by simp
|
wenzelm@16893
|
1039 |
then have "x = real ((natfloor x) div y) * real y +
|
avigad@16819
|
1040 |
real((natfloor x) mod y) + (x - real(natfloor x))"
|
avigad@16819
|
1041 |
by (simp add: a)
|
avigad@16819
|
1042 |
then have "x / real y = ... / real y"
|
avigad@16819
|
1043 |
by simp
|
wenzelm@16893
|
1044 |
also have "... = real((natfloor x) div y) + real((natfloor x) mod y) /
|
avigad@16819
|
1045 |
real y + (x - real(natfloor x)) / real y"
|
nipkow@29667
|
1046 |
by (auto simp add: algebra_simps add_divide_distrib
|
avigad@16819
|
1047 |
diff_divide_distrib prems)
|
avigad@16819
|
1048 |
finally have "natfloor (x / real y) = natfloor(...)" by simp
|
wenzelm@16893
|
1049 |
also have "... = natfloor(real((natfloor x) mod y) /
|
avigad@16819
|
1050 |
real y + (x - real(natfloor x)) / real y + real((natfloor x) div y))"
|
avigad@16819
|
1051 |
by (simp add: add_ac)
|
wenzelm@16893
|
1052 |
also have "... = natfloor(real((natfloor x) mod y) /
|
avigad@16819
|
1053 |
real y + (x - real(natfloor x)) / real y) + (natfloor x) div y"
|
avigad@16819
|
1054 |
apply (rule natfloor_add)
|
avigad@16819
|
1055 |
apply (rule add_nonneg_nonneg)
|
avigad@16819
|
1056 |
apply (rule divide_nonneg_pos)
|
avigad@16819
|
1057 |
apply simp
|
avigad@16819
|
1058 |
apply (simp add: prems)
|
avigad@16819
|
1059 |
apply (rule divide_nonneg_pos)
|
nipkow@29667
|
1060 |
apply (simp add: algebra_simps)
|
avigad@16819
|
1061 |
apply (rule real_natfloor_le)
|
avigad@16819
|
1062 |
apply (insert prems, auto)
|
avigad@16819
|
1063 |
done
|
wenzelm@16893
|
1064 |
also have "natfloor(real((natfloor x) mod y) /
|
avigad@16819
|
1065 |
real y + (x - real(natfloor x)) / real y) = 0"
|
avigad@16819
|
1066 |
apply (rule natfloor_eq)
|
avigad@16819
|
1067 |
apply simp
|
avigad@16819
|
1068 |
apply (rule add_nonneg_nonneg)
|
avigad@16819
|
1069 |
apply (rule divide_nonneg_pos)
|
avigad@16819
|
1070 |
apply force
|
avigad@16819
|
1071 |
apply (force simp add: prems)
|
avigad@16819
|
1072 |
apply (rule divide_nonneg_pos)
|
nipkow@29667
|
1073 |
apply (simp add: algebra_simps)
|
avigad@16819
|
1074 |
apply (rule real_natfloor_le)
|
avigad@16819
|
1075 |
apply (auto simp add: prems)
|
avigad@16819
|
1076 |
apply (insert prems, arith)
|
avigad@16819
|
1077 |
apply (simp add: add_divide_distrib [THEN sym])
|
avigad@16819
|
1078 |
apply (subgoal_tac "real y = real y - 1 + 1")
|
avigad@16819
|
1079 |
apply (erule ssubst)
|
avigad@16819
|
1080 |
apply (rule add_le_less_mono)
|
nipkow@29667
|
1081 |
apply (simp add: algebra_simps)
|
nipkow@29667
|
1082 |
apply (subgoal_tac "1 + real(natfloor x mod y) =
|
avigad@16819
|
1083 |
real(natfloor x mod y + 1)")
|
avigad@16819
|
1084 |
apply (erule ssubst)
|
avigad@16819
|
1085 |
apply (subst real_of_nat_le_iff)
|
avigad@16819
|
1086 |
apply (subgoal_tac "natfloor x mod y < y")
|
avigad@16819
|
1087 |
apply arith
|
avigad@16819
|
1088 |
apply (rule mod_less_divisor)
|
avigad@16819
|
1089 |
apply auto
|
nipkow@29667
|
1090 |
using real_natfloor_add_one_gt
|
nipkow@29667
|
1091 |
apply (simp add: algebra_simps)
|
avigad@16819
|
1092 |
done
|
nipkow@25140
|
1093 |
finally show ?thesis by simp
|
avigad@16819
|
1094 |
qed
|
avigad@16819
|
1095 |
|
paulson@14365
|
1096 |
end
|