src/HOL/Auth/Message.thy
author wenzelm
Mon Jun 16 17:54:35 2008 +0200 (2008-06-16)
changeset 27225 b316dde851f5
parent 27154 026f3db3f5c6
child 27239 f2f42f9fa09d
permissions -rw-r--r--
eliminated OldGoals.inst;
paulson@1839
     1
(*  Title:      HOL/Auth/Message
paulson@1839
     2
    ID:         $Id$
paulson@1839
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1839
     4
    Copyright   1996  University of Cambridge
paulson@1839
     5
paulson@1839
     6
Datatypes of agents and messages;
paulson@1913
     7
Inductive relations "parts", "analz" and "synth"
paulson@1839
     8
*)
paulson@1839
     9
paulson@13956
    10
header{*Theory of Agents and Messages for Security Protocols*}
paulson@13956
    11
haftmann@27105
    12
theory Message
haftmann@27105
    13
imports Main
haftmann@27105
    14
begin
paulson@11189
    15
paulson@11189
    16
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
paulson@13926
    17
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A"
paulson@11189
    18
by blast
paulson@1839
    19
paulson@1839
    20
types 
paulson@1839
    21
  key = nat
paulson@1839
    22
paulson@1839
    23
consts
paulson@14126
    24
  all_symmetric :: bool        --{*true if all keys are symmetric*}
paulson@14126
    25
  invKey        :: "key=>key"  --{*inverse of a symmetric key*}
paulson@14126
    26
paulson@14126
    27
specification (invKey)
paulson@14181
    28
  invKey [simp]: "invKey (invKey K) = K"
paulson@14181
    29
  invKey_symmetric: "all_symmetric --> invKey = id"
paulson@14126
    30
    by (rule exI [of _ id], auto)
paulson@1839
    31
paulson@14126
    32
paulson@14126
    33
text{*The inverse of a symmetric key is itself; that of a public key
paulson@14126
    34
      is the private key and vice versa*}
paulson@1839
    35
paulson@1839
    36
constdefs
paulson@11230
    37
  symKeys :: "key set"
paulson@11230
    38
  "symKeys == {K. invKey K = K}"
paulson@1839
    39
paulson@16818
    40
datatype  --{*We allow any number of friendly agents*}
paulson@2032
    41
  agent = Server | Friend nat | Spy
paulson@1839
    42
paulson@3668
    43
datatype
paulson@14200
    44
     msg = Agent  agent	    --{*Agent names*}
paulson@14200
    45
         | Number nat       --{*Ordinary integers, timestamps, ...*}
paulson@14200
    46
         | Nonce  nat       --{*Unguessable nonces*}
paulson@14200
    47
         | Key    key       --{*Crypto keys*}
paulson@14200
    48
	 | Hash   msg       --{*Hashing*}
paulson@14200
    49
	 | MPair  msg msg   --{*Compound messages*}
paulson@14200
    50
	 | Crypt  key msg   --{*Encryption, public- or shared-key*}
paulson@1839
    51
paulson@5234
    52
paulson@16818
    53
text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
paulson@5234
    54
syntax
paulson@2516
    55
  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
paulson@1839
    56
paulson@9686
    57
syntax (xsymbols)
paulson@11189
    58
  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
paulson@9686
    59
paulson@1839
    60
translations
paulson@1839
    61
  "{|x, y, z|}"   == "{|x, {|y, z|}|}"
paulson@1839
    62
  "{|x, y|}"      == "MPair x y"
paulson@1839
    63
paulson@1839
    64
paulson@2484
    65
constdefs
paulson@11189
    66
  HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
paulson@16818
    67
    --{*Message Y paired with a MAC computed with the help of X*}
paulson@2516
    68
    "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
paulson@2484
    69
paulson@11189
    70
  keysFor :: "msg set => key set"
paulson@16818
    71
    --{*Keys useful to decrypt elements of a message set*}
paulson@11192
    72
  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
paulson@1839
    73
paulson@16818
    74
paulson@16818
    75
subsubsection{*Inductive Definition of All Parts" of a Message*}
paulson@1839
    76
berghofe@23746
    77
inductive_set
berghofe@23746
    78
  parts :: "msg set => msg set"
berghofe@23746
    79
  for H :: "msg set"
berghofe@23746
    80
  where
paulson@11192
    81
    Inj [intro]:               "X \<in> H ==> X \<in> parts H"
berghofe@23746
    82
  | Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
berghofe@23746
    83
  | Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
berghofe@23746
    84
  | Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
paulson@11189
    85
paulson@11189
    86
paulson@16818
    87
text{*Monotonicity*}
paulson@16818
    88
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
paulson@11189
    89
apply auto
paulson@11189
    90
apply (erule parts.induct) 
paulson@16818
    91
apply (blast dest: parts.Fst parts.Snd parts.Body)+
paulson@11189
    92
done
paulson@1839
    93
paulson@1839
    94
paulson@16818
    95
text{*Equations hold because constructors are injective.*}
paulson@13926
    96
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
paulson@13926
    97
by auto
paulson@13926
    98
paulson@13926
    99
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"
paulson@13926
   100
by auto
paulson@13926
   101
paulson@13926
   102
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"
paulson@13926
   103
by auto
paulson@13926
   104
paulson@13926
   105
paulson@14200
   106
subsubsection{*Inverse of keys *}
paulson@13926
   107
paulson@13926
   108
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
paulson@13926
   109
apply safe
paulson@13926
   110
apply (drule_tac f = invKey in arg_cong, simp)
paulson@13926
   111
done
paulson@13926
   112
paulson@13926
   113
paulson@13926
   114
subsection{*keysFor operator*}
paulson@13926
   115
paulson@13926
   116
lemma keysFor_empty [simp]: "keysFor {} = {}"
paulson@13926
   117
by (unfold keysFor_def, blast)
paulson@13926
   118
paulson@13926
   119
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
paulson@13926
   120
by (unfold keysFor_def, blast)
paulson@13926
   121
paulson@13926
   122
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
paulson@13926
   123
by (unfold keysFor_def, blast)
paulson@13926
   124
paulson@16818
   125
text{*Monotonicity*}
paulson@16818
   126
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
paulson@13926
   127
by (unfold keysFor_def, blast)
paulson@13926
   128
paulson@13926
   129
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
paulson@13926
   130
by (unfold keysFor_def, auto)
paulson@13926
   131
paulson@13926
   132
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
paulson@13926
   133
by (unfold keysFor_def, auto)
paulson@13926
   134
paulson@13926
   135
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
paulson@13926
   136
by (unfold keysFor_def, auto)
paulson@13926
   137
paulson@13926
   138
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
paulson@13926
   139
by (unfold keysFor_def, auto)
paulson@13926
   140
paulson@13926
   141
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
paulson@13926
   142
by (unfold keysFor_def, auto)
paulson@13926
   143
paulson@13926
   144
lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
paulson@13926
   145
by (unfold keysFor_def, auto)
paulson@13926
   146
paulson@13926
   147
lemma keysFor_insert_Crypt [simp]: 
paulson@13926
   148
    "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
paulson@14200
   149
by (unfold keysFor_def, auto)
paulson@13926
   150
paulson@13926
   151
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
paulson@13926
   152
by (unfold keysFor_def, auto)
paulson@13926
   153
paulson@13926
   154
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
paulson@13926
   155
by (unfold keysFor_def, blast)
paulson@13926
   156
paulson@13926
   157
paulson@13926
   158
subsection{*Inductive relation "parts"*}
paulson@13926
   159
paulson@13926
   160
lemma MPair_parts:
paulson@13926
   161
     "[| {|X,Y|} \<in> parts H;        
paulson@13926
   162
         [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
paulson@13926
   163
by (blast dest: parts.Fst parts.Snd) 
paulson@13926
   164
paulson@13926
   165
declare MPair_parts [elim!]  parts.Body [dest!]
paulson@13926
   166
text{*NB These two rules are UNSAFE in the formal sense, as they discard the
paulson@13926
   167
     compound message.  They work well on THIS FILE.  
paulson@13926
   168
  @{text MPair_parts} is left as SAFE because it speeds up proofs.
paulson@13926
   169
  The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
paulson@13926
   170
paulson@13926
   171
lemma parts_increasing: "H \<subseteq> parts(H)"
paulson@13926
   172
by blast
paulson@13926
   173
paulson@13926
   174
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard]
paulson@13926
   175
paulson@13926
   176
lemma parts_empty [simp]: "parts{} = {}"
paulson@13926
   177
apply safe
paulson@13926
   178
apply (erule parts.induct, blast+)
paulson@13926
   179
done
paulson@13926
   180
paulson@13926
   181
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
paulson@13926
   182
by simp
paulson@13926
   183
paulson@16818
   184
text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
paulson@13926
   185
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
berghofe@26807
   186
by (erule parts.induct, fast+)
paulson@13926
   187
paulson@13926
   188
paulson@14200
   189
subsubsection{*Unions *}
paulson@13926
   190
paulson@13926
   191
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
paulson@13926
   192
by (intro Un_least parts_mono Un_upper1 Un_upper2)
paulson@13926
   193
paulson@13926
   194
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
paulson@13926
   195
apply (rule subsetI)
paulson@13926
   196
apply (erule parts.induct, blast+)
paulson@13926
   197
done
paulson@13926
   198
paulson@13926
   199
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
paulson@13926
   200
by (intro equalityI parts_Un_subset1 parts_Un_subset2)
paulson@13926
   201
paulson@13926
   202
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
paulson@13926
   203
apply (subst insert_is_Un [of _ H])
paulson@13926
   204
apply (simp only: parts_Un)
paulson@13926
   205
done
paulson@13926
   206
paulson@16818
   207
text{*TWO inserts to avoid looping.  This rewrite is better than nothing.
paulson@16818
   208
  Not suitable for Addsimps: its behaviour can be strange.*}
paulson@14200
   209
lemma parts_insert2:
paulson@14200
   210
     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
paulson@13926
   211
apply (simp add: Un_assoc)
paulson@13926
   212
apply (simp add: parts_insert [symmetric])
paulson@13926
   213
done
paulson@13926
   214
paulson@13926
   215
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
paulson@13926
   216
by (intro UN_least parts_mono UN_upper)
paulson@13926
   217
paulson@13926
   218
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
paulson@13926
   219
apply (rule subsetI)
paulson@13926
   220
apply (erule parts.induct, blast+)
paulson@13926
   221
done
paulson@13926
   222
paulson@13926
   223
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
paulson@13926
   224
by (intro equalityI parts_UN_subset1 parts_UN_subset2)
paulson@13926
   225
paulson@16818
   226
text{*Added to simplify arguments to parts, analz and synth.
paulson@16818
   227
  NOTE: the UN versions are no longer used!*}
paulson@13926
   228
paulson@13926
   229
paulson@13926
   230
text{*This allows @{text blast} to simplify occurrences of 
paulson@13926
   231
  @{term "parts(G\<union>H)"} in the assumption.*}
paulson@17729
   232
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] 
paulson@17729
   233
declare in_parts_UnE [elim!]
paulson@13926
   234
paulson@13926
   235
paulson@13926
   236
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
paulson@13926
   237
by (blast intro: parts_mono [THEN [2] rev_subsetD])
paulson@13926
   238
paulson@14200
   239
subsubsection{*Idempotence and transitivity *}
paulson@13926
   240
paulson@13926
   241
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
paulson@13926
   242
by (erule parts.induct, blast+)
paulson@13926
   243
paulson@13926
   244
lemma parts_idem [simp]: "parts (parts H) = parts H"
paulson@13926
   245
by blast
paulson@13926
   246
paulson@17689
   247
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"
paulson@17689
   248
apply (rule iffI)
paulson@17689
   249
apply (iprover intro: subset_trans parts_increasing)  
paulson@17689
   250
apply (frule parts_mono, simp) 
paulson@17689
   251
done
paulson@17689
   252
paulson@13926
   253
lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
paulson@13926
   254
by (drule parts_mono, blast)
paulson@13926
   255
paulson@16818
   256
text{*Cut*}
paulson@14200
   257
lemma parts_cut:
paulson@18492
   258
     "[| Y\<in> parts (insert X G);  X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" 
paulson@18492
   259
by (blast intro: parts_trans) 
paulson@18492
   260
paulson@13926
   261
paulson@13926
   262
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H"
paulson@13926
   263
by (force dest!: parts_cut intro: parts_insertI)
paulson@13926
   264
paulson@13926
   265
paulson@14200
   266
subsubsection{*Rewrite rules for pulling out atomic messages *}
paulson@13926
   267
paulson@13926
   268
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
paulson@13926
   269
paulson@13926
   270
paulson@14200
   271
lemma parts_insert_Agent [simp]:
paulson@14200
   272
     "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
paulson@13926
   273
apply (rule parts_insert_eq_I) 
paulson@13926
   274
apply (erule parts.induct, auto) 
paulson@13926
   275
done
paulson@13926
   276
paulson@14200
   277
lemma parts_insert_Nonce [simp]:
paulson@14200
   278
     "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
paulson@13926
   279
apply (rule parts_insert_eq_I) 
paulson@13926
   280
apply (erule parts.induct, auto) 
paulson@13926
   281
done
paulson@13926
   282
paulson@14200
   283
lemma parts_insert_Number [simp]:
paulson@14200
   284
     "parts (insert (Number N) H) = insert (Number N) (parts H)"
paulson@13926
   285
apply (rule parts_insert_eq_I) 
paulson@13926
   286
apply (erule parts.induct, auto) 
paulson@13926
   287
done
paulson@13926
   288
paulson@14200
   289
lemma parts_insert_Key [simp]:
paulson@14200
   290
     "parts (insert (Key K) H) = insert (Key K) (parts H)"
paulson@13926
   291
apply (rule parts_insert_eq_I) 
paulson@13926
   292
apply (erule parts.induct, auto) 
paulson@13926
   293
done
paulson@13926
   294
paulson@14200
   295
lemma parts_insert_Hash [simp]:
paulson@14200
   296
     "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
paulson@13926
   297
apply (rule parts_insert_eq_I) 
paulson@13926
   298
apply (erule parts.induct, auto) 
paulson@13926
   299
done
paulson@13926
   300
paulson@14200
   301
lemma parts_insert_Crypt [simp]:
paulson@17689
   302
     "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"
paulson@13926
   303
apply (rule equalityI)
paulson@13926
   304
apply (rule subsetI)
paulson@13926
   305
apply (erule parts.induct, auto)
paulson@17689
   306
apply (blast intro: parts.Body)
paulson@13926
   307
done
paulson@13926
   308
paulson@14200
   309
lemma parts_insert_MPair [simp]:
paulson@14200
   310
     "parts (insert {|X,Y|} H) =  
paulson@13926
   311
          insert {|X,Y|} (parts (insert X (insert Y H)))"
paulson@13926
   312
apply (rule equalityI)
paulson@13926
   313
apply (rule subsetI)
paulson@13926
   314
apply (erule parts.induct, auto)
paulson@13926
   315
apply (blast intro: parts.Fst parts.Snd)+
paulson@13926
   316
done
paulson@13926
   317
paulson@13926
   318
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
paulson@13926
   319
apply auto
paulson@13926
   320
apply (erule parts.induct, auto)
paulson@13926
   321
done
paulson@13926
   322
paulson@13926
   323
paulson@16818
   324
text{*In any message, there is an upper bound N on its greatest nonce.*}
paulson@13926
   325
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
haftmann@27105
   326
apply (induct msg)
paulson@13926
   327
apply (simp_all (no_asm_simp) add: exI parts_insert2)
paulson@16818
   328
 txt{*MPair case: blast works out the necessary sum itself!*}
haftmann@22424
   329
 prefer 2 apply auto apply (blast elim!: add_leE)
paulson@16818
   330
txt{*Nonce case*}
paulson@16818
   331
apply (rule_tac x = "N + Suc nat" in exI, auto) 
paulson@13926
   332
done
paulson@13926
   333
paulson@13926
   334
paulson@13926
   335
subsection{*Inductive relation "analz"*}
paulson@13926
   336
paulson@14200
   337
text{*Inductive definition of "analz" -- what can be broken down from a set of
paulson@1839
   338
    messages, including keys.  A form of downward closure.  Pairs can
paulson@14200
   339
    be taken apart; messages decrypted with known keys.  *}
paulson@1839
   340
berghofe@23746
   341
inductive_set
berghofe@23746
   342
  analz :: "msg set => msg set"
berghofe@23746
   343
  for H :: "msg set"
berghofe@23746
   344
  where
paulson@11192
   345
    Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
berghofe@23746
   346
  | Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
berghofe@23746
   347
  | Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
berghofe@23746
   348
  | Decrypt [dest]: 
paulson@11192
   349
             "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
paulson@1839
   350
paulson@1839
   351
paulson@16818
   352
text{*Monotonicity; Lemma 1 of Lowe's paper*}
paulson@14200
   353
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
paulson@11189
   354
apply auto
paulson@11189
   355
apply (erule analz.induct) 
paulson@16818
   356
apply (auto dest: analz.Fst analz.Snd) 
paulson@11189
   357
done
paulson@11189
   358
paulson@13926
   359
text{*Making it safe speeds up proofs*}
paulson@13926
   360
lemma MPair_analz [elim!]:
paulson@13926
   361
     "[| {|X,Y|} \<in> analz H;        
paulson@13926
   362
             [| X \<in> analz H; Y \<in> analz H |] ==> P   
paulson@13926
   363
          |] ==> P"
paulson@13926
   364
by (blast dest: analz.Fst analz.Snd)
paulson@13926
   365
paulson@13926
   366
lemma analz_increasing: "H \<subseteq> analz(H)"
paulson@13926
   367
by blast
paulson@13926
   368
paulson@13926
   369
lemma analz_subset_parts: "analz H \<subseteq> parts H"
paulson@13926
   370
apply (rule subsetI)
paulson@13926
   371
apply (erule analz.induct, blast+)
paulson@13926
   372
done
paulson@13926
   373
paulson@14200
   374
lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard]
paulson@14200
   375
paulson@13926
   376
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard]
paulson@13926
   377
paulson@13926
   378
paulson@13926
   379
lemma parts_analz [simp]: "parts (analz H) = parts H"
paulson@13926
   380
apply (rule equalityI)
paulson@13926
   381
apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)
paulson@13926
   382
apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])
paulson@13926
   383
done
paulson@13926
   384
paulson@13926
   385
lemma analz_parts [simp]: "analz (parts H) = parts H"
paulson@13926
   386
apply auto
paulson@13926
   387
apply (erule analz.induct, auto)
paulson@13926
   388
done
paulson@13926
   389
paulson@13926
   390
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard]
paulson@13926
   391
paulson@14200
   392
subsubsection{*General equational properties *}
paulson@13926
   393
paulson@13926
   394
lemma analz_empty [simp]: "analz{} = {}"
paulson@13926
   395
apply safe
paulson@13926
   396
apply (erule analz.induct, blast+)
paulson@13926
   397
done
paulson@13926
   398
paulson@16818
   399
text{*Converse fails: we can analz more from the union than from the 
paulson@16818
   400
  separate parts, as a key in one might decrypt a message in the other*}
paulson@13926
   401
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
paulson@13926
   402
by (intro Un_least analz_mono Un_upper1 Un_upper2)
paulson@13926
   403
paulson@13926
   404
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
paulson@13926
   405
by (blast intro: analz_mono [THEN [2] rev_subsetD])
paulson@13926
   406
paulson@14200
   407
subsubsection{*Rewrite rules for pulling out atomic messages *}
paulson@13926
   408
paulson@13926
   409
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
paulson@13926
   410
paulson@14200
   411
lemma analz_insert_Agent [simp]:
paulson@14200
   412
     "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
paulson@13926
   413
apply (rule analz_insert_eq_I) 
paulson@13926
   414
apply (erule analz.induct, auto) 
paulson@13926
   415
done
paulson@13926
   416
paulson@14200
   417
lemma analz_insert_Nonce [simp]:
paulson@14200
   418
     "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
paulson@13926
   419
apply (rule analz_insert_eq_I) 
paulson@13926
   420
apply (erule analz.induct, auto) 
paulson@13926
   421
done
paulson@13926
   422
paulson@14200
   423
lemma analz_insert_Number [simp]:
paulson@14200
   424
     "analz (insert (Number N) H) = insert (Number N) (analz H)"
paulson@13926
   425
apply (rule analz_insert_eq_I) 
paulson@13926
   426
apply (erule analz.induct, auto) 
paulson@13926
   427
done
paulson@13926
   428
paulson@14200
   429
lemma analz_insert_Hash [simp]:
paulson@14200
   430
     "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
paulson@13926
   431
apply (rule analz_insert_eq_I) 
paulson@13926
   432
apply (erule analz.induct, auto) 
paulson@13926
   433
done
paulson@13926
   434
paulson@16818
   435
text{*Can only pull out Keys if they are not needed to decrypt the rest*}
paulson@13926
   436
lemma analz_insert_Key [simp]: 
paulson@13926
   437
    "K \<notin> keysFor (analz H) ==>   
paulson@13926
   438
          analz (insert (Key K) H) = insert (Key K) (analz H)"
paulson@13926
   439
apply (unfold keysFor_def)
paulson@13926
   440
apply (rule analz_insert_eq_I) 
paulson@13926
   441
apply (erule analz.induct, auto) 
paulson@13926
   442
done
paulson@13926
   443
paulson@14200
   444
lemma analz_insert_MPair [simp]:
paulson@14200
   445
     "analz (insert {|X,Y|} H) =  
paulson@13926
   446
          insert {|X,Y|} (analz (insert X (insert Y H)))"
paulson@13926
   447
apply (rule equalityI)
paulson@13926
   448
apply (rule subsetI)
paulson@13926
   449
apply (erule analz.induct, auto)
paulson@13926
   450
apply (erule analz.induct)
paulson@13926
   451
apply (blast intro: analz.Fst analz.Snd)+
paulson@13926
   452
done
paulson@13926
   453
paulson@16818
   454
text{*Can pull out enCrypted message if the Key is not known*}
paulson@13926
   455
lemma analz_insert_Crypt:
paulson@13926
   456
     "Key (invKey K) \<notin> analz H 
paulson@13926
   457
      ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
paulson@13926
   458
apply (rule analz_insert_eq_I) 
paulson@13926
   459
apply (erule analz.induct, auto) 
paulson@13926
   460
paulson@13926
   461
done
paulson@13926
   462
paulson@13926
   463
lemma lemma1: "Key (invKey K) \<in> analz H ==>   
paulson@13926
   464
               analz (insert (Crypt K X) H) \<subseteq>  
paulson@13926
   465
               insert (Crypt K X) (analz (insert X H))"
paulson@13926
   466
apply (rule subsetI)
berghofe@23746
   467
apply (erule_tac x = x in analz.induct, auto)
paulson@13926
   468
done
paulson@13926
   469
paulson@13926
   470
lemma lemma2: "Key (invKey K) \<in> analz H ==>   
paulson@13926
   471
               insert (Crypt K X) (analz (insert X H)) \<subseteq>  
paulson@13926
   472
               analz (insert (Crypt K X) H)"
paulson@13926
   473
apply auto
berghofe@23746
   474
apply (erule_tac x = x in analz.induct, auto)
paulson@13926
   475
apply (blast intro: analz_insertI analz.Decrypt)
paulson@13926
   476
done
paulson@13926
   477
paulson@14200
   478
lemma analz_insert_Decrypt:
paulson@14200
   479
     "Key (invKey K) \<in> analz H ==>   
paulson@13926
   480
               analz (insert (Crypt K X) H) =  
paulson@13926
   481
               insert (Crypt K X) (analz (insert X H))"
paulson@13926
   482
by (intro equalityI lemma1 lemma2)
paulson@13926
   483
paulson@16818
   484
text{*Case analysis: either the message is secure, or it is not! Effective,
paulson@16818
   485
but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
paulson@16818
   486
@{text "split_tac"} does not cope with patterns such as @{term"analz (insert
paulson@16818
   487
(Crypt K X) H)"} *} 
paulson@13926
   488
lemma analz_Crypt_if [simp]:
paulson@13926
   489
     "analz (insert (Crypt K X) H) =                 
paulson@13926
   490
          (if (Key (invKey K) \<in> analz H)                 
paulson@13926
   491
           then insert (Crypt K X) (analz (insert X H))  
paulson@13926
   492
           else insert (Crypt K X) (analz H))"
paulson@13926
   493
by (simp add: analz_insert_Crypt analz_insert_Decrypt)
paulson@13926
   494
paulson@13926
   495
paulson@16818
   496
text{*This rule supposes "for the sake of argument" that we have the key.*}
paulson@14200
   497
lemma analz_insert_Crypt_subset:
paulson@14200
   498
     "analz (insert (Crypt K X) H) \<subseteq>   
paulson@13926
   499
           insert (Crypt K X) (analz (insert X H))"
paulson@13926
   500
apply (rule subsetI)
paulson@13926
   501
apply (erule analz.induct, auto)
paulson@13926
   502
done
paulson@13926
   503
paulson@13926
   504
paulson@13926
   505
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
paulson@13926
   506
apply auto
paulson@13926
   507
apply (erule analz.induct, auto)
paulson@13926
   508
done
paulson@13926
   509
paulson@13926
   510
paulson@14200
   511
subsubsection{*Idempotence and transitivity *}
paulson@13926
   512
paulson@13926
   513
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
paulson@13926
   514
by (erule analz.induct, blast+)
paulson@13926
   515
paulson@13926
   516
lemma analz_idem [simp]: "analz (analz H) = analz H"
paulson@13926
   517
by blast
paulson@13926
   518
paulson@17689
   519
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"
paulson@17689
   520
apply (rule iffI)
paulson@17689
   521
apply (iprover intro: subset_trans analz_increasing)  
paulson@17689
   522
apply (frule analz_mono, simp) 
paulson@17689
   523
done
paulson@17689
   524
paulson@13926
   525
lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
paulson@13926
   526
by (drule analz_mono, blast)
paulson@13926
   527
paulson@16818
   528
text{*Cut; Lemma 2 of Lowe*}
paulson@13926
   529
lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
paulson@13926
   530
by (erule analz_trans, blast)
paulson@13926
   531
paulson@13926
   532
(*Cut can be proved easily by induction on
paulson@13926
   533
   "Y: analz (insert X H) ==> X: analz H --> Y: analz H"
paulson@13926
   534
*)
paulson@13926
   535
paulson@16818
   536
text{*This rewrite rule helps in the simplification of messages that involve
paulson@13926
   537
  the forwarding of unknown components (X).  Without it, removing occurrences
paulson@16818
   538
  of X can be very complicated. *}
paulson@13926
   539
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
paulson@13926
   540
by (blast intro: analz_cut analz_insertI)
paulson@13926
   541
paulson@13926
   542
paulson@14200
   543
text{*A congruence rule for "analz" *}
paulson@13926
   544
paulson@14200
   545
lemma analz_subset_cong:
paulson@17689
   546
     "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] 
paulson@17689
   547
      ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
paulson@17689
   548
apply simp
paulson@17689
   549
apply (iprover intro: conjI subset_trans analz_mono Un_upper1 Un_upper2) 
paulson@13926
   550
done
paulson@13926
   551
paulson@14200
   552
lemma analz_cong:
paulson@17689
   553
     "[| analz G = analz G'; analz H = analz H' |] 
paulson@17689
   554
      ==> analz (G \<union> H) = analz (G' \<union> H')"
paulson@14200
   555
by (intro equalityI analz_subset_cong, simp_all) 
paulson@13926
   556
paulson@14200
   557
lemma analz_insert_cong:
paulson@14200
   558
     "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
paulson@13926
   559
by (force simp only: insert_def intro!: analz_cong)
paulson@13926
   560
paulson@16818
   561
text{*If there are no pairs or encryptions then analz does nothing*}
paulson@14200
   562
lemma analz_trivial:
paulson@14200
   563
     "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
paulson@13926
   564
apply safe
paulson@13926
   565
apply (erule analz.induct, blast+)
paulson@13926
   566
done
paulson@13926
   567
paulson@16818
   568
text{*These two are obsolete (with a single Spy) but cost little to prove...*}
paulson@14200
   569
lemma analz_UN_analz_lemma:
paulson@14200
   570
     "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
paulson@13926
   571
apply (erule analz.induct)
paulson@13926
   572
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
paulson@13926
   573
done
paulson@13926
   574
paulson@13926
   575
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
paulson@13926
   576
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
paulson@13926
   577
paulson@13926
   578
paulson@13926
   579
subsection{*Inductive relation "synth"*}
paulson@13926
   580
paulson@14200
   581
text{*Inductive definition of "synth" -- what can be built up from a set of
paulson@1839
   582
    messages.  A form of upward closure.  Pairs can be built, messages
paulson@3668
   583
    encrypted with known keys.  Agent names are public domain.
paulson@14200
   584
    Numbers can be guessed, but Nonces cannot be.  *}
paulson@1839
   585
berghofe@23746
   586
inductive_set
berghofe@23746
   587
  synth :: "msg set => msg set"
berghofe@23746
   588
  for H :: "msg set"
berghofe@23746
   589
  where
paulson@11192
   590
    Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
berghofe@23746
   591
  | Agent  [intro]:   "Agent agt \<in> synth H"
berghofe@23746
   592
  | Number [intro]:   "Number n  \<in> synth H"
berghofe@23746
   593
  | Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
berghofe@23746
   594
  | MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
berghofe@23746
   595
  | Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
paulson@11189
   596
paulson@16818
   597
text{*Monotonicity*}
paulson@14200
   598
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"
paulson@16818
   599
  by (auto, erule synth.induct, auto)  
paulson@11189
   600
paulson@16818
   601
text{*NO @{text Agent_synth}, as any Agent name can be synthesized.  
paulson@16818
   602
  The same holds for @{term Number}*}
paulson@11192
   603
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
paulson@11192
   604
inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
paulson@11192
   605
inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
paulson@11192
   606
inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
paulson@11192
   607
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
paulson@11189
   608
paulson@13926
   609
paulson@13926
   610
lemma synth_increasing: "H \<subseteq> synth(H)"
paulson@13926
   611
by blast
paulson@13926
   612
paulson@14200
   613
subsubsection{*Unions *}
paulson@13926
   614
paulson@16818
   615
text{*Converse fails: we can synth more from the union than from the 
paulson@16818
   616
  separate parts, building a compound message using elements of each.*}
paulson@13926
   617
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
paulson@13926
   618
by (intro Un_least synth_mono Un_upper1 Un_upper2)
paulson@13926
   619
paulson@13926
   620
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
paulson@13926
   621
by (blast intro: synth_mono [THEN [2] rev_subsetD])
paulson@13926
   622
paulson@14200
   623
subsubsection{*Idempotence and transitivity *}
paulson@13926
   624
paulson@13926
   625
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
paulson@13926
   626
by (erule synth.induct, blast+)
paulson@13926
   627
paulson@13926
   628
lemma synth_idem: "synth (synth H) = synth H"
paulson@13926
   629
by blast
paulson@13926
   630
paulson@17689
   631
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"
paulson@17689
   632
apply (rule iffI)
paulson@17689
   633
apply (iprover intro: subset_trans synth_increasing)  
paulson@17689
   634
apply (frule synth_mono, simp add: synth_idem) 
paulson@17689
   635
done
paulson@17689
   636
paulson@13926
   637
lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
paulson@13926
   638
by (drule synth_mono, blast)
paulson@13926
   639
paulson@16818
   640
text{*Cut; Lemma 2 of Lowe*}
paulson@13926
   641
lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
paulson@13926
   642
by (erule synth_trans, blast)
paulson@13926
   643
paulson@13926
   644
lemma Agent_synth [simp]: "Agent A \<in> synth H"
paulson@13926
   645
by blast
paulson@13926
   646
paulson@13926
   647
lemma Number_synth [simp]: "Number n \<in> synth H"
paulson@13926
   648
by blast
paulson@13926
   649
paulson@13926
   650
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
paulson@13926
   651
by blast
paulson@13926
   652
paulson@13926
   653
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
paulson@13926
   654
by blast
paulson@13926
   655
paulson@14200
   656
lemma Crypt_synth_eq [simp]:
paulson@14200
   657
     "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
paulson@13926
   658
by blast
paulson@13926
   659
paulson@13926
   660
paulson@13926
   661
lemma keysFor_synth [simp]: 
paulson@13926
   662
    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
paulson@14200
   663
by (unfold keysFor_def, blast)
paulson@13926
   664
paulson@13926
   665
paulson@14200
   666
subsubsection{*Combinations of parts, analz and synth *}
paulson@13926
   667
paulson@13926
   668
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
paulson@13926
   669
apply (rule equalityI)
paulson@13926
   670
apply (rule subsetI)
paulson@13926
   671
apply (erule parts.induct)
paulson@13926
   672
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] 
paulson@13926
   673
                    parts.Fst parts.Snd parts.Body)+
paulson@13926
   674
done
paulson@13926
   675
paulson@13926
   676
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
paulson@13926
   677
apply (intro equalityI analz_subset_cong)+
paulson@13926
   678
apply simp_all
paulson@13926
   679
done
paulson@13926
   680
paulson@13926
   681
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
paulson@13926
   682
apply (rule equalityI)
paulson@13926
   683
apply (rule subsetI)
paulson@13926
   684
apply (erule analz.induct)
paulson@13926
   685
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])
paulson@13926
   686
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+
paulson@13926
   687
done
paulson@13926
   688
paulson@13926
   689
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
paulson@13926
   690
apply (cut_tac H = "{}" in analz_synth_Un)
paulson@13926
   691
apply (simp (no_asm_use))
paulson@13926
   692
done
paulson@13926
   693
paulson@13926
   694
paulson@14200
   695
subsubsection{*For reasoning about the Fake rule in traces *}
paulson@13926
   696
paulson@13926
   697
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
paulson@13926
   698
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
paulson@13926
   699
paulson@16818
   700
text{*More specifically for Fake.  Very occasionally we could do with a version
paulson@16818
   701
  of the form  @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *}
paulson@14200
   702
lemma Fake_parts_insert:
paulson@14200
   703
     "X \<in> synth (analz H) ==>  
paulson@13926
   704
      parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
paulson@13926
   705
apply (drule parts_insert_subset_Un)
paulson@13926
   706
apply (simp (no_asm_use))
paulson@13926
   707
apply blast
paulson@13926
   708
done
paulson@13926
   709
paulson@14200
   710
lemma Fake_parts_insert_in_Un:
paulson@14200
   711
     "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
paulson@14200
   712
      ==> Z \<in>  synth (analz H) \<union> parts H";
paulson@14200
   713
by (blast dest: Fake_parts_insert  [THEN subsetD, dest])
paulson@14200
   714
paulson@16818
   715
text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
paulson@16818
   716
  @{term "G=H"}.*}
paulson@14200
   717
lemma Fake_analz_insert:
paulson@14200
   718
     "X\<in> synth (analz G) ==>  
paulson@13926
   719
      analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
paulson@13926
   720
apply (rule subsetI)
paulson@13926
   721
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
paulson@13926
   722
prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])
paulson@13926
   723
apply (simp (no_asm_use))
paulson@13926
   724
apply blast
paulson@13926
   725
done
paulson@13926
   726
paulson@14200
   727
lemma analz_conj_parts [simp]:
paulson@14200
   728
     "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)"
paulson@14145
   729
by (blast intro: analz_subset_parts [THEN subsetD])
paulson@13926
   730
paulson@14200
   731
lemma analz_disj_parts [simp]:
paulson@14200
   732
     "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"
paulson@14145
   733
by (blast intro: analz_subset_parts [THEN subsetD])
paulson@13926
   734
paulson@16818
   735
text{*Without this equation, other rules for synth and analz would yield
paulson@16818
   736
  redundant cases*}
paulson@13926
   737
lemma MPair_synth_analz [iff]:
paulson@13926
   738
     "({|X,Y|} \<in> synth (analz H)) =  
paulson@13926
   739
      (X \<in> synth (analz H) & Y \<in> synth (analz H))"
paulson@13926
   740
by blast
paulson@13926
   741
paulson@14200
   742
lemma Crypt_synth_analz:
paulson@14200
   743
     "[| Key K \<in> analz H;  Key (invKey K) \<in> analz H |]  
paulson@13926
   744
       ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"
paulson@13926
   745
by blast
paulson@13926
   746
paulson@13926
   747
paulson@14200
   748
lemma Hash_synth_analz [simp]:
paulson@14200
   749
     "X \<notin> synth (analz H)  
paulson@13926
   750
      ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
paulson@13926
   751
by blast
paulson@13926
   752
paulson@13926
   753
paulson@13926
   754
subsection{*HPair: a combination of Hash and MPair*}
paulson@13926
   755
paulson@14200
   756
subsubsection{*Freeness *}
paulson@13926
   757
paulson@13926
   758
lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y"
paulson@13926
   759
by (unfold HPair_def, simp)
paulson@13926
   760
paulson@13926
   761
lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y"
paulson@13926
   762
by (unfold HPair_def, simp)
paulson@13926
   763
paulson@13926
   764
lemma Number_neq_HPair: "Number N ~= Hash[X] Y"
paulson@13926
   765
by (unfold HPair_def, simp)
paulson@13926
   766
paulson@13926
   767
lemma Key_neq_HPair: "Key K ~= Hash[X] Y"
paulson@13926
   768
by (unfold HPair_def, simp)
paulson@13926
   769
paulson@13926
   770
lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y"
paulson@13926
   771
by (unfold HPair_def, simp)
paulson@13926
   772
paulson@13926
   773
lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y"
paulson@13926
   774
by (unfold HPair_def, simp)
paulson@13926
   775
paulson@13926
   776
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair 
paulson@13926
   777
                    Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair
paulson@13926
   778
paulson@13926
   779
declare HPair_neqs [iff]
paulson@13926
   780
declare HPair_neqs [symmetric, iff]
paulson@13926
   781
paulson@13926
   782
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)"
paulson@13926
   783
by (simp add: HPair_def)
paulson@13926
   784
paulson@14200
   785
lemma MPair_eq_HPair [iff]:
paulson@14200
   786
     "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"
paulson@13926
   787
by (simp add: HPair_def)
paulson@13926
   788
paulson@14200
   789
lemma HPair_eq_MPair [iff]:
paulson@14200
   790
     "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"
paulson@13926
   791
by (auto simp add: HPair_def)
paulson@13926
   792
paulson@13926
   793
paulson@14200
   794
subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *}
paulson@13926
   795
paulson@13926
   796
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H"
paulson@13926
   797
by (simp add: HPair_def)
paulson@13926
   798
paulson@13926
   799
lemma parts_insert_HPair [simp]: 
paulson@13926
   800
    "parts (insert (Hash[X] Y) H) =  
paulson@13926
   801
     insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"
paulson@13926
   802
by (simp add: HPair_def)
paulson@13926
   803
paulson@13926
   804
lemma analz_insert_HPair [simp]: 
paulson@13926
   805
    "analz (insert (Hash[X] Y) H) =  
paulson@13926
   806
     insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"
paulson@13926
   807
by (simp add: HPair_def)
paulson@13926
   808
paulson@13926
   809
lemma HPair_synth_analz [simp]:
paulson@13926
   810
     "X \<notin> synth (analz H)  
paulson@13926
   811
    ==> (Hash[X] Y \<in> synth (analz H)) =  
paulson@13926
   812
        (Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))"
paulson@13926
   813
by (simp add: HPair_def)
paulson@13926
   814
paulson@13926
   815
paulson@16818
   816
text{*We do NOT want Crypt... messages broken up in protocols!!*}
paulson@13926
   817
declare parts.Body [rule del]
paulson@13926
   818
paulson@13926
   819
paulson@14200
   820
text{*Rewrites to push in Key and Crypt messages, so that other messages can
paulson@14200
   821
    be pulled out using the @{text analz_insert} rules*}
paulson@13926
   822
wenzelm@27225
   823
lemmas pushKeys [standard] =
wenzelm@27225
   824
  insert_commute [of "Key K" "Agent C"]
wenzelm@27225
   825
  insert_commute [of "Key K" "Nonce N"]
wenzelm@27225
   826
  insert_commute [of "Key K" "Number N"]
wenzelm@27225
   827
  insert_commute [of "Key K" "Hash X"]
wenzelm@27225
   828
  insert_commute [of "Key K" "MPair X Y"]
wenzelm@27225
   829
  insert_commute [of "Key K" "Crypt X K'"]
paulson@13926
   830
wenzelm@27225
   831
lemmas pushCrypts [standard] =
wenzelm@27225
   832
  insert_commute [of "Crypt X K" "Agent C"]
wenzelm@27225
   833
  insert_commute [of "Crypt X K" "Agent C"]
wenzelm@27225
   834
  insert_commute [of "Crypt X K" "Nonce N"]
wenzelm@27225
   835
  insert_commute [of "Crypt X K" "Number N"]
wenzelm@27225
   836
  insert_commute [of "Crypt X K" "Hash X'"]
wenzelm@27225
   837
  insert_commute [of "Crypt X K" "MPair X' Y"]
paulson@13926
   838
paulson@13926
   839
text{*Cannot be added with @{text "[simp]"} -- messages should not always be
paulson@13926
   840
  re-ordered. *}
paulson@13926
   841
lemmas pushes = pushKeys pushCrypts
paulson@13926
   842
paulson@13926
   843
paulson@13926
   844
subsection{*Tactics useful for many protocol proofs*}
paulson@13926
   845
ML
paulson@13926
   846
{*
wenzelm@24122
   847
structure Message =
wenzelm@24122
   848
struct
paulson@13926
   849
paulson@13926
   850
(*Prove base case (subgoal i) and simplify others.  A typical base case
paulson@13926
   851
  concerns  Crypt K X \<notin> Key`shrK`bad  and cannot be proved by rewriting
paulson@13926
   852
  alone.*)
paulson@13926
   853
fun prove_simple_subgoals_tac i = 
wenzelm@26342
   854
    CLASIMPSET' (fn (cs, ss) => force_tac (cs, ss addsimps [@{thm image_eq_UN}])) i THEN
wenzelm@26342
   855
    ALLGOALS (SIMPSET' asm_simp_tac)
paulson@13926
   856
paulson@13926
   857
(*Analysis of Fake cases.  Also works for messages that forward unknown parts,
paulson@13926
   858
  but this application is no longer necessary if analz_insert_eq is used.
paulson@13926
   859
  Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
paulson@13926
   860
  DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
paulson@13926
   861
paulson@13926
   862
(*Apply rules to break down assumptions of the form
paulson@13926
   863
  Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
paulson@13926
   864
*)
paulson@13926
   865
val Fake_insert_tac = 
wenzelm@24122
   866
    dresolve_tac [impOfSubs @{thm Fake_analz_insert},
wenzelm@24122
   867
                  impOfSubs @{thm Fake_parts_insert}] THEN'
wenzelm@24122
   868
    eresolve_tac [asm_rl, @{thm synth.Inj}];
paulson@13926
   869
paulson@13926
   870
fun Fake_insert_simp_tac ss i = 
paulson@13926
   871
    REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i;
paulson@13926
   872
paulson@13926
   873
fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL
paulson@13926
   874
    (Fake_insert_simp_tac ss 1
paulson@13926
   875
     THEN
paulson@13926
   876
     IF_UNSOLVED (Blast.depth_tac
wenzelm@24122
   877
		  (cs addIs [@{thm analz_insertI},
wenzelm@24122
   878
				   impOfSubs @{thm analz_subset_parts}]) 4 1))
paulson@13926
   879
paulson@13926
   880
(*The explicit claset and simpset arguments help it work with Isar*)
paulson@13926
   881
fun gen_spy_analz_tac (cs,ss) i =
paulson@13926
   882
  DETERM
paulson@13926
   883
   (SELECT_GOAL
paulson@13926
   884
     (EVERY 
paulson@13926
   885
      [  (*push in occurrences of X...*)
paulson@13926
   886
       (REPEAT o CHANGED)
wenzelm@27147
   887
           (RuleInsts.res_inst_tac (Simplifier.the_context ss)
wenzelm@27147
   888
              [(("x", 1), "X")] (insert_commute RS ssubst) 1),
paulson@13926
   889
       (*...allowing further simplifications*)
paulson@13926
   890
       simp_tac ss 1,
paulson@13926
   891
       REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),
paulson@13926
   892
       DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i)
paulson@13926
   893
wenzelm@26342
   894
val spy_analz_tac = CLASIMPSET' gen_spy_analz_tac;
wenzelm@24122
   895
wenzelm@24122
   896
end
paulson@13926
   897
*}
paulson@13926
   898
paulson@16818
   899
text{*By default only @{text o_apply} is built-in.  But in the presence of
paulson@16818
   900
eta-expansion this means that some terms displayed as @{term "f o g"} will be
paulson@16818
   901
rewritten, and others will not!*}
paulson@13926
   902
declare o_def [simp]
paulson@13926
   903
paulson@11189
   904
paulson@13922
   905
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A"
paulson@13922
   906
by auto
paulson@13922
   907
paulson@13922
   908
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A"
paulson@13922
   909
by auto
paulson@13922
   910
paulson@14200
   911
lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))"
paulson@17689
   912
by (iprover intro: synth_mono analz_mono) 
paulson@13922
   913
paulson@13922
   914
lemma Fake_analz_eq [simp]:
paulson@13922
   915
     "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"
paulson@13922
   916
apply (drule Fake_analz_insert[of _ _ "H"])
paulson@13922
   917
apply (simp add: synth_increasing[THEN Un_absorb2])
paulson@13922
   918
apply (drule synth_mono)
paulson@13922
   919
apply (simp add: synth_idem)
paulson@17689
   920
apply (rule equalityI)
paulson@17689
   921
apply (simp add: );
paulson@17689
   922
apply (rule synth_analz_mono, blast)   
paulson@13922
   923
done
paulson@13922
   924
paulson@13922
   925
text{*Two generalizations of @{text analz_insert_eq}*}
paulson@13922
   926
lemma gen_analz_insert_eq [rule_format]:
paulson@13922
   927
     "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G";
paulson@13922
   928
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
paulson@13922
   929
paulson@13922
   930
lemma synth_analz_insert_eq [rule_format]:
paulson@13922
   931
     "X \<in> synth (analz H) 
paulson@13922
   932
      ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)";
paulson@13922
   933
apply (erule synth.induct) 
paulson@13922
   934
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) 
paulson@13922
   935
done
paulson@13922
   936
paulson@13922
   937
lemma Fake_parts_sing:
paulson@13926
   938
     "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H";
paulson@13922
   939
apply (rule subset_trans) 
paulson@17689
   940
 apply (erule_tac [2] Fake_parts_insert)
paulson@20648
   941
apply (rule parts_mono, blast)
paulson@13922
   942
done
paulson@13922
   943
paulson@14145
   944
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
paulson@14145
   945
paulson@11189
   946
method_setup spy_analz = {*
paulson@11270
   947
    Method.ctxt_args (fn ctxt =>
wenzelm@24122
   948
        Method.SIMPLE_METHOD (Message.gen_spy_analz_tac (local_clasimpset_of ctxt) 1)) *}
paulson@11189
   949
    "for proving the Fake case when analz is involved"
paulson@1839
   950
paulson@11264
   951
method_setup atomic_spy_analz = {*
paulson@11270
   952
    Method.ctxt_args (fn ctxt =>
wenzelm@24122
   953
        Method.SIMPLE_METHOD (Message.atomic_spy_analz_tac (local_clasimpset_of ctxt) 1)) *}
paulson@11264
   954
    "for debugging spy_analz"
paulson@11264
   955
paulson@11264
   956
method_setup Fake_insert_simp = {*
paulson@11270
   957
    Method.ctxt_args (fn ctxt =>
wenzelm@24122
   958
        Method.SIMPLE_METHOD (Message.Fake_insert_simp_tac (local_simpset_of ctxt) 1)) *}
paulson@11264
   959
    "for debugging spy_analz"
paulson@11264
   960
paulson@1839
   961
end