src/HOL/Library/Poly_Deriv.thy
author wenzelm
Sun Mar 13 22:55:50 2011 +0100 (2011-03-13)
changeset 41959 b460124855b8
parent 35050 9f841f20dca6
child 44317 b7e9fa025f15
permissions -rw-r--r--
tuned headers;
wenzelm@41959
     1
(*  Title:      HOL/Library/Poly_Deriv.thy
huffman@29985
     2
    Author:     Amine Chaieb
wenzelm@41959
     3
    Author:     Brian Huffman
huffman@29985
     4
*)
huffman@29985
     5
huffman@29985
     6
header{* Polynomials and Differentiation *}
huffman@29985
     7
huffman@29985
     8
theory Poly_Deriv
huffman@29985
     9
imports Deriv Polynomial
huffman@29985
    10
begin
huffman@29985
    11
huffman@29985
    12
subsection {* Derivatives of univariate polynomials *}
huffman@29985
    13
huffman@29985
    14
definition
huffman@29985
    15
  pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly" where
huffman@29985
    16
  "pderiv = poly_rec 0 (\<lambda>a p p'. p + pCons 0 p')"
huffman@29985
    17
huffman@29985
    18
lemma pderiv_0 [simp]: "pderiv 0 = 0"
huffman@29985
    19
  unfolding pderiv_def by (simp add: poly_rec_0)
huffman@29985
    20
huffman@29985
    21
lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
huffman@29985
    22
  unfolding pderiv_def by (simp add: poly_rec_pCons)
huffman@29985
    23
huffman@29985
    24
lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
huffman@29985
    25
  apply (induct p arbitrary: n, simp)
huffman@29985
    26
  apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
huffman@29985
    27
  done
huffman@29985
    28
huffman@29985
    29
lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
huffman@29985
    30
  apply (rule iffI)
huffman@29985
    31
  apply (cases p, simp)
huffman@29985
    32
  apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc)
huffman@29985
    33
  apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0)
huffman@29985
    34
  done
huffman@29985
    35
huffman@29985
    36
lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
huffman@29985
    37
  apply (rule order_antisym [OF degree_le])
huffman@29985
    38
  apply (simp add: coeff_pderiv coeff_eq_0)
huffman@29985
    39
  apply (cases "degree p", simp)
huffman@29985
    40
  apply (rule le_degree)
huffman@29985
    41
  apply (simp add: coeff_pderiv del: of_nat_Suc)
huffman@29985
    42
  apply (rule subst, assumption)
huffman@29985
    43
  apply (rule leading_coeff_neq_0, clarsimp)
huffman@29985
    44
  done
huffman@29985
    45
huffman@29985
    46
lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
huffman@29985
    47
by (simp add: pderiv_pCons)
huffman@29985
    48
huffman@29985
    49
lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
huffman@29985
    50
by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
huffman@29985
    51
huffman@29985
    52
lemma pderiv_minus: "pderiv (- p) = - pderiv p"
huffman@29985
    53
by (rule poly_ext, simp add: coeff_pderiv)
huffman@29985
    54
huffman@29985
    55
lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q"
huffman@29985
    56
by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
huffman@29985
    57
huffman@29985
    58
lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)"
huffman@29985
    59
by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
huffman@29985
    60
huffman@29985
    61
lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p"
huffman@29985
    62
apply (induct p)
huffman@29985
    63
apply simp
huffman@29985
    64
apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps)
huffman@29985
    65
done
huffman@29985
    66
huffman@29985
    67
lemma pderiv_power_Suc:
huffman@29985
    68
  "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p"
huffman@29985
    69
apply (induct n)
huffman@29985
    70
apply simp
huffman@29985
    71
apply (subst power_Suc)
huffman@29985
    72
apply (subst pderiv_mult)
huffman@29985
    73
apply (erule ssubst)
huffman@29985
    74
apply (simp add: smult_add_left algebra_simps)
huffman@29985
    75
done
huffman@29985
    76
huffman@29985
    77
lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c"
huffman@29985
    78
by (simp add: DERIV_cmult mult_commute [of _ c])
huffman@29985
    79
huffman@29985
    80
lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
huffman@29985
    81
by (rule lemma_DERIV_subst, rule DERIV_pow, simp)
huffman@29985
    82
declare DERIV_pow2 [simp] DERIV_pow [simp]
huffman@29985
    83
huffman@29985
    84
lemma DERIV_add_const: "DERIV f x :> D ==>  DERIV (%x. a + f x :: 'a::real_normed_field) x :> D"
huffman@29985
    85
by (rule lemma_DERIV_subst, rule DERIV_add, auto)
huffman@29985
    86
huffman@29985
    87
lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
hoelzl@31881
    88
  by (induct p, auto intro!: DERIV_intros simp add: pderiv_pCons)
huffman@29985
    89
huffman@29985
    90
text{* Consequences of the derivative theorem above*}
huffman@29985
    91
huffman@29985
    92
lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)"
huffman@29985
    93
apply (simp add: differentiable_def)
huffman@29985
    94
apply (blast intro: poly_DERIV)
huffman@29985
    95
done
huffman@29985
    96
huffman@29985
    97
lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)"
huffman@29985
    98
by (rule poly_DERIV [THEN DERIV_isCont])
huffman@29985
    99
huffman@29985
   100
lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |]
huffman@29985
   101
      ==> \<exists>x. a < x & x < b & (poly p x = 0)"
huffman@29985
   102
apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl)
huffman@29985
   103
apply (auto simp add: order_le_less)
huffman@29985
   104
done
huffman@29985
   105
huffman@29985
   106
lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |]
huffman@29985
   107
      ==> \<exists>x. a < x & x < b & (poly p x = 0)"
huffman@29985
   108
by (insert poly_IVT_pos [where p = "- p" ]) simp
huffman@29985
   109
huffman@29985
   110
lemma poly_MVT: "(a::real) < b ==>
huffman@29985
   111
     \<exists>x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)"
huffman@29985
   112
apply (drule_tac f = "poly p" in MVT, auto)
huffman@29985
   113
apply (rule_tac x = z in exI)
huffman@29985
   114
apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique])
huffman@29985
   115
done
huffman@29985
   116
huffman@29985
   117
text{*Lemmas for Derivatives*}
huffman@29985
   118
huffman@29985
   119
lemma order_unique_lemma:
huffman@29985
   120
  fixes p :: "'a::idom poly"
huffman@29985
   121
  assumes "[:-a, 1:] ^ n dvd p \<and> \<not> [:-a, 1:] ^ Suc n dvd p"
huffman@29985
   122
  shows "n = order a p"
huffman@29985
   123
unfolding Polynomial.order_def
huffman@29985
   124
apply (rule Least_equality [symmetric])
huffman@29985
   125
apply (rule assms [THEN conjunct2])
huffman@29985
   126
apply (erule contrapos_np)
huffman@29985
   127
apply (rule power_le_dvd)
huffman@29985
   128
apply (rule assms [THEN conjunct1])
huffman@29985
   129
apply simp
huffman@29985
   130
done
huffman@29985
   131
huffman@29985
   132
lemma lemma_order_pderiv1:
huffman@29985
   133
  "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
huffman@29985
   134
    smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
huffman@29985
   135
apply (simp only: pderiv_mult pderiv_power_Suc)
huffman@30273
   136
apply (simp del: power_Suc of_nat_Suc add: pderiv_pCons)
huffman@29985
   137
done
huffman@29985
   138
huffman@29985
   139
lemma dvd_add_cancel1:
huffman@29985
   140
  fixes a b c :: "'a::comm_ring_1"
huffman@29985
   141
  shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c"
haftmann@35050
   142
  by (drule (1) Rings.dvd_diff, simp)
huffman@29985
   143
huffman@29985
   144
lemma lemma_order_pderiv [rule_format]:
huffman@29985
   145
     "\<forall>p q a. 0 < n &
huffman@29985
   146
       pderiv p \<noteq> 0 &
huffman@29985
   147
       p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q
huffman@29985
   148
       --> n = Suc (order a (pderiv p))"
huffman@29985
   149
 apply (cases "n", safe, rename_tac n p q a)
huffman@29985
   150
 apply (rule order_unique_lemma)
huffman@29985
   151
 apply (rule conjI)
huffman@29985
   152
  apply (subst lemma_order_pderiv1)
huffman@29985
   153
  apply (rule dvd_add)
huffman@29985
   154
   apply (rule dvd_mult2)
huffman@29985
   155
   apply (rule le_imp_power_dvd, simp)
huffman@29985
   156
  apply (rule dvd_smult)
huffman@29985
   157
  apply (rule dvd_mult)
huffman@29985
   158
  apply (rule dvd_refl)
huffman@29985
   159
 apply (subst lemma_order_pderiv1)
huffman@29985
   160
 apply (erule contrapos_nn) back
huffman@29985
   161
 apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n")
huffman@29985
   162
  apply (simp del: mult_pCons_left)
huffman@29985
   163
 apply (drule dvd_add_cancel1)
huffman@29985
   164
  apply (simp del: mult_pCons_left)
huffman@29985
   165
 apply (drule dvd_smult_cancel, simp del: of_nat_Suc)
huffman@29985
   166
 apply assumption
huffman@29985
   167
done
huffman@29985
   168
huffman@29985
   169
lemma order_decomp:
huffman@29985
   170
     "p \<noteq> 0
huffman@29985
   171
      ==> \<exists>q. p = [:-a, 1:] ^ (order a p) * q &
huffman@29985
   172
                ~([:-a, 1:] dvd q)"
huffman@29985
   173
apply (drule order [where a=a])
huffman@29985
   174
apply (erule conjE)
huffman@29985
   175
apply (erule dvdE)
huffman@29985
   176
apply (rule exI)
huffman@29985
   177
apply (rule conjI, assumption)
huffman@29985
   178
apply (erule contrapos_nn)
huffman@29985
   179
apply (erule ssubst) back
huffman@29985
   180
apply (subst power_Suc2)
huffman@29985
   181
apply (erule mult_dvd_mono [OF dvd_refl])
huffman@29985
   182
done
huffman@29985
   183
huffman@29985
   184
lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
huffman@29985
   185
      ==> (order a p = Suc (order a (pderiv p)))"
huffman@29985
   186
apply (case_tac "p = 0", simp)
huffman@29985
   187
apply (drule_tac a = a and p = p in order_decomp)
huffman@29985
   188
using neq0_conv
huffman@29985
   189
apply (blast intro: lemma_order_pderiv)
huffman@29985
   190
done
huffman@29985
   191
huffman@29985
   192
lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q"
huffman@29985
   193
proof -
huffman@29985
   194
  def i \<equiv> "order a p"
huffman@29985
   195
  def j \<equiv> "order a q"
huffman@29985
   196
  def t \<equiv> "[:-a, 1:]"
huffman@29985
   197
  have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0"
huffman@29985
   198
    unfolding t_def by (simp add: dvd_iff_poly_eq_0)
huffman@29985
   199
  assume "p * q \<noteq> 0"
huffman@29985
   200
  then show "order a (p * q) = i + j"
huffman@29985
   201
    apply clarsimp
huffman@29985
   202
    apply (drule order [where a=a and p=p, folded i_def t_def])
huffman@29985
   203
    apply (drule order [where a=a and p=q, folded j_def t_def])
huffman@29985
   204
    apply clarify
huffman@29985
   205
    apply (rule order_unique_lemma [symmetric], fold t_def)
huffman@29985
   206
    apply (erule dvdE)+
huffman@29985
   207
    apply (simp add: power_add t_dvd_iff)
huffman@29985
   208
    done
huffman@29985
   209
qed
huffman@29985
   210
huffman@29985
   211
text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *}
huffman@29985
   212
huffman@29985
   213
lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p"
huffman@29985
   214
apply (cases "p = 0", auto)
huffman@29985
   215
apply (drule order_2 [where a=a and p=p])
huffman@29985
   216
apply (erule contrapos_np)
huffman@29985
   217
apply (erule power_le_dvd)
huffman@29985
   218
apply simp
huffman@29985
   219
apply (erule power_le_dvd [OF order_1])
huffman@29985
   220
done
huffman@29985
   221
huffman@29985
   222
lemma poly_squarefree_decomp_order:
huffman@29985
   223
  assumes "pderiv p \<noteq> 0"
huffman@29985
   224
  and p: "p = q * d"
huffman@29985
   225
  and p': "pderiv p = e * d"
huffman@29985
   226
  and d: "d = r * p + s * pderiv p"
huffman@29985
   227
  shows "order a q = (if order a p = 0 then 0 else 1)"
huffman@29985
   228
proof (rule classical)
huffman@29985
   229
  assume 1: "order a q \<noteq> (if order a p = 0 then 0 else 1)"
huffman@29985
   230
  from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
huffman@29985
   231
  with p have "order a p = order a q + order a d"
huffman@29985
   232
    by (simp add: order_mult)
huffman@29985
   233
  with 1 have "order a p \<noteq> 0" by (auto split: if_splits)
huffman@29985
   234
  have "order a (pderiv p) = order a e + order a d"
huffman@29985
   235
    using `pderiv p \<noteq> 0` `pderiv p = e * d` by (simp add: order_mult)
huffman@29985
   236
  have "order a p = Suc (order a (pderiv p))"
huffman@29985
   237
    using `pderiv p \<noteq> 0` `order a p \<noteq> 0` by (rule order_pderiv)
huffman@29985
   238
  have "d \<noteq> 0" using `p \<noteq> 0` `p = q * d` by simp
huffman@29985
   239
  have "([:-a, 1:] ^ (order a (pderiv p))) dvd d"
huffman@29985
   240
    apply (simp add: d)
huffman@29985
   241
    apply (rule dvd_add)
huffman@29985
   242
    apply (rule dvd_mult)
huffman@29985
   243
    apply (simp add: order_divides `p \<noteq> 0`
huffman@29985
   244
           `order a p = Suc (order a (pderiv p))`)
huffman@29985
   245
    apply (rule dvd_mult)
huffman@29985
   246
    apply (simp add: order_divides)
huffman@29985
   247
    done
huffman@29985
   248
  then have "order a (pderiv p) \<le> order a d"
huffman@29985
   249
    using `d \<noteq> 0` by (simp add: order_divides)
huffman@29985
   250
  show ?thesis
huffman@29985
   251
    using `order a p = order a q + order a d`
huffman@29985
   252
    using `order a (pderiv p) = order a e + order a d`
huffman@29985
   253
    using `order a p = Suc (order a (pderiv p))`
huffman@29985
   254
    using `order a (pderiv p) \<le> order a d`
huffman@29985
   255
    by auto
huffman@29985
   256
qed
huffman@29985
   257
huffman@29985
   258
lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0;
huffman@29985
   259
         p = q * d;
huffman@29985
   260
         pderiv p = e * d;
huffman@29985
   261
         d = r * p + s * pderiv p
huffman@29985
   262
      |] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
huffman@29985
   263
apply (blast intro: poly_squarefree_decomp_order)
huffman@29985
   264
done
huffman@29985
   265
huffman@29985
   266
lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
huffman@29985
   267
      ==> (order a (pderiv p) = n) = (order a p = Suc n)"
huffman@29985
   268
apply (auto dest: order_pderiv)
huffman@29985
   269
done
huffman@29985
   270
huffman@29985
   271
definition
huffman@29985
   272
  rsquarefree :: "'a::idom poly => bool" where
huffman@29985
   273
  "rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))"
huffman@29985
   274
huffman@29985
   275
lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
huffman@29985
   276
apply (simp add: pderiv_eq_0_iff)
huffman@29985
   277
apply (case_tac p, auto split: if_splits)
huffman@29985
   278
done
huffman@29985
   279
huffman@29985
   280
lemma rsquarefree_roots:
huffman@29985
   281
  "rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))"
huffman@29985
   282
apply (simp add: rsquarefree_def)
huffman@29985
   283
apply (case_tac "p = 0", simp, simp)
huffman@29985
   284
apply (case_tac "pderiv p = 0")
huffman@29985
   285
apply simp
huffman@29985
   286
apply (drule pderiv_iszero, clarify)
huffman@29985
   287
apply simp
huffman@29985
   288
apply (rule allI)
huffman@29985
   289
apply (cut_tac p = "[:h:]" and a = a in order_root)
huffman@29985
   290
apply simp
huffman@29985
   291
apply (auto simp add: order_root order_pderiv2)
huffman@29985
   292
apply (erule_tac x="a" in allE, simp)
huffman@29985
   293
done
huffman@29985
   294
huffman@29985
   295
lemma poly_squarefree_decomp:
huffman@29985
   296
  assumes "pderiv p \<noteq> 0"
huffman@29985
   297
    and "p = q * d"
huffman@29985
   298
    and "pderiv p = e * d"
huffman@29985
   299
    and "d = r * p + s * pderiv p"
huffman@29985
   300
  shows "rsquarefree q & (\<forall>a. (poly q a = 0) = (poly p a = 0))"
huffman@29985
   301
proof -
huffman@29985
   302
  from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
huffman@29985
   303
  with `p = q * d` have "q \<noteq> 0" by simp
huffman@29985
   304
  have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)"
huffman@29985
   305
    using assms by (rule poly_squarefree_decomp_order2)
huffman@29985
   306
  with `p \<noteq> 0` `q \<noteq> 0` show ?thesis
huffman@29985
   307
    by (simp add: rsquarefree_def order_root)
huffman@29985
   308
qed
huffman@29985
   309
huffman@29985
   310
end