src/HOL/Library/Efficient_Nat.thy
author haftmann
Tue May 12 21:17:38 2009 +0200 (2009-05-12)
changeset 31128 b3bb28c87409
parent 31090 3be41b271023
child 31203 5c8fb4fd67e0
permissions -rw-r--r--
adapted to changes in module Code
haftmann@23854
     1
(*  Title:      HOL/Library/Efficient_Nat.thy
haftmann@25931
     2
    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
haftmann@23854
     3
*)
haftmann@23854
     4
haftmann@25931
     5
header {* Implementation of natural numbers by target-language integers *}
haftmann@23854
     6
haftmann@23854
     7
theory Efficient_Nat
haftmann@30663
     8
imports Code_Index Code_Integer Main
haftmann@23854
     9
begin
haftmann@23854
    10
haftmann@23854
    11
text {*
haftmann@25931
    12
  When generating code for functions on natural numbers, the
haftmann@25931
    13
  canonical representation using @{term "0::nat"} and
haftmann@25931
    14
  @{term "Suc"} is unsuitable for computations involving large
haftmann@25931
    15
  numbers.  The efficiency of the generated code can be improved
haftmann@25931
    16
  drastically by implementing natural numbers by target-language
haftmann@25931
    17
  integers.  To do this, just include this theory.
haftmann@23854
    18
*}
haftmann@23854
    19
haftmann@25931
    20
subsection {* Basic arithmetic *}
haftmann@23854
    21
haftmann@23854
    22
text {*
haftmann@23854
    23
  Most standard arithmetic functions on natural numbers are implemented
haftmann@23854
    24
  using their counterparts on the integers:
haftmann@23854
    25
*}
haftmann@23854
    26
haftmann@25931
    27
code_datatype number_nat_inst.number_of_nat
haftmann@24715
    28
haftmann@28522
    29
lemma zero_nat_code [code, code inline]:
haftmann@25931
    30
  "0 = (Numeral0 :: nat)"
haftmann@25931
    31
  by simp
haftmann@25931
    32
lemmas [code post] = zero_nat_code [symmetric]
haftmann@24715
    33
haftmann@28522
    34
lemma one_nat_code [code, code inline]:
haftmann@25931
    35
  "1 = (Numeral1 :: nat)"
haftmann@25931
    36
  by simp
haftmann@25931
    37
lemmas [code post] = one_nat_code [symmetric]
haftmann@24715
    38
haftmann@25931
    39
lemma Suc_code [code]:
haftmann@25931
    40
  "Suc n = n + 1"
haftmann@25931
    41
  by simp
haftmann@24715
    42
haftmann@25931
    43
lemma plus_nat_code [code]:
haftmann@25931
    44
  "n + m = nat (of_nat n + of_nat m)"
haftmann@25931
    45
  by simp
haftmann@24715
    46
haftmann@25931
    47
lemma minus_nat_code [code]:
haftmann@25931
    48
  "n - m = nat (of_nat n - of_nat m)"
haftmann@25931
    49
  by simp
haftmann@24715
    50
haftmann@25931
    51
lemma times_nat_code [code]:
haftmann@25931
    52
  "n * m = nat (of_nat n * of_nat m)"
haftmann@25931
    53
  unfolding of_nat_mult [symmetric] by simp
haftmann@24715
    54
haftmann@26009
    55
text {* Specialized @{term "op div \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"} 
haftmann@26009
    56
  and @{term "op mod \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"} operations. *}
haftmann@26009
    57
haftmann@28694
    58
definition divmod_aux ::  "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
haftmann@29657
    59
  [code del]: "divmod_aux = Divides.divmod"
haftmann@24715
    60
haftmann@28522
    61
lemma [code]:
haftmann@29657
    62
  "Divides.divmod n m = (if m = 0 then (0, n) else divmod_aux n m)"
haftmann@26100
    63
  unfolding divmod_aux_def divmod_div_mod by simp
haftmann@26009
    64
haftmann@26100
    65
lemma divmod_aux_code [code]:
haftmann@26100
    66
  "divmod_aux n m = (nat (of_nat n div of_nat m), nat (of_nat n mod of_nat m))"
haftmann@26100
    67
  unfolding divmod_aux_def divmod_div_mod zdiv_int [symmetric] zmod_int [symmetric] by simp
haftmann@24715
    68
haftmann@25931
    69
lemma eq_nat_code [code]:
haftmann@28351
    70
  "eq_class.eq n m \<longleftrightarrow> eq_class.eq (of_nat n \<Colon> int) (of_nat m)"
haftmann@28351
    71
  by (simp add: eq)
haftmann@28351
    72
haftmann@28351
    73
lemma eq_nat_refl [code nbe]:
haftmann@28351
    74
  "eq_class.eq (n::nat) n \<longleftrightarrow> True"
haftmann@28351
    75
  by (rule HOL.eq_refl)
haftmann@24715
    76
haftmann@25931
    77
lemma less_eq_nat_code [code]:
haftmann@25931
    78
  "n \<le> m \<longleftrightarrow> (of_nat n \<Colon> int) \<le> of_nat m"
haftmann@25931
    79
  by simp
haftmann@23854
    80
haftmann@25931
    81
lemma less_nat_code [code]:
haftmann@25931
    82
  "n < m \<longleftrightarrow> (of_nat n \<Colon> int) < of_nat m"
haftmann@25931
    83
  by simp
haftmann@23854
    84
haftmann@25931
    85
subsection {* Case analysis *}
haftmann@23854
    86
haftmann@23854
    87
text {*
haftmann@25931
    88
  Case analysis on natural numbers is rephrased using a conditional
haftmann@25931
    89
  expression:
haftmann@23854
    90
*}
haftmann@23854
    91
haftmann@28522
    92
lemma [code, code unfold]:
haftmann@25931
    93
  "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
haftmann@25931
    94
  by (auto simp add: expand_fun_eq dest!: gr0_implies_Suc)
haftmann@25615
    95
haftmann@23854
    96
haftmann@23854
    97
subsection {* Preprocessors *}
haftmann@23854
    98
haftmann@23854
    99
text {*
haftmann@23854
   100
  In contrast to @{term "Suc n"}, the term @{term "n + (1::nat)"} is no longer
haftmann@23854
   101
  a constructor term. Therefore, all occurrences of this term in a position
haftmann@23854
   102
  where a pattern is expected (i.e.\ on the left-hand side of a recursion
haftmann@23854
   103
  equation or in the arguments of an inductive relation in an introduction
haftmann@23854
   104
  rule) must be eliminated.
haftmann@23854
   105
  This can be accomplished by applying the following transformation rules:
haftmann@23854
   106
*}
haftmann@23854
   107
haftmann@29937
   108
lemma Suc_if_eq': "(\<And>n. f (Suc n) = h n) \<Longrightarrow> f 0 = g \<Longrightarrow>
haftmann@23854
   109
  f n = (if n = 0 then g else h (n - 1))"
haftmann@29932
   110
  by (cases n) simp_all
haftmann@23854
   111
haftmann@29937
   112
lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
haftmann@29937
   113
  f n \<equiv> if n = 0 then g else h (n - 1)"
haftmann@29937
   114
  by (rule eq_reflection, rule Suc_if_eq')
haftmann@29937
   115
    (rule meta_eq_to_obj_eq, assumption,
haftmann@29937
   116
     rule meta_eq_to_obj_eq, assumption)
haftmann@29937
   117
haftmann@25931
   118
lemma Suc_clause: "(\<And>n. P n (Suc n)) \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> P (n - 1) n"
haftmann@29932
   119
  by (cases n) simp_all
haftmann@23854
   120
haftmann@23854
   121
text {*
haftmann@23854
   122
  The rules above are built into a preprocessor that is plugged into
haftmann@23854
   123
  the code generator. Since the preprocessor for introduction rules
haftmann@23854
   124
  does not know anything about modes, some of the modes that worked
haftmann@23854
   125
  for the canonical representation of natural numbers may no longer work.
haftmann@23854
   126
*}
haftmann@23854
   127
haftmann@23854
   128
(*<*)
haftmann@27609
   129
setup {*
haftmann@27609
   130
let
haftmann@23854
   131
haftmann@29937
   132
fun gen_remove_suc Suc_if_eq dest_judgement thy thms =
haftmann@23854
   133
  let
haftmann@23854
   134
    val vname = Name.variant (map fst
haftmann@29937
   135
      (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "n";
haftmann@23854
   136
    val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
haftmann@23854
   137
    fun lhs_of th = snd (Thm.dest_comb
haftmann@29937
   138
      (fst (Thm.dest_comb (dest_judgement (cprop_of th)))));
haftmann@29937
   139
    fun rhs_of th = snd (Thm.dest_comb (dest_judgement (cprop_of th)));
haftmann@23854
   140
    fun find_vars ct = (case term_of ct of
haftmann@29932
   141
        (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
haftmann@23854
   142
      | _ $ _ =>
haftmann@23854
   143
        let val (ct1, ct2) = Thm.dest_comb ct
haftmann@23854
   144
        in 
haftmann@23854
   145
          map (apfst (fn ct => Thm.capply ct ct2)) (find_vars ct1) @
haftmann@23854
   146
          map (apfst (Thm.capply ct1)) (find_vars ct2)
haftmann@23854
   147
        end
haftmann@23854
   148
      | _ => []);
haftmann@23854
   149
    val eqs = maps
haftmann@23854
   150
      (fn th => map (pair th) (find_vars (lhs_of th))) thms;
haftmann@23854
   151
    fun mk_thms (th, (ct, cv')) =
haftmann@23854
   152
      let
haftmann@23854
   153
        val th' =
haftmann@23854
   154
          Thm.implies_elim
haftmann@23854
   155
           (Conv.fconv_rule (Thm.beta_conversion true)
haftmann@23854
   156
             (Drule.instantiate'
haftmann@23854
   157
               [SOME (ctyp_of_term ct)] [SOME (Thm.cabs cv ct),
haftmann@23854
   158
                 SOME (Thm.cabs cv' (rhs_of th)), NONE, SOME cv']
haftmann@29937
   159
               Suc_if_eq)) (Thm.forall_intr cv' th)
haftmann@23854
   160
      in
haftmann@23854
   161
        case map_filter (fn th'' =>
haftmann@23854
   162
            SOME (th'', singleton
haftmann@23854
   163
              (Variable.trade (K (fn [th'''] => [th''' RS th'])) (Variable.thm_context th'')) th'')
haftmann@23854
   164
          handle THM _ => NONE) thms of
haftmann@23854
   165
            [] => NONE
haftmann@23854
   166
          | thps =>
haftmann@23854
   167
              let val (ths1, ths2) = split_list thps
haftmann@23854
   168
              in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
haftmann@23854
   169
      end
haftmann@29937
   170
  in get_first mk_thms eqs end;
haftmann@29937
   171
haftmann@29937
   172
fun gen_eqn_suc_preproc Suc_if_eq dest_judgement dest_lhs thy thms =
haftmann@29937
   173
  let
haftmann@29937
   174
    val dest = dest_lhs o prop_of;
haftmann@29937
   175
    val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
haftmann@29937
   176
  in
haftmann@29937
   177
    if forall (can dest) thms andalso exists (contains_suc o dest) thms
haftmann@29937
   178
      then perhaps_loop (gen_remove_suc Suc_if_eq dest_judgement thy) thms
haftmann@29937
   179
       else NONE
haftmann@23854
   180
  end;
haftmann@23854
   181
haftmann@31128
   182
val eqn_suc_preproc = Code_Preproc.simple_functrans (gen_eqn_suc_preproc
haftmann@31090
   183
  @{thm Suc_if_eq} I (fst o Logic.dest_equals));
haftmann@29937
   184
haftmann@29937
   185
fun eqn_suc_preproc' thy thms = gen_eqn_suc_preproc
haftmann@29937
   186
  @{thm Suc_if_eq'} (snd o Thm.dest_comb) (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) thy thms
haftmann@29937
   187
  |> the_default thms;
haftmann@23854
   188
haftmann@23854
   189
fun remove_suc_clause thy thms =
haftmann@23854
   190
  let
haftmann@23854
   191
    val vname = Name.variant (map fst
wenzelm@29258
   192
      (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "x";
haftmann@24222
   193
    fun find_var (t as Const (@{const_name Suc}, _) $ (v as Var _)) = SOME (t, v)
haftmann@23854
   194
      | find_var (t $ u) = (case find_var t of NONE => find_var u | x => x)
haftmann@23854
   195
      | find_var _ = NONE;
haftmann@23854
   196
    fun find_thm th =
haftmann@23854
   197
      let val th' = Conv.fconv_rule ObjectLogic.atomize th
haftmann@23854
   198
      in Option.map (pair (th, th')) (find_var (prop_of th')) end
haftmann@23854
   199
  in
haftmann@23854
   200
    case get_first find_thm thms of
haftmann@23854
   201
      NONE => thms
haftmann@23854
   202
    | SOME ((th, th'), (Sucv, v)) =>
haftmann@23854
   203
        let
haftmann@23854
   204
          val cert = cterm_of (Thm.theory_of_thm th);
haftmann@23854
   205
          val th'' = ObjectLogic.rulify (Thm.implies_elim
haftmann@23854
   206
            (Conv.fconv_rule (Thm.beta_conversion true)
haftmann@23854
   207
              (Drule.instantiate' []
haftmann@23854
   208
                [SOME (cert (lambda v (Abs ("x", HOLogic.natT,
haftmann@23854
   209
                   abstract_over (Sucv,
haftmann@23854
   210
                     HOLogic.dest_Trueprop (prop_of th')))))),
haftmann@24222
   211
                 SOME (cert v)] @{thm Suc_clause}))
haftmann@23854
   212
            (Thm.forall_intr (cert v) th'))
haftmann@23854
   213
        in
haftmann@23854
   214
          remove_suc_clause thy (map (fn th''' =>
haftmann@23854
   215
            if (op = o pairself prop_of) (th''', th) then th'' else th''') thms)
haftmann@23854
   216
        end
haftmann@23854
   217
  end;
haftmann@23854
   218
haftmann@23854
   219
fun clause_suc_preproc thy ths =
haftmann@23854
   220
  let
haftmann@23854
   221
    val dest = fst o HOLogic.dest_mem o HOLogic.dest_Trueprop
haftmann@23854
   222
  in
haftmann@23854
   223
    if forall (can (dest o concl_of)) ths andalso
wenzelm@29287
   224
      exists (fn th => exists (exists_Const (fn (c, _) => c = @{const_name Suc}))
wenzelm@29287
   225
        (map_filter (try dest) (concl_of th :: prems_of th))) ths
haftmann@23854
   226
    then remove_suc_clause thy ths else ths
haftmann@23854
   227
  end;
haftmann@27609
   228
in
haftmann@27609
   229
haftmann@29937
   230
  Codegen.add_preprocessor eqn_suc_preproc'
haftmann@23854
   231
  #> Codegen.add_preprocessor clause_suc_preproc
haftmann@31128
   232
  #> Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
haftmann@27609
   233
haftmann@27609
   234
end;
haftmann@23854
   235
*}
haftmann@23854
   236
(*>*)
haftmann@23854
   237
haftmann@27609
   238
haftmann@25931
   239
subsection {* Target language setup *}
haftmann@25931
   240
haftmann@25931
   241
text {*
haftmann@25967
   242
  For ML, we map @{typ nat} to target language integers, where we
haftmann@25931
   243
  assert that values are always non-negative.
haftmann@25931
   244
*}
haftmann@25931
   245
haftmann@25931
   246
code_type nat
haftmann@27496
   247
  (SML "IntInf.int")
haftmann@25931
   248
  (OCaml "Big'_int.big'_int")
haftmann@25931
   249
haftmann@25931
   250
types_code
haftmann@25931
   251
  nat ("int")
haftmann@25931
   252
attach (term_of) {*
haftmann@25931
   253
val term_of_nat = HOLogic.mk_number HOLogic.natT;
haftmann@25931
   254
*}
haftmann@25931
   255
attach (test) {*
haftmann@25931
   256
fun gen_nat i =
haftmann@25931
   257
  let val n = random_range 0 i
haftmann@25931
   258
  in (n, fn () => term_of_nat n) end;
haftmann@25931
   259
*}
haftmann@25931
   260
haftmann@25931
   261
text {*
haftmann@25967
   262
  For Haskell we define our own @{typ nat} type.  The reason
haftmann@25967
   263
  is that we have to distinguish type class instances
haftmann@25967
   264
  for @{typ nat} and @{typ int}.
haftmann@25967
   265
*}
haftmann@25967
   266
haftmann@25967
   267
code_include Haskell "Nat" {*
haftmann@25967
   268
newtype Nat = Nat Integer deriving (Show, Eq);
haftmann@25967
   269
haftmann@25967
   270
instance Num Nat where {
haftmann@25967
   271
  fromInteger k = Nat (if k >= 0 then k else 0);
haftmann@25967
   272
  Nat n + Nat m = Nat (n + m);
haftmann@25967
   273
  Nat n - Nat m = fromInteger (n - m);
haftmann@25967
   274
  Nat n * Nat m = Nat (n * m);
haftmann@25967
   275
  abs n = n;
haftmann@25967
   276
  signum _ = 1;
haftmann@25967
   277
  negate n = error "negate Nat";
haftmann@25967
   278
};
haftmann@25967
   279
haftmann@25967
   280
instance Ord Nat where {
haftmann@25967
   281
  Nat n <= Nat m = n <= m;
haftmann@25967
   282
  Nat n < Nat m = n < m;
haftmann@25967
   283
};
haftmann@25967
   284
haftmann@25967
   285
instance Real Nat where {
haftmann@25967
   286
  toRational (Nat n) = toRational n;
haftmann@25967
   287
};
haftmann@25967
   288
haftmann@25967
   289
instance Enum Nat where {
haftmann@25967
   290
  toEnum k = fromInteger (toEnum k);
haftmann@25967
   291
  fromEnum (Nat n) = fromEnum n;
haftmann@25967
   292
};
haftmann@25967
   293
haftmann@25967
   294
instance Integral Nat where {
haftmann@25967
   295
  toInteger (Nat n) = n;
haftmann@25967
   296
  divMod n m = quotRem n m;
haftmann@25967
   297
  quotRem (Nat n) (Nat m) = (Nat k, Nat l) where (k, l) = quotRem n m;
haftmann@25967
   298
};
haftmann@25967
   299
*}
haftmann@25967
   300
haftmann@25967
   301
code_reserved Haskell Nat
haftmann@25967
   302
haftmann@25967
   303
code_type nat
haftmann@29793
   304
  (Haskell "Nat.Nat")
haftmann@25967
   305
haftmann@25967
   306
code_instance nat :: eq
haftmann@25967
   307
  (Haskell -)
haftmann@25967
   308
haftmann@25967
   309
text {*
haftmann@25931
   310
  Natural numerals.
haftmann@25931
   311
*}
haftmann@25931
   312
haftmann@25967
   313
lemma [code inline, symmetric, code post]:
haftmann@25931
   314
  "nat (number_of i) = number_nat_inst.number_of_nat i"
haftmann@25931
   315
  -- {* this interacts as desired with @{thm nat_number_of_def} *}
haftmann@25931
   316
  by (simp add: number_nat_inst.number_of_nat)
haftmann@25931
   317
haftmann@25931
   318
setup {*
haftmann@25931
   319
  fold (Numeral.add_code @{const_name number_nat_inst.number_of_nat}
haftmann@25967
   320
    true false) ["SML", "OCaml", "Haskell"]
haftmann@25931
   321
*}
haftmann@25931
   322
haftmann@25931
   323
text {*
haftmann@25931
   324
  Since natural numbers are implemented
haftmann@25967
   325
  using integers in ML, the coercion function @{const "of_nat"} of type
haftmann@25931
   326
  @{typ "nat \<Rightarrow> int"} is simply implemented by the identity function.
haftmann@25931
   327
  For the @{const "nat"} function for converting an integer to a natural
haftmann@25931
   328
  number, we give a specific implementation using an ML function that
haftmann@25931
   329
  returns its input value, provided that it is non-negative, and otherwise
haftmann@25931
   330
  returns @{text "0"}.
haftmann@25931
   331
*}
haftmann@25931
   332
haftmann@25931
   333
definition
haftmann@25931
   334
  int :: "nat \<Rightarrow> int"
haftmann@25931
   335
where
haftmann@28562
   336
  [code del]: "int = of_nat"
haftmann@25931
   337
haftmann@28562
   338
lemma int_code' [code]:
haftmann@25931
   339
  "int (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
haftmann@25931
   340
  unfolding int_nat_number_of [folded int_def] ..
haftmann@25931
   341
haftmann@28562
   342
lemma nat_code' [code]:
haftmann@25931
   343
  "nat (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
huffman@28969
   344
  unfolding nat_number_of_def number_of_is_id neg_def by simp
haftmann@25931
   345
haftmann@25931
   346
lemma of_nat_int [code unfold]:
haftmann@25931
   347
  "of_nat = int" by (simp add: int_def)
haftmann@25967
   348
declare of_nat_int [symmetric, code post]
haftmann@25931
   349
haftmann@25931
   350
code_const int
haftmann@25931
   351
  (SML "_")
haftmann@25931
   352
  (OCaml "_")
haftmann@25931
   353
haftmann@25931
   354
consts_code
haftmann@25931
   355
  int ("(_)")
haftmann@25931
   356
  nat ("\<module>nat")
haftmann@25931
   357
attach {*
haftmann@25931
   358
fun nat i = if i < 0 then 0 else i;
haftmann@25931
   359
*}
haftmann@25931
   360
haftmann@25967
   361
code_const nat
haftmann@25967
   362
  (SML "IntInf.max/ (/0,/ _)")
haftmann@25967
   363
  (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int")
haftmann@25967
   364
haftmann@25967
   365
text {* For Haskell, things are slightly different again. *}
haftmann@25967
   366
haftmann@25967
   367
code_const int and nat
haftmann@25967
   368
  (Haskell "toInteger" and "fromInteger")
haftmann@25931
   369
haftmann@25931
   370
text {* Conversion from and to indices. *}
haftmann@25931
   371
haftmann@29815
   372
code_const Code_Index.of_nat
haftmann@25967
   373
  (SML "IntInf.toInt")
haftmann@25967
   374
  (OCaml "Big'_int.int'_of'_big'_int")
haftmann@27673
   375
  (Haskell "fromEnum")
haftmann@25967
   376
haftmann@29815
   377
code_const Code_Index.nat_of
haftmann@25931
   378
  (SML "IntInf.fromInt")
haftmann@25931
   379
  (OCaml "Big'_int.big'_int'_of'_int")
haftmann@27673
   380
  (Haskell "toEnum")
haftmann@25931
   381
haftmann@25931
   382
text {* Using target language arithmetic operations whenever appropriate *}
haftmann@25931
   383
haftmann@25931
   384
code_const "op + \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@25931
   385
  (SML "IntInf.+ ((_), (_))")
haftmann@25931
   386
  (OCaml "Big'_int.add'_big'_int")
haftmann@25931
   387
  (Haskell infixl 6 "+")
haftmann@25931
   388
haftmann@25931
   389
code_const "op * \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@25931
   390
  (SML "IntInf.* ((_), (_))")
haftmann@25931
   391
  (OCaml "Big'_int.mult'_big'_int")
haftmann@25931
   392
  (Haskell infixl 7 "*")
haftmann@25931
   393
haftmann@26100
   394
code_const divmod_aux
haftmann@26009
   395
  (SML "IntInf.divMod/ ((_),/ (_))")
haftmann@26009
   396
  (OCaml "Big'_int.quomod'_big'_int")
haftmann@26009
   397
  (Haskell "divMod")
haftmann@25931
   398
haftmann@28346
   399
code_const "eq_class.eq \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@25931
   400
  (SML "!((_ : IntInf.int) = _)")
haftmann@25931
   401
  (OCaml "Big'_int.eq'_big'_int")
haftmann@25931
   402
  (Haskell infixl 4 "==")
haftmann@25931
   403
haftmann@25931
   404
code_const "op \<le> \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@25931
   405
  (SML "IntInf.<= ((_), (_))")
haftmann@25931
   406
  (OCaml "Big'_int.le'_big'_int")
haftmann@25931
   407
  (Haskell infix 4 "<=")
haftmann@25931
   408
haftmann@25931
   409
code_const "op < \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@25931
   410
  (SML "IntInf.< ((_), (_))")
haftmann@25931
   411
  (OCaml "Big'_int.lt'_big'_int")
haftmann@25931
   412
  (Haskell infix 4 "<")
haftmann@25931
   413
haftmann@25931
   414
consts_code
haftmann@28522
   415
  "0::nat"                     ("0")
haftmann@28522
   416
  "1::nat"                     ("1")
haftmann@25931
   417
  Suc                          ("(_ +/ 1)")
haftmann@25931
   418
  "op + \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ +/ _)")
haftmann@25931
   419
  "op * \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ */ _)")
haftmann@25931
   420
  "op \<le> \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ <=/ _)")
haftmann@25931
   421
  "op < \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ </ _)")
haftmann@25931
   422
haftmann@25931
   423
haftmann@28228
   424
text {* Evaluation *}
haftmann@28228
   425
haftmann@28562
   426
lemma [code, code del]:
haftmann@28228
   427
  "(Code_Eval.term_of \<Colon> nat \<Rightarrow> term) = Code_Eval.term_of" ..
haftmann@28228
   428
haftmann@28228
   429
code_const "Code_Eval.term_of \<Colon> nat \<Rightarrow> term"
haftmann@28228
   430
  (SML "HOLogic.mk'_number/ HOLogic.natT")
haftmann@28228
   431
haftmann@28228
   432
haftmann@25931
   433
text {* Module names *}
haftmann@23854
   434
haftmann@23854
   435
code_modulename SML
haftmann@23854
   436
  Nat Integer
haftmann@23854
   437
  Divides Integer
haftmann@28683
   438
  Ring_and_Field Integer
haftmann@23854
   439
  Efficient_Nat Integer
haftmann@23854
   440
haftmann@23854
   441
code_modulename OCaml
haftmann@23854
   442
  Nat Integer
haftmann@23854
   443
  Divides Integer
haftmann@28683
   444
  Ring_and_Field Integer
haftmann@23854
   445
  Efficient_Nat Integer
haftmann@23854
   446
haftmann@23854
   447
code_modulename Haskell
haftmann@23854
   448
  Nat Integer
haftmann@24195
   449
  Divides Integer
haftmann@28683
   450
  Ring_and_Field Integer
haftmann@23854
   451
  Efficient_Nat Integer
haftmann@23854
   452
haftmann@25931
   453
hide const int
haftmann@23854
   454
haftmann@23854
   455
end