src/HOL/Auth/OtwayRees_AN.ML
author paulson
Wed Dec 24 10:02:30 1997 +0100 (1997-12-24)
changeset 4477 b3e5857d8d99
parent 4470 af3239def3d4
child 4509 828148415197
permissions -rw-r--r--
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
paulson@2090
     1
(*  Title:      HOL/Auth/OtwayRees
paulson@2090
     2
    ID:         $Id$
paulson@2090
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@2090
     4
    Copyright   1996  University of Cambridge
paulson@2090
     5
paulson@2090
     6
Inductive relation "otway" for the Otway-Rees protocol.
paulson@2090
     7
paulson@2090
     8
Simplified version with minimal encryption but explicit messages
paulson@2090
     9
paulson@2090
    10
From page 11 of
paulson@2090
    11
  Abadi and Needham.  Prudent Engineering Practice for Cryptographic Protocols.
paulson@2090
    12
  IEEE Trans. SE 22 (1), 1996
paulson@2090
    13
*)
paulson@2090
    14
paulson@2090
    15
open OtwayRees_AN;
paulson@2090
    16
wenzelm@4449
    17
set proof_timing;
paulson@2090
    18
HOL_quantifiers := false;
paulson@2090
    19
paulson@4470
    20
AddEs spies_partsEs;
paulson@4470
    21
AddDs [impOfSubs analz_subset_parts];
paulson@4470
    22
AddDs [impOfSubs Fake_parts_insert];
paulson@4470
    23
paulson@2090
    24
paulson@2331
    25
(*A "possibility property": there are traces that reach the end*)
paulson@2090
    26
goal thy 
paulson@2331
    27
 "!!A B. [| A ~= B; A ~= Server; B ~= Server |]                               \
paulson@3543
    28
\        ==> EX K. EX NA. EX evs: otway.                                      \
paulson@2284
    29
\             Says B A (Crypt (shrK A) {|Nonce NA, Agent A, Agent B, Key K|}) \
nipkow@3465
    30
\             : set evs";
paulson@2090
    31
by (REPEAT (resolve_tac [exI,bexI] 1));
paulson@2090
    32
by (rtac (otway.Nil RS otway.OR1 RS otway.OR2 RS otway.OR3 RS otway.OR4) 2);
paulson@2516
    33
by possibility_tac;
paulson@2090
    34
result();
paulson@2090
    35
paulson@2090
    36
paulson@2090
    37
(**** Inductive proofs about otway ****)
paulson@2090
    38
paulson@2090
    39
(*Nobody sends themselves messages*)
paulson@3519
    40
goal thy "!!evs. evs : otway ==> ALL A X. Says A A X ~: set evs";
paulson@2090
    41
by (etac otway.induct 1);
paulson@4477
    42
by Auto_tac;
paulson@2090
    43
qed_spec_mp "not_Says_to_self";
paulson@2090
    44
Addsimps [not_Says_to_self];
paulson@2090
    45
AddSEs   [not_Says_to_self RSN (2, rev_notE)];
paulson@2090
    46
paulson@2090
    47
paulson@2090
    48
(** For reasoning about the encrypted portion of messages **)
paulson@2090
    49
nipkow@3465
    50
goal thy "!!evs. Says S' B {|X, Crypt(shrK B) X'|} : set evs ==> \
paulson@3683
    51
\                X : analz (spies evs)";
paulson@4477
    52
by (dtac (Says_imp_spies RS analz.Inj) 1);
paulson@4470
    53
by (Blast_tac 1);
paulson@3683
    54
qed "OR4_analz_spies";
paulson@2090
    55
paulson@2284
    56
goal thy "!!evs. Says Server B {|X, Crypt K' {|NB, a, Agent B, K|}|} \
paulson@3683
    57
\                  : set evs ==> K : parts (spies evs)";
paulson@4470
    58
by (Blast_tac 1);
paulson@3683
    59
qed "Oops_parts_spies";
paulson@2090
    60
paulson@3683
    61
(*OR4_analz_spies lets us treat those cases using the same 
paulson@2090
    62
  argument as for the Fake case.  This is possible for most, but not all,
paulson@2131
    63
  proofs, since Fake messages originate from the Spy. *)
paulson@2090
    64
paulson@3683
    65
bind_thm ("OR4_parts_spies",
paulson@3683
    66
          OR4_analz_spies RS (impOfSubs analz_subset_parts));
paulson@2090
    67
paulson@3683
    68
(*For proving the easier theorems about X ~: parts (spies evs).*)
paulson@3519
    69
fun parts_induct_tac i = 
paulson@3519
    70
    etac otway.induct i			THEN 
paulson@3683
    71
    forward_tac [Oops_parts_spies] (i+6) THEN
paulson@3683
    72
    forward_tac [OR4_parts_spies]  (i+5) THEN
paulson@3519
    73
    prove_simple_subgoals_tac  i;
paulson@2090
    74
paulson@2090
    75
paulson@3683
    76
(** Theorems of the form X ~: parts (spies evs) imply that NOBODY
paulson@2090
    77
    sends messages containing X! **)
paulson@2090
    78
paulson@3683
    79
(*Spy never sees another agent's shared key! (unless it's bad at start)*)
paulson@2090
    80
goal thy 
paulson@3683
    81
 "!!evs. evs : otway ==> (Key (shrK A) : parts (spies evs)) = (A : bad)";
paulson@3519
    82
by (parts_induct_tac 1);
paulson@3961
    83
by (ALLGOALS Blast_tac);
paulson@2131
    84
qed "Spy_see_shrK";
paulson@2131
    85
Addsimps [Spy_see_shrK];
paulson@2090
    86
paulson@2131
    87
goal thy 
paulson@3683
    88
 "!!evs. evs : otway ==> (Key (shrK A) : analz (spies evs)) = (A : bad)";
wenzelm@4091
    89
by (auto_tac(claset() addDs [impOfSubs analz_subset_parts], simpset()));
paulson@2131
    90
qed "Spy_analz_shrK";
paulson@2131
    91
Addsimps [Spy_analz_shrK];
paulson@2090
    92
paulson@4470
    93
AddSDs [Spy_see_shrK RSN (2, rev_iffD1), 
paulson@4470
    94
	Spy_analz_shrK RSN (2, rev_iffD1)];
paulson@2090
    95
paulson@2090
    96
paulson@2516
    97
(*Nobody can have used non-existent keys!*)
paulson@3519
    98
goal thy "!!evs. evs : otway ==>          \
paulson@3683
    99
\         Key K ~: used evs --> K ~: keysFor (parts (spies evs))";
paulson@3519
   100
by (parts_induct_tac 1);
paulson@2516
   101
(*Fake*)
paulson@2516
   102
by (best_tac
wenzelm@4091
   103
      (claset() addSDs [impOfSubs (parts_insert_subset_Un RS keysFor_mono)]
paulson@4470
   104
		addIs  [impOfSubs analz_subset_parts]
paulson@4470
   105
		addDs  [impOfSubs (analz_subset_parts RS keysFor_mono)]
paulson@4470
   106
		addss  (simpset())) 1);
paulson@2516
   107
(*OR3*)
paulson@3102
   108
by (Blast_tac 1);
paulson@2160
   109
qed_spec_mp "new_keys_not_used";
paulson@2090
   110
paulson@2090
   111
bind_thm ("new_keys_not_analzd",
paulson@2090
   112
          [analz_subset_parts RS keysFor_mono,
paulson@2090
   113
           new_keys_not_used] MRS contra_subsetD);
paulson@2090
   114
paulson@2090
   115
Addsimps [new_keys_not_used, new_keys_not_analzd];
paulson@2090
   116
paulson@2090
   117
paulson@2090
   118
paulson@2090
   119
(*** Proofs involving analz ***)
paulson@2090
   120
paulson@2131
   121
(*Describes the form of K and NA when the Server sends this message.*)
paulson@2090
   122
goal thy 
paulson@2516
   123
 "!!evs. [| Says Server B                                           \
paulson@2516
   124
\              {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},    \
paulson@2516
   125
\                Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|}   \
paulson@3466
   126
\             : set evs;                                            \
paulson@3543
   127
\           evs : otway |]                                          \
paulson@2516
   128
\        ==> K ~: range shrK & (EX i. NA = Nonce i) & (EX j. NB = Nonce j)";
paulson@2131
   129
by (etac rev_mp 1);
paulson@2131
   130
by (etac otway.induct 1);
paulson@3102
   131
by (ALLGOALS Asm_simp_tac);
paulson@3102
   132
by (Blast_tac 1);
paulson@2131
   133
qed "Says_Server_message_form";
paulson@2090
   134
paulson@2090
   135
paulson@3519
   136
(*For proofs involving analz.*)
paulson@3683
   137
val analz_spies_tac = 
paulson@3683
   138
    dtac OR4_analz_spies 6 THEN
paulson@3519
   139
    forward_tac [Says_Server_message_form] 7 THEN
paulson@2516
   140
    assume_tac 7 THEN
paulson@2451
   141
    REPEAT ((eresolve_tac [exE, conjE] ORELSE' hyp_subst_tac) 7);
paulson@2090
   142
paulson@2090
   143
paulson@2090
   144
(****
paulson@2090
   145
 The following is to prove theorems of the form
paulson@2090
   146
paulson@3683
   147
  Key K : analz (insert (Key KAB) (spies evs)) ==>
paulson@3683
   148
  Key K : analz (spies evs)
paulson@2090
   149
paulson@2090
   150
 A more general formula must be proved inductively.
paulson@2090
   151
****)
paulson@2090
   152
paulson@2090
   153
paulson@2090
   154
(** Session keys are not used to encrypt other session keys **)
paulson@2090
   155
paulson@2090
   156
(*The equality makes the induction hypothesis easier to apply*)
paulson@2090
   157
goal thy  
paulson@3519
   158
 "!!evs. evs : otway ==>                                    \
paulson@3519
   159
\  ALL K KK. KK <= Compl (range shrK) -->                   \
paulson@3683
   160
\            (Key K : analz (Key``KK Un (spies evs))) =  \
paulson@3683
   161
\            (K : KK | Key K : analz (spies evs))";
paulson@2090
   162
by (etac otway.induct 1);
paulson@3683
   163
by analz_spies_tac;
paulson@2516
   164
by (REPEAT_FIRST (resolve_tac [allI, impI]));
paulson@2516
   165
by (REPEAT_FIRST (rtac analz_image_freshK_lemma ));
paulson@2516
   166
by (ALLGOALS (asm_simp_tac analz_image_freshK_ss));
paulson@3451
   167
(*Fake*) 
paulson@4422
   168
by (spy_analz_tac 1);
paulson@2516
   169
qed_spec_mp "analz_image_freshK";
paulson@2090
   170
paulson@2090
   171
paulson@2090
   172
goal thy
paulson@3519
   173
 "!!evs. [| evs : otway;  KAB ~: range shrK |] ==>          \
paulson@3683
   174
\        Key K : analz (insert (Key KAB) (spies evs)) =  \
paulson@3683
   175
\        (K = KAB | Key K : analz (spies evs))";
paulson@2516
   176
by (asm_simp_tac (analz_image_freshK_ss addsimps [analz_image_freshK]) 1);
paulson@2516
   177
qed "analz_insert_freshK";
paulson@2090
   178
paulson@2090
   179
paulson@4155
   180
(*** The Key K uniquely identifies the Server's message. **)
paulson@2090
   181
paulson@2090
   182
goal thy 
paulson@3543
   183
 "!!evs. evs : otway ==>                                            \
paulson@3543
   184
\      EX A' B' NA' NB'. ALL A B NA NB.                             \
paulson@3543
   185
\       Says Server B                                               \
paulson@3466
   186
\         {|Crypt (shrK A) {|NA, Agent A, Agent B, K|},             \
nipkow@3465
   187
\           Crypt (shrK B) {|NB, Agent A, Agent B, K|}|} : set evs  \
paulson@2090
   188
\       --> A=A' & B=B' & NA=NA' & NB=NB'";
paulson@2090
   189
by (etac otway.induct 1);
wenzelm@4091
   190
by (ALLGOALS (asm_simp_tac (simpset() addsimps [all_conj_distrib])));
paulson@3730
   191
by (ALLGOALS Clarify_tac);
paulson@2090
   192
(*Remaining cases: OR3 and OR4*)
paulson@2090
   193
by (ex_strip_tac 2);
paulson@3102
   194
by (Blast_tac 2);
paulson@2090
   195
by (expand_case_tac "K = ?y" 1);
paulson@2090
   196
by (REPEAT (ares_tac [refl,exI,impI,conjI] 2));
paulson@2516
   197
(*...we assume X is a recent message and handle this case by contradiction*)
paulson@4470
   198
by (Blast_tac 1);
paulson@2090
   199
val lemma = result();
paulson@2090
   200
paulson@2090
   201
paulson@2090
   202
goal thy 
paulson@2090
   203
"!!evs. [| Says Server B                                           \
paulson@2284
   204
\            {|Crypt (shrK A) {|NA, Agent A, Agent B, K|},         \
paulson@2284
   205
\              Crypt (shrK B) {|NB, Agent A, Agent B, K|}|}        \
paulson@3466
   206
\           : set evs;                                             \
paulson@2090
   207
\          Says Server B'                                          \
paulson@2284
   208
\            {|Crypt (shrK A') {|NA', Agent A', Agent B', K|},     \
paulson@2284
   209
\              Crypt (shrK B') {|NB', Agent A', Agent B', K|}|}    \
paulson@3466
   210
\           : set evs;                                             \
paulson@3519
   211
\          evs : otway |]                                          \
paulson@2090
   212
\       ==> A=A' & B=B' & NA=NA' & NB=NB'";
paulson@2417
   213
by (prove_unique_tac lemma 1);
paulson@2090
   214
qed "unique_session_keys";
paulson@2090
   215
paulson@2090
   216
paulson@2090
   217
paulson@2090
   218
(**** Authenticity properties relating to NA ****)
paulson@2090
   219
paulson@2090
   220
(*If the encrypted message appears then it originated with the Server!*)
paulson@2090
   221
goal thy 
paulson@3683
   222
 "!!evs. [| A ~: bad;  evs : otway |]                 \
paulson@3683
   223
\ ==> Crypt (shrK A) {|NA, Agent A, Agent B, Key K|} : parts (spies evs) \
paulson@2331
   224
\     --> (EX NB. Says Server B                                          \
paulson@2284
   225
\                  {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},     \
paulson@2284
   226
\                    Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|}    \
nipkow@3465
   227
\                  : set evs)";
paulson@3519
   228
by (parts_induct_tac 1);
paulson@4470
   229
by (Blast_tac 1);
wenzelm@4091
   230
by (ALLGOALS (asm_simp_tac (simpset() addsimps [ex_disj_distrib])));
paulson@2090
   231
(*OR3*)
paulson@3102
   232
by (Blast_tac 1);
paulson@2090
   233
qed_spec_mp "NA_Crypt_imp_Server_msg";
paulson@2090
   234
paulson@2090
   235
paulson@2454
   236
(*Corollary: if A receives B's OR4 message then it originated with the Server.
paulson@2454
   237
  Freshness may be inferred from nonce NA.*)
paulson@2090
   238
goal thy 
paulson@2284
   239
 "!!evs. [| Says B' A (Crypt (shrK A) {|NA, Agent A, Agent B, Key K|})  \
paulson@3466
   240
\            : set evs;                                                 \
paulson@3683
   241
\           A ~: bad;  evs : otway |]                                  \
paulson@2090
   242
\        ==> EX NB. Says Server B                                       \
paulson@2284
   243
\                    {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},  \
paulson@2284
   244
\                      Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|} \
nipkow@3465
   245
\                   : set evs";
paulson@4470
   246
by (blast_tac (claset() addSIs [NA_Crypt_imp_Server_msg]) 1);
paulson@2331
   247
qed "A_trusts_OR4";
paulson@2090
   248
paulson@2090
   249
paulson@2090
   250
(** Crucial secrecy property: Spy does not see the keys sent in msg OR3
paulson@2090
   251
    Does not in itself guarantee security: an attack could violate 
paulson@2090
   252
    the premises, e.g. by having A=Spy **)
paulson@2090
   253
paulson@2090
   254
goal thy 
paulson@3683
   255
 "!!evs. [| A ~: bad;  B ~: bad;  evs : otway |]                 \
paulson@3543
   256
\        ==> Says Server B                                         \
paulson@3543
   257
\             {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},    \
paulson@3543
   258
\               Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|}   \
paulson@3543
   259
\            : set evs -->                                         \
paulson@3543
   260
\            Says B Spy {|NA, NB, Key K|} ~: set evs -->           \
paulson@3683
   261
\            Key K ~: analz (spies evs)";
paulson@2090
   262
by (etac otway.induct 1);
paulson@3683
   263
by analz_spies_tac;
paulson@2090
   264
by (ALLGOALS
wenzelm@4091
   265
    (asm_simp_tac (simpset() addcongs [conj_cong, if_weak_cong] 
paulson@3674
   266
                            addsimps [analz_insert_eq, analz_insert_freshK]
paulson@3961
   267
                            addsimps (pushes@expand_ifs))));
paulson@3451
   268
(*Oops*)
wenzelm@4091
   269
by (blast_tac (claset() addSDs [unique_session_keys]) 4);
paulson@3451
   270
(*OR4*) 
paulson@3451
   271
by (Blast_tac 3);
paulson@2090
   272
(*OR3*)
paulson@4470
   273
by (Blast_tac 2);
paulson@3451
   274
(*Fake*) 
paulson@3451
   275
by (spy_analz_tac 1);
paulson@2090
   276
val lemma = result() RS mp RS mp RSN(2,rev_notE);
paulson@2090
   277
paulson@2090
   278
goal thy 
paulson@2516
   279
 "!!evs. [| Says Server B                                           \
paulson@2516
   280
\              {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},    \
paulson@2516
   281
\                Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|}   \
paulson@3466
   282
\             : set evs;                                            \
paulson@3466
   283
\           Says B Spy {|NA, NB, Key K|} ~: set evs;                \
paulson@3683
   284
\           A ~: bad;  B ~: bad;  evs : otway |]                  \
paulson@3683
   285
\        ==> Key K ~: analz (spies evs)";
paulson@2090
   286
by (forward_tac [Says_Server_message_form] 1 THEN assume_tac 1);
wenzelm@4091
   287
by (blast_tac (claset() addSEs [lemma]) 1);
paulson@2090
   288
qed "Spy_not_see_encrypted_key";
paulson@2090
   289
paulson@2090
   290
paulson@2090
   291
(**** Authenticity properties relating to NB ****)
paulson@2090
   292
paulson@2090
   293
(*If the encrypted message appears then it originated with the Server!*)
paulson@2090
   294
goal thy 
paulson@3683
   295
 "!!evs. [| B ~: bad;  evs : otway |]                                 \
paulson@3683
   296
\    ==> Crypt (shrK B) {|NB, Agent A, Agent B, Key K|} : parts (spies evs) \
paulson@2090
   297
\        --> (EX NA. Says Server B                                          \
paulson@2284
   298
\                     {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},     \
paulson@2284
   299
\                       Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|}    \
nipkow@3465
   300
\                     : set evs)";
paulson@3519
   301
by (parts_induct_tac 1);
paulson@4470
   302
by (Blast_tac 1);
wenzelm@4091
   303
by (ALLGOALS (asm_simp_tac (simpset() addsimps [ex_disj_distrib])));
paulson@2090
   304
(*OR3*)
paulson@3102
   305
by (Blast_tac 1);
paulson@2090
   306
qed_spec_mp "NB_Crypt_imp_Server_msg";
paulson@2090
   307
paulson@2090
   308
paulson@2454
   309
(*Guarantee for B: if it gets a well-formed certificate then the Server
paulson@2454
   310
  has sent the correct message in round 3.*)
paulson@2090
   311
goal thy 
paulson@3683
   312
 "!!evs. [| B ~: bad;  evs : otway;                                        \
paulson@2837
   313
\           Says S' B {|X, Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|} \
paulson@3466
   314
\            : set evs |]                                                   \
paulson@2106
   315
\        ==> EX NA. Says Server B                                           \
paulson@2284
   316
\                     {|Crypt (shrK A) {|NA, Agent A, Agent B, Key K|},     \
paulson@2284
   317
\                       Crypt (shrK B) {|NB, Agent A, Agent B, Key K|}|}    \
nipkow@3465
   318
\                     : set evs";
paulson@4470
   319
by (blast_tac (claset() addSIs [NB_Crypt_imp_Server_msg]) 1);
paulson@2331
   320
qed "B_trusts_OR3";