src/HOL/Word/TdThs.thy
author nipkow
Fri Mar 06 17:38:47 2009 +0100 (2009-03-06)
changeset 30313 b2441b0c8d38
parent 29631 3aa049e5f156
child 30729 461ee3e49ad3
permissions -rw-r--r--
added lemmas
kleing@24333
     1
(* 
kleing@24333
     2
    Author:     Jeremy Dawson and Gerwin Klein, NICTA
kleing@24333
     3
kleing@24333
     4
  consequences of type definition theorems, 
kleing@24333
     5
  and of extended type definition theorems
kleing@24333
     6
*)
huffman@24350
     7
huffman@24350
     8
header {* Type Definition Theorems *}
huffman@24350
     9
haftmann@26560
    10
theory TdThs
haftmann@26560
    11
imports Main
haftmann@26560
    12
begin
kleing@24333
    13
kleing@25262
    14
section "More lemmas about normal type definitions"
kleing@25262
    15
kleing@24333
    16
lemma
kleing@24333
    17
  tdD1: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Rep x \<in> A" and
kleing@24333
    18
  tdD2: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Abs (Rep x) = x" and
kleing@24333
    19
  tdD3: "type_definition Rep Abs A \<Longrightarrow> \<forall>y. y \<in> A \<longrightarrow> Rep (Abs y) = y"
kleing@24333
    20
  by (auto simp: type_definition_def)
kleing@24333
    21
kleing@24333
    22
lemma td_nat_int: 
kleing@24333
    23
  "type_definition int nat (Collect (op <= 0))"
kleing@24333
    24
  unfolding type_definition_def by auto
kleing@24333
    25
kleing@24333
    26
context type_definition
kleing@24333
    27
begin
kleing@24333
    28
kleing@24333
    29
lemmas Rep' [iff] = Rep [simplified]  (* if A is given as Collect .. *)
kleing@24333
    30
kleing@24333
    31
declare Rep_inverse [simp] Rep_inject [simp]
kleing@24333
    32
kleing@24333
    33
lemma Abs_eqD: "Abs x = Abs y ==> x \<in> A ==> y \<in> A ==> x = y"
kleing@24333
    34
  by (simp add: Abs_inject)
kleing@24333
    35
   
kleing@24333
    36
lemma Abs_inverse': 
kleing@24333
    37
  "r : A ==> Abs r = a ==> Rep a = r"
kleing@24333
    38
  by (safe elim!: Abs_inverse)
kleing@24333
    39
kleing@24333
    40
lemma Rep_comp_inverse: 
kleing@24333
    41
  "Rep o f = g ==> Abs o g = f"
kleing@24333
    42
  using Rep_inverse by (auto intro: ext)
kleing@24333
    43
kleing@24333
    44
lemma Rep_eqD [elim!]: "Rep x = Rep y ==> x = y"
kleing@24333
    45
  by simp
kleing@24333
    46
kleing@24333
    47
lemma Rep_inverse': "Rep a = r ==> Abs r = a"
kleing@24333
    48
  by (safe intro!: Rep_inverse)
kleing@24333
    49
kleing@24333
    50
lemma comp_Abs_inverse: 
kleing@24333
    51
  "f o Abs = g ==> g o Rep = f"
kleing@24333
    52
  using Rep_inverse by (auto intro: ext) 
kleing@24333
    53
kleing@24333
    54
lemma set_Rep: 
kleing@24333
    55
  "A = range Rep"
kleing@24333
    56
proof (rule set_ext)
kleing@24333
    57
  fix x
kleing@24333
    58
  show "(x \<in> A) = (x \<in> range Rep)"
kleing@24333
    59
    by (auto dest: Abs_inverse [of x, symmetric])
kleing@24333
    60
qed  
kleing@24333
    61
kleing@24333
    62
lemma set_Rep_Abs: "A = range (Rep o Abs)"
kleing@24333
    63
proof (rule set_ext)
kleing@24333
    64
  fix x
kleing@24333
    65
  show "(x \<in> A) = (x \<in> range (Rep o Abs))"
kleing@24333
    66
    by (auto dest: Abs_inverse [of x, symmetric])
kleing@24333
    67
qed  
kleing@24333
    68
kleing@24333
    69
lemma Abs_inj_on: "inj_on Abs A"
kleing@24333
    70
  unfolding inj_on_def 
kleing@24333
    71
  by (auto dest: Abs_inject [THEN iffD1])
kleing@24333
    72
kleing@24333
    73
lemma image: "Abs ` A = UNIV"
kleing@24333
    74
  by (auto intro!: image_eqI)
kleing@24333
    75
kleing@24333
    76
lemmas td_thm = type_definition_axioms
kleing@24333
    77
kleing@24333
    78
lemma fns1: 
kleing@24333
    79
  "Rep o fa = fr o Rep | fa o Abs = Abs o fr ==> Abs o fr o Rep = fa"
kleing@24333
    80
  by (auto dest: Rep_comp_inverse elim: comp_Abs_inverse simp: o_assoc)
kleing@24333
    81
kleing@24333
    82
lemmas fns1a = disjI1 [THEN fns1]
kleing@24333
    83
lemmas fns1b = disjI2 [THEN fns1]
kleing@24333
    84
kleing@24333
    85
lemma fns4:
kleing@24333
    86
  "Rep o fa o Abs = fr ==> 
kleing@24333
    87
   Rep o fa = fr o Rep & fa o Abs = Abs o fr"
kleing@24333
    88
  by (auto intro!: ext)
kleing@24333
    89
kleing@24333
    90
end
kleing@24333
    91
ballarin@29234
    92
interpretation nat_int!: type_definition int nat "Collect (op <= 0)"
kleing@24333
    93
  by (rule td_nat_int)
kleing@24333
    94
wenzelm@27138
    95
declare
wenzelm@27138
    96
  nat_int.Rep_cases [cases del]
wenzelm@27138
    97
  nat_int.Abs_cases [cases del]
wenzelm@27138
    98
  nat_int.Rep_induct [induct del]
wenzelm@27138
    99
  nat_int.Abs_induct [induct del]
kleing@24333
   100
kleing@24333
   101
huffman@24350
   102
subsection "Extended form of type definition predicate"
kleing@24333
   103
kleing@24333
   104
lemma td_conds:
kleing@24333
   105
  "norm o norm = norm ==> (fr o norm = norm o fr) = 
kleing@24333
   106
    (norm o fr o norm = fr o norm & norm o fr o norm = norm o fr)"
kleing@24333
   107
  apply safe
kleing@24333
   108
    apply (simp_all add: o_assoc [symmetric])
kleing@24333
   109
   apply (simp_all add: o_assoc)
kleing@24333
   110
  done
kleing@24333
   111
kleing@24333
   112
lemma fn_comm_power:
kleing@24333
   113
  "fa o tr = tr o fr ==> fa ^ n o tr = tr o fr ^ n" 
kleing@24333
   114
  apply (rule ext) 
kleing@24333
   115
  apply (induct n)
kleing@24333
   116
   apply (auto dest: fun_cong)
kleing@24333
   117
  done
kleing@24333
   118
kleing@24333
   119
lemmas fn_comm_power' =
kleing@24333
   120
  ext [THEN fn_comm_power, THEN fun_cong, unfolded o_def, standard]
kleing@24333
   121
kleing@24333
   122
kleing@24333
   123
locale td_ext = type_definition +
kleing@24333
   124
  fixes norm
kleing@24333
   125
  assumes eq_norm: "\<And>x. Rep (Abs x) = norm x"
kleing@24333
   126
begin
kleing@24333
   127
kleing@24333
   128
lemma Abs_norm [simp]: 
kleing@24333
   129
  "Abs (norm x) = Abs x"
kleing@24333
   130
  using eq_norm [of x] by (auto elim: Rep_inverse')
kleing@24333
   131
kleing@24333
   132
lemma td_th:
kleing@24333
   133
  "g o Abs = f ==> f (Rep x) = g x"
kleing@24333
   134
  by (drule comp_Abs_inverse [symmetric]) simp
kleing@24333
   135
kleing@24333
   136
lemma eq_norm': "Rep o Abs = norm"
kleing@24333
   137
  by (auto simp: eq_norm intro!: ext)
kleing@24333
   138
kleing@24333
   139
lemma norm_Rep [simp]: "norm (Rep x) = Rep x"
kleing@24333
   140
  by (auto simp: eq_norm' intro: td_th)
kleing@24333
   141
kleing@24333
   142
lemmas td = td_thm
kleing@24333
   143
kleing@24333
   144
lemma set_iff_norm: "w : A <-> w = norm w"
kleing@24333
   145
  by (auto simp: set_Rep_Abs eq_norm' eq_norm [symmetric])
kleing@24333
   146
kleing@24333
   147
lemma inverse_norm: 
kleing@24333
   148
  "(Abs n = w) = (Rep w = norm n)"
kleing@24333
   149
  apply (rule iffI)
kleing@24333
   150
   apply (clarsimp simp add: eq_norm)
kleing@24333
   151
  apply (simp add: eq_norm' [symmetric])
kleing@24333
   152
  done
kleing@24333
   153
kleing@24333
   154
lemma norm_eq_iff: 
kleing@24333
   155
  "(norm x = norm y) = (Abs x = Abs y)"
kleing@24333
   156
  by (simp add: eq_norm' [symmetric])
kleing@24333
   157
kleing@24333
   158
lemma norm_comps: 
kleing@24333
   159
  "Abs o norm = Abs" 
kleing@24333
   160
  "norm o Rep = Rep" 
kleing@24333
   161
  "norm o norm = norm"
kleing@24333
   162
  by (auto simp: eq_norm' [symmetric] o_def)
kleing@24333
   163
kleing@24333
   164
lemmas norm_norm [simp] = norm_comps
kleing@24333
   165
kleing@24333
   166
lemma fns5: 
kleing@24333
   167
  "Rep o fa o Abs = fr ==> 
kleing@24333
   168
  fr o norm = fr & norm o fr = fr"
kleing@24333
   169
  by (fold eq_norm') (auto intro!: ext)
kleing@24333
   170
kleing@24333
   171
(* following give conditions for converses to td_fns1
kleing@24333
   172
  the condition (norm o fr o norm = fr o norm) says that 
kleing@24333
   173
  fr takes normalised arguments to normalised results,
kleing@24333
   174
  (norm o fr o norm = norm o fr) says that fr 
kleing@24333
   175
  takes norm-equivalent arguments to norm-equivalent results,
kleing@24333
   176
  (fr o norm = fr) says that fr 
kleing@24333
   177
  takes norm-equivalent arguments to the same result, and 
kleing@24333
   178
  (norm o fr = fr) says that fr takes any argument to a normalised result 
kleing@24333
   179
  *)
kleing@24333
   180
lemma fns2: 
kleing@24333
   181
  "Abs o fr o Rep = fa ==> 
kleing@24333
   182
   (norm o fr o norm = fr o norm) = (Rep o fa = fr o Rep)"
kleing@24333
   183
  apply (fold eq_norm')
kleing@24333
   184
  apply safe
kleing@24333
   185
   prefer 2
kleing@24333
   186
   apply (simp add: o_assoc)
kleing@24333
   187
  apply (rule ext)
kleing@24333
   188
  apply (drule_tac x="Rep x" in fun_cong)
kleing@24333
   189
  apply auto
kleing@24333
   190
  done
kleing@24333
   191
kleing@24333
   192
lemma fns3: 
kleing@24333
   193
  "Abs o fr o Rep = fa ==> 
kleing@24333
   194
   (norm o fr o norm = norm o fr) = (fa o Abs = Abs o fr)"
kleing@24333
   195
  apply (fold eq_norm')
kleing@24333
   196
  apply safe
kleing@24333
   197
   prefer 2
kleing@24333
   198
   apply (simp add: o_assoc [symmetric])
kleing@24333
   199
  apply (rule ext)
kleing@24333
   200
  apply (drule fun_cong)
kleing@24333
   201
  apply simp
kleing@24333
   202
  done
kleing@24333
   203
kleing@24333
   204
lemma fns: 
kleing@24333
   205
  "fr o norm = norm o fr ==> 
kleing@24333
   206
    (fa o Abs = Abs o fr) = (Rep o fa = fr o Rep)"
kleing@24333
   207
  apply safe
kleing@24333
   208
   apply (frule fns1b)
kleing@24333
   209
   prefer 2 
kleing@24333
   210
   apply (frule fns1a) 
kleing@24333
   211
   apply (rule fns3 [THEN iffD1])
kleing@24333
   212
     prefer 3
kleing@24333
   213
     apply (rule fns2 [THEN iffD1])
kleing@24333
   214
       apply (simp_all add: o_assoc [symmetric])
kleing@24333
   215
   apply (simp_all add: o_assoc)
kleing@24333
   216
  done
kleing@24333
   217
kleing@24333
   218
lemma range_norm:
kleing@24333
   219
  "range (Rep o Abs) = A"
kleing@24333
   220
  by (simp add: set_Rep_Abs)
kleing@24333
   221
kleing@24333
   222
end
kleing@24333
   223
kleing@24333
   224
lemmas td_ext_def' =
kleing@24333
   225
  td_ext_def [unfolded type_definition_def td_ext_axioms_def]
kleing@24333
   226
kleing@24333
   227
end
kleing@24333
   228