src/Pure/raw_simplifier.ML
author wenzelm
Wed Jun 29 21:34:16 2011 +0200 (2011-06-29)
changeset 43597 b4a093e755db
parent 43596 78211f66cf8d
child 44058 ae85c5d64913
permissions -rw-r--r--
tuned signature;
wenzelm@41228
     1
(*  Title:      Pure/raw_simplifier.ML
wenzelm@29269
     2
    Author:     Tobias Nipkow and Stefan Berghofer, TU Muenchen
berghofe@10413
     3
wenzelm@41228
     4
Higher-order Simplification.
berghofe@10413
     5
*)
berghofe@10413
     6
skalberg@15006
     7
infix 4
wenzelm@15023
     8
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
     9
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    10
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    11
wenzelm@41228
    12
signature BASIC_RAW_SIMPLIFIER =
wenzelm@11672
    13
sig
wenzelm@41227
    14
  val simp_depth_limit: int Config.T
wenzelm@41227
    15
  val simp_trace_depth_limit: int Config.T
wenzelm@40878
    16
  val simp_debug: bool Config.T
wenzelm@40878
    17
  val simp_trace: bool Config.T
wenzelm@15023
    18
  type rrule
wenzelm@16807
    19
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    20
  type simpset
wenzelm@15023
    21
  type proc
wenzelm@17614
    22
  type solver
wenzelm@43596
    23
  val mk_solver: string -> (simpset -> int -> tactic) -> solver
wenzelm@15023
    24
  val empty_ss: simpset
wenzelm@15023
    25
  val merge_ss: simpset * simpset -> simpset
wenzelm@30356
    26
  val dest_ss: simpset ->
wenzelm@30356
    27
   {simps: (string * thm) list,
wenzelm@30356
    28
    procs: (string * cterm list) list,
wenzelm@30356
    29
    congs: (string * thm) list,
wenzelm@30356
    30
    weak_congs: string list,
wenzelm@30356
    31
    loopers: string list,
wenzelm@30356
    32
    unsafe_solvers: string list,
wenzelm@30356
    33
    safe_solvers: string list}
wenzelm@15023
    34
  type simproc
wenzelm@22234
    35
  val eq_simproc: simproc * simproc -> bool
wenzelm@22234
    36
  val morph_simproc: morphism -> simproc -> simproc
wenzelm@22234
    37
  val make_simproc: {name: string, lhss: cterm list,
wenzelm@22234
    38
    proc: morphism -> simpset -> cterm -> thm option, identifier: thm list} -> simproc
wenzelm@22008
    39
  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    40
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    41
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    42
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    43
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    44
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    45
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    46
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    47
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@30318
    48
  val mksimps: simpset -> thm -> thm list
wenzelm@36543
    49
  val setmksimps: simpset * (simpset -> thm -> thm list) -> simpset
wenzelm@36543
    50
  val setmkcong: simpset * (simpset -> thm -> thm) -> simpset
wenzelm@36543
    51
  val setmksym: simpset * (simpset -> thm -> thm option) -> simpset
wenzelm@36543
    52
  val setmkeqTrue: simpset * (simpset -> thm -> thm option) -> simpset
wenzelm@15023
    53
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    54
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    55
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    56
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    57
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    58
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    59
  val delloop: simpset * string -> simpset
wenzelm@15023
    60
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    61
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    62
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    63
  val addSolver: simpset * solver -> simpset
wenzelm@21708
    64
wenzelm@21708
    65
  val rewrite_rule: thm list -> thm -> thm
wenzelm@21708
    66
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@21708
    67
  val rewrite_goals_tac: thm list -> tactic
wenzelm@23536
    68
  val rewrite_goal_tac: thm list -> int -> tactic
wenzelm@21708
    69
  val rewtac: thm -> tactic
wenzelm@21708
    70
  val prune_params_tac: tactic
wenzelm@21708
    71
  val fold_rule: thm list -> thm -> thm
wenzelm@21708
    72
  val fold_goals_tac: thm list -> tactic
wenzelm@30552
    73
  val norm_hhf: thm -> thm
wenzelm@30552
    74
  val norm_hhf_protect: thm -> thm
skalberg@15006
    75
end;
skalberg@15006
    76
wenzelm@41228
    77
signature RAW_SIMPLIFIER =
berghofe@10413
    78
sig
wenzelm@41228
    79
  include BASIC_RAW_SIMPLIFIER
berghofe@10413
    80
  exception SIMPLIFIER of string * thm
wenzelm@30336
    81
  val internal_ss: simpset ->
wenzelm@30336
    82
   {rules: rrule Net.net,
wenzelm@30336
    83
    prems: thm list,
wenzelm@30336
    84
    bounds: int * ((string * typ) * string) list,
wenzelm@32738
    85
    depth: int * bool Unsynchronized.ref,
wenzelm@30336
    86
    context: Proof.context option} *
krauss@30908
    87
   {congs: (string * thm) list * string list,
wenzelm@30336
    88
    procs: proc Net.net,
wenzelm@30336
    89
    mk_rews:
wenzelm@36543
    90
     {mk: simpset -> thm -> thm list,
wenzelm@36543
    91
      mk_cong: simpset -> thm -> thm,
wenzelm@36543
    92
      mk_sym: simpset -> thm -> thm option,
wenzelm@36543
    93
      mk_eq_True: simpset -> thm -> thm option,
wenzelm@30336
    94
      reorient: theory -> term list -> term -> term -> bool},
wenzelm@30336
    95
    termless: term * term -> bool,
wenzelm@30336
    96
    subgoal_tac: simpset -> int -> tactic,
wenzelm@30336
    97
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@30336
    98
    solvers: solver list * solver list}
wenzelm@43597
    99
  val prems_of: simpset -> thm list
haftmann@27558
   100
  val add_simp: thm -> simpset -> simpset
haftmann@27558
   101
  val del_simp: thm -> simpset -> simpset
wenzelm@17966
   102
  val solver: simpset -> solver -> int -> tactic
wenzelm@39163
   103
  val simp_depth_limit_raw: Config.raw
wenzelm@15023
   104
  val clear_ss: simpset -> simpset
wenzelm@38715
   105
  val simproc_global_i: theory -> string -> term list
wenzelm@16458
   106
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@38715
   107
  val simproc_global: theory -> string -> string list
wenzelm@16458
   108
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@41227
   109
  val simp_trace_depth_limit_raw: Config.raw
wenzelm@41227
   110
  val simp_trace_depth_limit_default: int Unsynchronized.ref
wenzelm@41227
   111
  val simp_trace_default: bool Unsynchronized.ref
wenzelm@41227
   112
  val simp_trace_raw: Config.raw
wenzelm@41227
   113
  val simp_debug_raw: Config.raw
wenzelm@41226
   114
  val add_prems: thm list -> simpset -> simpset
wenzelm@17882
   115
  val inherit_context: simpset -> simpset -> simpset
wenzelm@20289
   116
  val the_context: simpset -> Proof.context
wenzelm@20289
   117
  val context: Proof.context -> simpset -> simpset
wenzelm@42454
   118
  val global_context: theory -> simpset -> simpset
wenzelm@36545
   119
  val with_context: Proof.context -> (simpset -> simpset) -> simpset -> simpset
wenzelm@32738
   120
  val debug_bounds: bool Unsynchronized.ref
wenzelm@18208
   121
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
wenzelm@17966
   122
  val set_solvers: solver list -> simpset -> simpset
wenzelm@23598
   123
  val rewrite_cterm: bool * bool * bool -> (simpset -> thm -> thm option) -> simpset -> conv
wenzelm@16458
   124
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
   125
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
   126
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   127
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   128
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
wenzelm@23536
   129
  val asm_rewrite_goal_tac: bool * bool * bool ->
wenzelm@23536
   130
    (simpset -> tactic) -> simpset -> int -> tactic
wenzelm@23598
   131
  val rewrite: bool -> thm list -> conv
wenzelm@21708
   132
  val simplify: bool -> thm list -> thm -> thm
berghofe@10413
   133
end;
berghofe@10413
   134
wenzelm@41228
   135
structure Raw_Simplifier: RAW_SIMPLIFIER =
berghofe@10413
   136
struct
berghofe@10413
   137
wenzelm@15023
   138
(** datatype simpset **)
wenzelm@15023
   139
wenzelm@15023
   140
(* rewrite rules *)
berghofe@10413
   141
wenzelm@20546
   142
type rrule =
wenzelm@20546
   143
 {thm: thm,         (*the rewrite rule*)
wenzelm@20546
   144
  name: string,     (*name of theorem from which rewrite rule was extracted*)
wenzelm@20546
   145
  lhs: term,        (*the left-hand side*)
wenzelm@20546
   146
  elhs: cterm,      (*the etac-contracted lhs*)
wenzelm@20546
   147
  extra: bool,      (*extra variables outside of elhs*)
wenzelm@20546
   148
  fo: bool,         (*use first-order matching*)
wenzelm@20546
   149
  perm: bool};      (*the rewrite rule is permutative*)
wenzelm@15023
   150
wenzelm@20546
   151
(*
wenzelm@12603
   152
Remarks:
berghofe@10413
   153
  - elhs is used for matching,
wenzelm@15023
   154
    lhs only for preservation of bound variable names;
berghofe@10413
   155
  - fo is set iff
berghofe@10413
   156
    either elhs is first-order (no Var is applied),
wenzelm@15023
   157
      in which case fo-matching is complete,
berghofe@10413
   158
    or elhs is not a pattern,
wenzelm@20546
   159
      in which case there is nothing better to do;
wenzelm@20546
   160
*)
berghofe@10413
   161
berghofe@10413
   162
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@22360
   163
  Thm.eq_thm_prop (thm1, thm2);
wenzelm@15023
   164
wenzelm@15023
   165
wenzelm@17614
   166
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   167
wenzelm@15023
   168
(*A simpset contains data required during conversion:
berghofe@10413
   169
    rules: discrimination net of rewrite rules;
wenzelm@15023
   170
    prems: current premises;
berghofe@15249
   171
    bounds: maximal index of bound variables already used
wenzelm@15023
   172
      (for generating new names when rewriting under lambda abstractions);
wenzelm@22892
   173
    depth: simp_depth and exceeded flag;
berghofe@10413
   174
    congs: association list of congruence rules and
berghofe@10413
   175
           a list of `weak' congruence constants.
berghofe@10413
   176
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   177
    procs: discrimination net of simplification procedures
berghofe@10413
   178
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   179
    mk_rews:
wenzelm@15023
   180
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   181
      mk_cong: prepare congruence rules;
wenzelm@15023
   182
      mk_sym: turn == around;
wenzelm@15023
   183
      mk_eq_True: turn P into P == True;
wenzelm@15023
   184
    termless: relation for ordered rewriting;*)
skalberg@15011
   185
wenzelm@15023
   186
datatype simpset =
wenzelm@15023
   187
  Simpset of
wenzelm@15023
   188
   {rules: rrule Net.net,
berghofe@10413
   189
    prems: thm list,
wenzelm@17882
   190
    bounds: int * ((string * typ) * string) list,
wenzelm@32738
   191
    depth: int * bool Unsynchronized.ref,
wenzelm@20289
   192
    context: Proof.context option} *
krauss@30908
   193
   {congs: (string * thm) list * string list,
wenzelm@15023
   194
    procs: proc Net.net,
wenzelm@36543
   195
    mk_rews:
wenzelm@36543
   196
     {mk: simpset -> thm -> thm list,
wenzelm@36543
   197
      mk_cong: simpset -> thm -> thm,
wenzelm@36543
   198
      mk_sym: simpset -> thm -> thm option,
wenzelm@36543
   199
      mk_eq_True: simpset -> thm -> thm option,
wenzelm@36543
   200
      reorient: theory -> term list -> term -> term -> bool},
nipkow@11504
   201
    termless: term * term -> bool,
skalberg@15011
   202
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   203
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   204
    solvers: solver list * solver list}
wenzelm@15023
   205
and proc =
wenzelm@15023
   206
  Proc of
wenzelm@15023
   207
   {name: string,
wenzelm@15023
   208
    lhs: cterm,
wenzelm@22008
   209
    proc: simpset -> cterm -> thm option,
wenzelm@22234
   210
    id: stamp * thm list}
wenzelm@17614
   211
and solver =
wenzelm@17614
   212
  Solver of
wenzelm@17614
   213
   {name: string,
wenzelm@17614
   214
    solver: simpset -> int -> tactic,
wenzelm@15023
   215
    id: stamp};
wenzelm@15023
   216
wenzelm@15023
   217
wenzelm@30336
   218
fun internal_ss (Simpset args) = args;
berghofe@10413
   219
wenzelm@22892
   220
fun make_ss1 (rules, prems, bounds, depth, context) =
wenzelm@22892
   221
  {rules = rules, prems = prems, bounds = bounds, depth = depth, context = context};
wenzelm@15023
   222
wenzelm@22892
   223
fun map_ss1 f {rules, prems, bounds, depth, context} =
wenzelm@22892
   224
  make_ss1 (f (rules, prems, bounds, depth, context));
berghofe@10413
   225
wenzelm@15023
   226
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   227
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   228
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   229
wenzelm@15023
   230
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   231
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   232
wenzelm@15023
   233
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   234
wenzelm@15023
   235
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   236
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   237
wenzelm@43597
   238
fun prems_of (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   239
wenzelm@22234
   240
fun eq_procid ((s1: stamp, ths1: thm list), (s2, ths2)) =
wenzelm@22360
   241
  s1 = s2 andalso eq_list Thm.eq_thm (ths1, ths2);
wenzelm@22234
   242
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@17614
   243
wenzelm@43596
   244
fun mk_solver name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   245
wenzelm@17614
   246
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   247
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   248
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   249
wenzelm@15023
   250
wenzelm@22892
   251
(* simp depth *)
wenzelm@22892
   252
wenzelm@39163
   253
val simp_depth_limit_raw = Config.declare "simp_depth_limit" (K (Config.Int 100));
wenzelm@39163
   254
val simp_depth_limit = Config.int simp_depth_limit_raw;
wenzelm@24124
   255
boehmes@41183
   256
val simp_trace_depth_limit_default = Unsynchronized.ref 1;
boehmes@41183
   257
val simp_trace_depth_limit_raw = Config.declare "simp_trace_depth_limit"
boehmes@41183
   258
  (fn _ => Config.Int (! simp_trace_depth_limit_default));
boehmes@41183
   259
val simp_trace_depth_limit = Config.int simp_trace_depth_limit_raw;
wenzelm@22892
   260
boehmes@41183
   261
fun simp_trace_depth_limit_of NONE = ! simp_trace_depth_limit_default
boehmes@41183
   262
  | simp_trace_depth_limit_of (SOME ctxt) = Config.get ctxt simp_trace_depth_limit;
boehmes@41183
   263
boehmes@41183
   264
fun trace_depth (Simpset ({depth = (depth, exceeded), context, ...}, _)) msg =
boehmes@41183
   265
  if depth > simp_trace_depth_limit_of context then
wenzelm@40878
   266
    if ! exceeded then () else (tracing "simp_trace_depth_limit exceeded!"; exceeded := true)
wenzelm@22892
   267
  else
wenzelm@23938
   268
    (tracing (enclose "[" "]" (string_of_int depth) ^ msg); exceeded := false);
wenzelm@22892
   269
wenzelm@22892
   270
val inc_simp_depth = map_simpset1 (fn (rules, prems, bounds, (depth, exceeded), context) =>
wenzelm@22892
   271
  (rules, prems, bounds,
wenzelm@32738
   272
    (depth + 1,
boehmes@41183
   273
      if depth = simp_trace_depth_limit_of context then Unsynchronized.ref false else exceeded), context));
wenzelm@22892
   274
wenzelm@22892
   275
fun simp_depth (Simpset ({depth = (depth, _), ...}, _)) = depth;
wenzelm@22892
   276
wenzelm@22892
   277
wenzelm@16985
   278
(* diagnostics *)
wenzelm@16985
   279
wenzelm@16985
   280
exception SIMPLIFIER of string * thm;
wenzelm@16985
   281
wenzelm@40878
   282
val simp_debug_raw = Config.declare "simp_debug" (K (Config.Bool false));
wenzelm@40878
   283
val simp_debug = Config.bool simp_debug_raw;
boehmes@35979
   284
wenzelm@40878
   285
val simp_trace_default = Unsynchronized.ref false;
wenzelm@40878
   286
val simp_trace_raw = Config.declare "simp_trace" (fn _ => Config.Bool (! simp_trace_default));
wenzelm@40878
   287
val simp_trace = Config.bool simp_trace_raw;
wenzelm@22892
   288
wenzelm@38834
   289
fun if_enabled (Simpset ({context, ...}, _)) flag f =
wenzelm@38834
   290
  (case context of
wenzelm@38834
   291
    SOME ctxt => if Config.get ctxt flag then f ctxt else ()
wenzelm@38834
   292
  | NONE => ())
wenzelm@38834
   293
wenzelm@38834
   294
fun if_visible (Simpset ({context, ...}, _)) f x =
wenzelm@38834
   295
  (case context of
wenzelm@41469
   296
    SOME ctxt => Context_Position.if_visible ctxt f x
wenzelm@38834
   297
  | NONE => ());
wenzelm@38834
   298
wenzelm@16985
   299
local
wenzelm@16985
   300
wenzelm@22892
   301
fun prnt ss warn a = if warn then warning a else trace_depth ss a;
wenzelm@16985
   302
wenzelm@16985
   303
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   304
  let
wenzelm@20146
   305
    val names = Term.declare_term_names t Name.context;
wenzelm@43326
   306
    val xs = rev (#1 (fold_map Name.variant (rev (map #2 bs)) names));
wenzelm@42284
   307
    fun subst (((b, T), _), x') = (Free (b, T), Syntax_Trans.mark_boundT (x', T));
wenzelm@16985
   308
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   309
boehmes@35979
   310
fun print_term ss warn a t ctxt = prnt ss warn (a () ^ "\n" ^
boehmes@35979
   311
  Syntax.string_of_term ctxt
wenzelm@40878
   312
    (if Config.get ctxt simp_debug then t else show_bounds ss t));
boehmes@35979
   313
wenzelm@17705
   314
in
wenzelm@17705
   315
boehmes@35979
   316
fun print_term_global ss warn a thy t =
wenzelm@42360
   317
  print_term ss warn (K a) t (Proof_Context.init_global thy);
wenzelm@16985
   318
wenzelm@40878
   319
fun debug warn a ss = if_enabled ss simp_debug (fn _ => prnt ss warn (a ()));
wenzelm@40878
   320
fun trace warn a ss = if_enabled ss simp_trace (fn _ => prnt ss warn (a ()));
boehmes@35979
   321
wenzelm@40878
   322
fun debug_term warn a ss t = if_enabled ss simp_debug (print_term ss warn a t);
wenzelm@40878
   323
fun trace_term warn a ss t = if_enabled ss simp_trace (print_term ss warn a t);
wenzelm@16985
   324
wenzelm@16985
   325
fun trace_cterm warn a ss ct =
wenzelm@40878
   326
  if_enabled ss simp_trace (print_term ss warn a (Thm.term_of ct));
wenzelm@16985
   327
wenzelm@16985
   328
fun trace_thm a ss th =
wenzelm@40878
   329
  if_enabled ss simp_trace (print_term ss false a (Thm.full_prop_of th));
wenzelm@16985
   330
wenzelm@16985
   331
fun trace_named_thm a ss (th, name) =
wenzelm@40878
   332
  if_enabled ss simp_trace (print_term ss false
boehmes@35979
   333
    (fn () => if name = "" then a () else a () ^ " " ^ quote name ^ ":")
boehmes@35979
   334
    (Thm.full_prop_of th));
wenzelm@16985
   335
wenzelm@22892
   336
fun warn_thm a ss th =
boehmes@35979
   337
  print_term_global ss true a (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   338
wenzelm@38834
   339
fun cond_warn_thm a ss th = if_visible ss (fn () => warn_thm a ss th) ();
wenzelm@20028
   340
wenzelm@16985
   341
end;
wenzelm@16985
   342
wenzelm@16985
   343
berghofe@10413
   344
berghofe@10413
   345
(** simpset operations **)
berghofe@10413
   346
wenzelm@17882
   347
(* context *)
berghofe@10413
   348
wenzelm@17614
   349
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   350
wenzelm@22892
   351
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), depth, context) =>
wenzelm@22892
   352
  (rules, prems, (count + 1, bound :: bounds), depth, context));
wenzelm@17882
   353
wenzelm@22892
   354
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@22892
   355
  (rules, ths @ prems, bounds, depth, context));
wenzelm@17882
   356
wenzelm@22892
   357
fun inherit_context (Simpset ({bounds, depth, context, ...}, _)) =
wenzelm@22892
   358
  map_simpset1 (fn (rules, prems, _, _, _) => (rules, prems, bounds, depth, context));
wenzelm@16985
   359
wenzelm@17882
   360
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   361
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   362
wenzelm@17897
   363
fun context ctxt =
wenzelm@22892
   364
  map_simpset1 (fn (rules, prems, bounds, depth, _) => (rules, prems, bounds, depth, SOME ctxt));
wenzelm@17882
   365
wenzelm@42360
   366
val global_context = context o Proof_Context.init_global;
wenzelm@17897
   367
wenzelm@27312
   368
fun activate_context thy ss =
wenzelm@27312
   369
  let
wenzelm@27312
   370
    val ctxt = the_context ss;
wenzelm@36545
   371
    val ctxt' = ctxt
wenzelm@42360
   372
      |> Context.raw_transfer (Theory.merge (thy, Proof_Context.theory_of ctxt))
wenzelm@36545
   373
      |> Context_Position.set_visible false;
wenzelm@27312
   374
  in context ctxt' ss end;
wenzelm@17897
   375
wenzelm@36545
   376
fun with_context ctxt f ss = inherit_context ss (f (context ctxt ss));
wenzelm@36545
   377
wenzelm@17897
   378
wenzelm@20028
   379
(* maintain simp rules *)
berghofe@10413
   380
wenzelm@20546
   381
(* FIXME: it seems that the conditions on extra variables are too liberal if
wenzelm@20546
   382
prems are nonempty: does solving the prems really guarantee instantiation of
wenzelm@20546
   383
all its Vars? Better: a dynamic check each time a rule is applied.
wenzelm@20546
   384
*)
wenzelm@20546
   385
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@20546
   386
  let
wenzelm@20546
   387
    val elhss = elhs :: prems;
wenzelm@20546
   388
    val tvars = fold Term.add_tvars elhss [];
wenzelm@20546
   389
    val vars = fold Term.add_vars elhss [];
wenzelm@20546
   390
  in
wenzelm@20546
   391
    erhs |> Term.exists_type (Term.exists_subtype
wenzelm@20546
   392
      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
wenzelm@20546
   393
    erhs |> Term.exists_subterm
wenzelm@20546
   394
      (fn Var v => not (member (op =) vars v) | _ => false)
wenzelm@20546
   395
  end;
wenzelm@20546
   396
wenzelm@20546
   397
fun rrule_extra_vars elhs thm =
wenzelm@20546
   398
  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);
wenzelm@20546
   399
wenzelm@15023
   400
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   401
  let
wenzelm@20546
   402
    val t = term_of elhs;
wenzelm@20546
   403
    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
wenzelm@20546
   404
    val extra = rrule_extra_vars elhs thm;
wenzelm@20546
   405
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;
berghofe@10413
   406
wenzelm@20028
   407
fun del_rrule (rrule as {thm, elhs, ...}) ss =
wenzelm@22892
   408
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@22892
   409
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, depth, context))
wenzelm@20028
   410
  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);
wenzelm@20028
   411
wenzelm@32797
   412
fun insert_rrule (rrule as {thm, name, ...}) ss =
wenzelm@22254
   413
 (trace_named_thm (fn () => "Adding rewrite rule") ss (thm, name);
wenzelm@22892
   414
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@15023
   415
    let
wenzelm@15023
   416
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   417
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@22892
   418
    in (rules', prems, bounds, depth, context) end)
wenzelm@20028
   419
  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   420
berghofe@10413
   421
fun vperm (Var _, Var _) = true
berghofe@10413
   422
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   423
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   424
  | vperm (t, u) = (t = u);
berghofe@10413
   425
berghofe@10413
   426
fun var_perm (t, u) =
haftmann@33038
   427
  vperm (t, u) andalso eq_set (op =) (Term.add_vars t [], Term.add_vars u []);
berghofe@10413
   428
wenzelm@15023
   429
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@18208
   430
fun default_reorient thy prems lhs rhs =
wenzelm@15023
   431
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   432
    orelse
wenzelm@15023
   433
  is_Var (head_of lhs)
wenzelm@15023
   434
    orelse
nipkow@16305
   435
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   436
   usually it is very useful :-(
nipkow@16305
   437
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   438
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   439
    orelse
nipkow@16305
   440
*)
wenzelm@16842
   441
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   442
    orelse
wenzelm@17203
   443
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   444
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   445
      with extra variables in the conditions may terminate although
wenzelm@15023
   446
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   447
    orelse
wenzelm@15023
   448
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   449
berghofe@10413
   450
fun decomp_simp thm =
wenzelm@15023
   451
  let
wenzelm@26626
   452
    val thy = Thm.theory_of_thm thm;
wenzelm@26626
   453
    val prop = Thm.prop_of thm;
wenzelm@15023
   454
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   455
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@22902
   456
    val (lhs, rhs) = Thm.dest_equals concl handle TERM _ =>
wenzelm@15023
   457
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@20579
   458
    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   459
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@18929
   460
    val erhs = Envir.eta_contract (term_of rhs);
wenzelm@15023
   461
    val perm =
wenzelm@15023
   462
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   463
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   464
      not (is_Var (term_of elhs));
wenzelm@16458
   465
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   466
wenzelm@12783
   467
fun decomp_simp' thm =
wenzelm@12979
   468
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   469
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   470
    else (lhs, rhs)
wenzelm@12783
   471
  end;
wenzelm@12783
   472
wenzelm@36543
   473
fun mk_eq_True (ss as Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@36543
   474
  (case mk_eq_True ss thm of
skalberg@15531
   475
    NONE => []
skalberg@15531
   476
  | SOME eq_True =>
wenzelm@20546
   477
      let
wenzelm@20546
   478
        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
wenzelm@15023
   479
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   480
wenzelm@15023
   481
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   482
  in case there are extra vars on the rhs*)
wenzelm@15023
   483
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   484
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@20546
   485
    if rewrite_rule_extra_vars [] lhs rhs then
wenzelm@20546
   486
      mk_eq_True ss (thm2, name) @ [rrule]
wenzelm@20546
   487
    else [rrule]
berghofe@10413
   488
  end;
berghofe@10413
   489
wenzelm@15023
   490
fun mk_rrule ss (thm, name) =
wenzelm@15023
   491
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   492
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   493
    else
wenzelm@15023
   494
      (*weak test for loops*)
wenzelm@15023
   495
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   496
      then mk_eq_True ss (thm, name)
wenzelm@15023
   497
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   498
  end;
berghofe@10413
   499
wenzelm@15023
   500
fun orient_rrule ss (thm, name) =
wenzelm@18208
   501
  let
wenzelm@18208
   502
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
wenzelm@18208
   503
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
wenzelm@18208
   504
  in
wenzelm@15023
   505
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   506
    else if reorient thy prems lhs rhs then
wenzelm@16458
   507
      if reorient thy prems rhs lhs
wenzelm@15023
   508
      then mk_eq_True ss (thm, name)
wenzelm@15023
   509
      else
wenzelm@36543
   510
        (case mk_sym ss thm of
wenzelm@18208
   511
          NONE => []
wenzelm@18208
   512
        | SOME thm' =>
wenzelm@18208
   513
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@18208
   514
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   515
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   516
  end;
berghofe@10413
   517
wenzelm@36543
   518
fun extract_rews (ss as Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
wenzelm@36543
   519
  maps (fn thm => map (rpair (Thm.get_name_hint thm)) (mk ss thm)) thms;
berghofe@10413
   520
wenzelm@15023
   521
fun extract_safe_rrules (ss, thm) =
wenzelm@19482
   522
  maps (orient_rrule ss) (extract_rews (ss, [thm]));
berghofe@10413
   523
berghofe@10413
   524
wenzelm@20028
   525
(* add/del rules explicitly *)
berghofe@10413
   526
wenzelm@20028
   527
fun comb_simps comb mk_rrule (ss, thms) =
wenzelm@20028
   528
  let
wenzelm@20028
   529
    val rews = extract_rews (ss, thms);
wenzelm@20028
   530
  in fold (fold comb o mk_rrule) rews ss end;
berghofe@10413
   531
wenzelm@20028
   532
fun ss addsimps thms =
wenzelm@20028
   533
  comb_simps insert_rrule (mk_rrule ss) (ss, thms);
berghofe@10413
   534
wenzelm@15023
   535
fun ss delsimps thms =
wenzelm@20028
   536
  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   537
haftmann@27558
   538
fun add_simp thm ss = ss addsimps [thm];
haftmann@27558
   539
fun del_simp thm ss = ss delsimps [thm];
wenzelm@15023
   540
wenzelm@30318
   541
wenzelm@15023
   542
(* congs *)
berghofe@10413
   543
skalberg@15531
   544
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   545
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   546
  | cong_name _ = NONE;
ballarin@13835
   547
wenzelm@15023
   548
local
wenzelm@15023
   549
wenzelm@15023
   550
fun is_full_cong_prems [] [] = true
wenzelm@15023
   551
  | is_full_cong_prems [] _ = false
wenzelm@15023
   552
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   553
      (case Logic.strip_assums_concl p of
wenzelm@15023
   554
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   555
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   556
            is_Var x andalso forall is_Bound xs andalso
haftmann@20972
   557
            not (has_duplicates (op =) xs) andalso xs = ys andalso
wenzelm@20671
   558
            member (op =) varpairs (x, y) andalso
wenzelm@19303
   559
            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
wenzelm@15023
   560
          end
wenzelm@15023
   561
      | _ => false);
wenzelm@15023
   562
wenzelm@15023
   563
fun is_full_cong thm =
berghofe@10413
   564
  let
wenzelm@43597
   565
    val prems = Thm.prems_of thm and concl = Thm.concl_of thm;
wenzelm@15023
   566
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   567
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   568
  in
haftmann@20972
   569
    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   570
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   571
  end;
berghofe@10413
   572
wenzelm@15023
   573
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   574
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   575
    let
wenzelm@22902
   576
      val (lhs, _) = Thm.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   577
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   578
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   579
      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
wenzelm@15023
   580
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
haftmann@22221
   581
      val (xs, weak) = congs;
wenzelm@38834
   582
      val _ =
wenzelm@38834
   583
        if AList.defined (op =) xs a
wenzelm@38834
   584
        then if_visible ss warning ("Overwriting congruence rule for " ^ quote a)
haftmann@22221
   585
        else ();
krauss@30908
   586
      val xs' = AList.update (op =) (a, thm) xs;
haftmann@22221
   587
      val weak' = if is_full_cong thm then weak else a :: weak;
haftmann@22221
   588
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   589
wenzelm@15023
   590
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   591
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   592
    let
wenzelm@15023
   593
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   594
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   595
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   596
      val a = the (cong_name (head_of lhs)) handle Option.Option =>
wenzelm@15023
   597
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
haftmann@22221
   598
      val (xs, _) = congs;
haftmann@22221
   599
      val xs' = filter_out (fn (x : string, _) => x = a) xs;
krauss@30908
   600
      val weak' = xs' |> map_filter (fn (a, thm) =>
skalberg@15531
   601
        if is_full_cong thm then NONE else SOME a);
haftmann@22221
   602
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   603
wenzelm@36543
   604
fun mk_cong (ss as Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f ss;
wenzelm@15023
   605
wenzelm@15023
   606
in
wenzelm@15023
   607
skalberg@15570
   608
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   609
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   610
wenzelm@15023
   611
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   612
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   613
wenzelm@15023
   614
end;
berghofe@10413
   615
berghofe@10413
   616
wenzelm@15023
   617
(* simprocs *)
wenzelm@15023
   618
wenzelm@22234
   619
datatype simproc =
wenzelm@22234
   620
  Simproc of
wenzelm@22234
   621
    {name: string,
wenzelm@22234
   622
     lhss: cterm list,
wenzelm@22234
   623
     proc: morphism -> simpset -> cterm -> thm option,
wenzelm@22234
   624
     id: stamp * thm list};
wenzelm@22234
   625
wenzelm@22234
   626
fun eq_simproc (Simproc {id = id1, ...}, Simproc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@22008
   627
wenzelm@22234
   628
fun morph_simproc phi (Simproc {name, lhss, proc, id = (s, ths)}) =
wenzelm@22234
   629
  Simproc
wenzelm@22234
   630
   {name = name,
wenzelm@22234
   631
    lhss = map (Morphism.cterm phi) lhss,
wenzelm@22669
   632
    proc = Morphism.transform phi proc,
wenzelm@22234
   633
    id = (s, Morphism.fact phi ths)};
wenzelm@22234
   634
wenzelm@22234
   635
fun make_simproc {name, lhss, proc, identifier} =
wenzelm@22234
   636
  Simproc {name = name, lhss = lhss, proc = proc, id = (stamp (), identifier)};
wenzelm@22008
   637
wenzelm@22008
   638
fun mk_simproc name lhss proc =
wenzelm@22234
   639
  make_simproc {name = name, lhss = lhss, proc = fn _ => fn ss => fn ct =>
wenzelm@42360
   640
    proc (Proof_Context.theory_of (the_context ss)) ss (Thm.term_of ct), identifier = []};
wenzelm@22008
   641
wenzelm@35845
   642
(* FIXME avoid global thy and Logic.varify_global *)
wenzelm@38715
   643
fun simproc_global_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify_global);
wenzelm@38715
   644
fun simproc_global thy name = simproc_global_i thy name o map (Syntax.read_term_global thy);
wenzelm@22008
   645
wenzelm@22008
   646
wenzelm@15023
   647
local
berghofe@10413
   648
wenzelm@16985
   649
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@22254
   650
 (trace_cterm false (fn () => "Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   651
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   652
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   653
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   654
  handle Net.INSERT =>
wenzelm@38834
   655
    (if_visible ss warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   656
wenzelm@16985
   657
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   658
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   659
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   660
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   661
  handle Net.DELETE =>
wenzelm@38834
   662
    (if_visible ss warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   663
wenzelm@22234
   664
fun prep_procs (Simproc {name, lhss, proc, id}) =
wenzelm@22669
   665
  lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = Morphism.form proc, id = id});
wenzelm@22234
   666
wenzelm@15023
   667
in
berghofe@10413
   668
wenzelm@22234
   669
fun ss addsimprocs ps = fold (fold add_proc o prep_procs) ps ss;
wenzelm@22234
   670
fun ss delsimprocs ps = fold (fold del_proc o prep_procs) ps ss;
berghofe@10413
   671
wenzelm@15023
   672
end;
berghofe@10413
   673
berghofe@10413
   674
berghofe@10413
   675
(* mk_rews *)
berghofe@10413
   676
wenzelm@15023
   677
local
wenzelm@15023
   678
wenzelm@18208
   679
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
wenzelm@15023
   680
      termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@18208
   681
  let
wenzelm@18208
   682
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
wenzelm@18208
   683
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
wenzelm@18208
   684
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
wenzelm@18208
   685
      reorient = reorient'};
wenzelm@18208
   686
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
wenzelm@15023
   687
wenzelm@15023
   688
in
berghofe@10413
   689
wenzelm@36543
   690
fun mksimps (ss as Simpset (_, {mk_rews = {mk, ...}, ...})) = mk ss;
wenzelm@30318
   691
wenzelm@18208
   692
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   693
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   694
wenzelm@18208
   695
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   696
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   697
wenzelm@18208
   698
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
wenzelm@18208
   699
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   700
wenzelm@18208
   701
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
wenzelm@18208
   702
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@18208
   703
wenzelm@18208
   704
fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
wenzelm@18208
   705
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   706
wenzelm@15023
   707
end;
wenzelm@15023
   708
skalberg@14242
   709
berghofe@10413
   710
(* termless *)
berghofe@10413
   711
wenzelm@15023
   712
fun ss settermless termless = ss |>
wenzelm@15023
   713
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   714
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   715
skalberg@15006
   716
wenzelm@15023
   717
(* tactics *)
skalberg@15006
   718
wenzelm@15023
   719
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   720
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   721
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   722
wenzelm@17882
   723
fun ss setloop' tac = ss |>
wenzelm@15023
   724
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   725
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   726
wenzelm@17882
   727
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   728
wenzelm@17882
   729
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   730
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   731
    (congs, procs, mk_rews, termless, subgoal_tac,
wenzelm@38834
   732
     (if AList.defined (op =) loop_tacs name
wenzelm@38834
   733
      then if_visible ss warning ("Overwriting looper " ^ quote name)
wenzelm@38834
   734
      else (); AList.update (op =) (name, tac) loop_tacs), solvers));
skalberg@15006
   735
wenzelm@17882
   736
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   737
wenzelm@15023
   738
fun ss delloop name = ss |>
wenzelm@15023
   739
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
haftmann@21286
   740
    (congs, procs, mk_rews, termless, subgoal_tac,
wenzelm@38834
   741
     (if AList.defined (op =) loop_tacs name then ()
wenzelm@38834
   742
      else if_visible ss warning ("No such looper in simpset: " ^ quote name);
wenzelm@38834
   743
      AList.delete (op =) name loop_tacs), solvers));
skalberg@15006
   744
wenzelm@15023
   745
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   746
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   747
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   748
wenzelm@15023
   749
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   750
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
haftmann@22717
   751
    subgoal_tac, loop_tacs, (unsafe_solvers, insert eq_solver solver solvers)));
skalberg@15006
   752
wenzelm@15023
   753
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   754
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   755
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   756
wenzelm@15023
   757
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   758
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
haftmann@22717
   759
    subgoal_tac, loop_tacs, (insert eq_solver solver unsafe_solvers, solvers)));
skalberg@15006
   760
wenzelm@15023
   761
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   762
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   763
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   764
skalberg@15006
   765
wenzelm@18208
   766
(* empty *)
wenzelm@18208
   767
wenzelm@18208
   768
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@32738
   769
  make_simpset ((Net.empty, [], (0, []), (0, Unsynchronized.ref false), NONE),
wenzelm@18208
   770
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@18208
   771
wenzelm@18208
   772
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@18208
   773
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@18208
   774
  |> inherit_context ss;
wenzelm@18208
   775
wenzelm@36543
   776
val empty_ss =
wenzelm@36543
   777
  init_ss
wenzelm@36543
   778
    {mk = fn _ => fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@36543
   779
      mk_cong = K I,
wenzelm@36543
   780
      mk_sym = K (SOME o Drule.symmetric_fun),
wenzelm@36543
   781
      mk_eq_True = K (K NONE),
wenzelm@36543
   782
      reorient = default_reorient}
wenzelm@36543
   783
    Term_Ord.termless (K (K no_tac)) ([], []);
wenzelm@18208
   784
wenzelm@18208
   785
wenzelm@18208
   786
(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
wenzelm@18208
   787
wenzelm@18208
   788
fun merge_ss (ss1, ss2) =
wenzelm@24358
   789
  if pointer_eq (ss1, ss2) then ss1
wenzelm@24358
   790
  else
wenzelm@24358
   791
    let
wenzelm@24358
   792
      val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, depth = depth1, context = _},
wenzelm@24358
   793
       {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@24358
   794
        loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@24358
   795
      val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, depth = depth2, context = _},
wenzelm@24358
   796
       {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@24358
   797
        loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
wenzelm@30356
   798
wenzelm@24358
   799
      val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@33520
   800
      val prems' = Thm.merge_thms (prems1, prems2);
wenzelm@24358
   801
      val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@24358
   802
      val depth' = if #1 depth1 < #1 depth2 then depth2 else depth1;
wenzelm@31298
   803
      val congs' = merge (Thm.eq_thm_prop o pairself #2) (congs1, congs2);
wenzelm@24358
   804
      val weak' = merge (op =) (weak1, weak2);
wenzelm@24358
   805
      val procs' = Net.merge eq_proc (procs1, procs2);
wenzelm@24358
   806
      val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
wenzelm@24358
   807
      val unsafe_solvers' = merge eq_solver (unsafe_solvers1, unsafe_solvers2);
wenzelm@24358
   808
      val solvers' = merge eq_solver (solvers1, solvers2);
wenzelm@24358
   809
    in
wenzelm@24358
   810
      make_simpset ((rules', prems', bounds', depth', NONE), ((congs', weak'), procs',
wenzelm@24358
   811
        mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@24358
   812
    end;
wenzelm@18208
   813
wenzelm@18208
   814
wenzelm@30356
   815
(* dest_ss *)
wenzelm@30356
   816
wenzelm@30356
   817
fun dest_ss (Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...})) =
wenzelm@30356
   818
 {simps = Net.entries rules
wenzelm@30356
   819
    |> map (fn {name, thm, ...} => (name, thm)),
wenzelm@30356
   820
  procs = Net.entries procs
wenzelm@30356
   821
    |> map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
wenzelm@30356
   822
    |> partition_eq (eq_snd eq_procid)
wenzelm@30356
   823
    |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps)),
krauss@30908
   824
  congs = #1 congs,
wenzelm@30356
   825
  weak_congs = #2 congs,
wenzelm@30356
   826
  loopers = map fst loop_tacs,
wenzelm@30356
   827
  unsafe_solvers = map solver_name (#1 solvers),
wenzelm@30356
   828
  safe_solvers = map solver_name (#2 solvers)};
wenzelm@30356
   829
wenzelm@30356
   830
skalberg@15006
   831
berghofe@10413
   832
(** rewriting **)
berghofe@10413
   833
berghofe@10413
   834
(*
berghofe@10413
   835
  Uses conversions, see:
berghofe@10413
   836
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   837
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   838
*)
berghofe@10413
   839
wenzelm@16985
   840
fun check_conv msg ss thm thm' =
berghofe@10413
   841
  let
wenzelm@36944
   842
    val thm'' = Thm.transitive thm thm' handle THM _ =>
wenzelm@36944
   843
     Thm.transitive thm (Thm.transitive
wenzelm@36944
   844
       (Thm.symmetric (Drule.beta_eta_conversion (Thm.lhs_of thm'))) thm')
wenzelm@22254
   845
  in if msg then trace_thm (fn () => "SUCCEEDED") ss thm' else (); SOME thm'' end
berghofe@10413
   846
  handle THM _ =>
wenzelm@26626
   847
    let
wenzelm@26626
   848
      val _ $ _ $ prop0 = Thm.prop_of thm;
wenzelm@26626
   849
    in
wenzelm@22254
   850
      trace_thm (fn () => "Proved wrong thm (Check subgoaler?)") ss thm';
boehmes@35979
   851
      trace_term false (fn () => "Should have proved:") ss prop0;
skalberg@15531
   852
      NONE
berghofe@10413
   853
    end;
berghofe@10413
   854
berghofe@10413
   855
berghofe@10413
   856
(* mk_procrule *)
berghofe@10413
   857
wenzelm@16985
   858
fun mk_procrule ss thm =
wenzelm@15023
   859
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   860
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@38834
   861
    then (cond_warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   862
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   863
  end;
berghofe@10413
   864
berghofe@10413
   865
wenzelm@15023
   866
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   867
wenzelm@15023
   868
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   869
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   870
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   871
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   872
  already in normal form.
wenzelm@15023
   873
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   874
berghofe@10413
   875
val skel0 = Bound 0;
berghofe@10413
   876
wenzelm@15023
   877
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   878
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   879
  in the lhs.*)
berghofe@10413
   880
wenzelm@15023
   881
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   882
  if null weak then rhs  (*optimization*)
wenzelm@20671
   883
  else if exists_Const (member (op =) weak o #1) lhs then skel0
wenzelm@15023
   884
  else rhs;
wenzelm@15023
   885
wenzelm@15023
   886
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   887
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   888
  while the premises are solved.*)
wenzelm@15023
   889
wenzelm@32797
   890
fun cond_skel (args as (_, (lhs, rhs))) =
haftmann@33038
   891
  if subset (op =) (Term.add_vars rhs [], Term.add_vars lhs []) then uncond_skel args
berghofe@10413
   892
  else skel0;
berghofe@10413
   893
berghofe@10413
   894
(*
wenzelm@15023
   895
  Rewriting -- we try in order:
berghofe@10413
   896
    (1) beta reduction
berghofe@10413
   897
    (2) unconditional rewrite rules
berghofe@10413
   898
    (3) conditional rewrite rules
berghofe@10413
   899
    (4) simplification procedures
berghofe@10413
   900
berghofe@10413
   901
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   902
*)
berghofe@10413
   903
wenzelm@16458
   904
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   905
  let
wenzelm@24124
   906
    val ctxt = the_context ss;
wenzelm@15023
   907
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   908
    val eta_thm = Thm.eta_conversion t;
wenzelm@22902
   909
    val eta_t' = Thm.rhs_of eta_thm;
berghofe@10413
   910
    val eta_t = term_of eta_t';
wenzelm@20546
   911
    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
berghofe@10413
   912
      let
wenzelm@32797
   913
        val prop = Thm.prop_of thm;
wenzelm@20546
   914
        val (rthm, elhs') =
wenzelm@20546
   915
          if maxt = ~1 orelse not extra then (thm, elhs)
wenzelm@22902
   916
          else (Thm.incr_indexes (maxt + 1) thm, Thm.incr_indexes_cterm (maxt + 1) elhs);
wenzelm@22902
   917
        val insts =
wenzelm@22902
   918
          if fo then Thm.first_order_match (elhs', eta_t')
wenzelm@22902
   919
          else Thm.match (elhs', eta_t');
berghofe@10413
   920
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   921
        val prop' = Thm.prop_of thm';
wenzelm@21576
   922
        val unconditional = (Logic.count_prems prop' = 0);
berghofe@10413
   923
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   924
      in
nipkow@11295
   925
        if perm andalso not (termless (rhs', lhs'))
wenzelm@22254
   926
        then (trace_named_thm (fn () => "Cannot apply permutative rewrite rule") ss (thm, name);
wenzelm@22254
   927
              trace_thm (fn () => "Term does not become smaller:") ss thm'; NONE)
wenzelm@22254
   928
        else (trace_named_thm (fn () => "Applying instance of rewrite rule") ss (thm, name);
berghofe@10413
   929
           if unconditional
berghofe@10413
   930
           then
wenzelm@22254
   931
             (trace_thm (fn () => "Rewriting:") ss thm';
wenzelm@38834
   932
              let
wenzelm@38834
   933
                val lr = Logic.dest_equals prop;
wenzelm@38834
   934
                val SOME thm'' = check_conv false ss eta_thm thm';
skalberg@15531
   935
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   936
           else
wenzelm@22254
   937
             (trace_thm (fn () => "Trying to rewrite:") ss thm';
wenzelm@24124
   938
              if simp_depth ss > Config.get ctxt simp_depth_limit
wenzelm@38834
   939
              then
wenzelm@38834
   940
                let
wenzelm@38834
   941
                  val s = "simp_depth_limit exceeded - giving up";
wenzelm@38834
   942
                  val _ = trace false (fn () => s) ss;
wenzelm@38834
   943
                  val _ = if_visible ss warning s;
wenzelm@38834
   944
                in NONE end
nipkow@16042
   945
              else
nipkow@16042
   946
              case prover ss thm' of
wenzelm@22254
   947
                NONE => (trace_thm (fn () => "FAILED") ss thm'; NONE)
skalberg@15531
   948
              | SOME thm2 =>
wenzelm@16985
   949
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   950
                     NONE => NONE |
skalberg@15531
   951
                     SOME thm2' =>
berghofe@10413
   952
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   953
                           val lr = Logic.dest_equals concl
nipkow@16042
   954
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   955
      end
berghofe@10413
   956
skalberg@15531
   957
    fun rews [] = NONE
berghofe@10413
   958
      | rews (rrule :: rrules) =
skalberg@15531
   959
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   960
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   961
wenzelm@38834
   962
    fun sort_rrules rrs =
wenzelm@38834
   963
      let
wenzelm@38834
   964
        fun is_simple ({thm, ...}: rrule) =
wenzelm@38834
   965
          (case Thm.prop_of thm of
wenzelm@38834
   966
            Const ("==", _) $ _ $ _ => true
wenzelm@38834
   967
          | _ => false);
wenzelm@38834
   968
        fun sort [] (re1, re2) = re1 @ re2
wenzelm@38834
   969
          | sort (rr :: rrs) (re1, re2) =
wenzelm@38834
   970
              if is_simple rr
wenzelm@38834
   971
              then sort rrs (rr :: re1, re2)
wenzelm@38834
   972
              else sort rrs (re1, rr :: re2);
wenzelm@38834
   973
      in sort rrs ([], []) end;
berghofe@10413
   974
skalberg@15531
   975
    fun proc_rews [] = NONE
wenzelm@15023
   976
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   977
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
boehmes@35979
   978
            (debug_term false (fn () => "Trying procedure " ^ quote name ^ " on:") ss eta_t;
wenzelm@23938
   979
             case proc ss eta_t' of
wenzelm@22892
   980
               NONE => (debug false (fn () => "FAILED") ss; proc_rews ps)
skalberg@15531
   981
             | SOME raw_thm =>
wenzelm@22254
   982
                 (trace_thm (fn () => "Procedure " ^ quote name ^ " produced rewrite rule:")
wenzelm@22254
   983
                   ss raw_thm;
wenzelm@16985
   984
                  (case rews (mk_procrule ss raw_thm) of
wenzelm@22254
   985
                    NONE => (trace_cterm true (fn () => "IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   986
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   987
                  | some => some)))
berghofe@10413
   988
          else proc_rews ps;
wenzelm@38834
   989
  in
wenzelm@38834
   990
    (case eta_t of
wenzelm@38834
   991
      Abs _ $ _ => SOME (Thm.transitive eta_thm (Thm.beta_conversion false eta_t'), skel0)
wenzelm@38834
   992
    | _ =>
wenzelm@38834
   993
      (case rews (sort_rrules (Net.match_term rules eta_t)) of
wenzelm@38834
   994
        NONE => proc_rews (Net.match_term procs eta_t)
wenzelm@38834
   995
      | some => some))
berghofe@10413
   996
  end;
berghofe@10413
   997
berghofe@10413
   998
berghofe@10413
   999
(* conversion to apply a congruence rule to a term *)
berghofe@10413
  1000
krauss@30908
  1001
fun congc prover ss maxt cong t =
wenzelm@22902
  1002
  let val rthm = Thm.incr_indexes (maxt + 1) cong;
wenzelm@22902
  1003
      val rlhs = fst (Thm.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
wenzelm@22902
  1004
      val insts = Thm.match (rlhs, t)
wenzelm@22902
  1005
      (* Thm.match can raise Pattern.MATCH;
berghofe@10413
  1006
         is handled when congc is called *)
berghofe@10413
  1007
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@32797
  1008
      val _ = trace_thm (fn () => "Applying congruence rule:") ss thm';
wenzelm@22254
  1009
      fun err (msg, thm) = (trace_thm (fn () => msg) ss thm; NONE)
wenzelm@38834
  1010
  in
wenzelm@38834
  1011
    (case prover thm' of
wenzelm@38834
  1012
      NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@38834
  1013
    | SOME thm2 =>
wenzelm@38834
  1014
        (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
  1015
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
  1016
        | SOME thm2' =>
wenzelm@22902
  1017
            if op aconv (pairself term_of (Thm.dest_equals (cprop_of thm2')))
wenzelm@38834
  1018
            then NONE else SOME thm2'))
berghofe@10413
  1019
  end;
berghofe@10413
  1020
berghofe@10413
  1021
val (cA, (cB, cC)) =
wenzelm@22902
  1022
  apsnd Thm.dest_equals (Thm.dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
  1023
skalberg@15531
  1024
fun transitive1 NONE NONE = NONE
skalberg@15531
  1025
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
  1026
  | transitive1 NONE (SOME thm2) = SOME thm2
wenzelm@36944
  1027
  | transitive1 (SOME thm1) (SOME thm2) = SOME (Thm.transitive thm1 thm2)
berghofe@10413
  1028
skalberg@15531
  1029
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
  1030
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
  1031
wenzelm@16458
  1032
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
  1033
  let
wenzelm@15023
  1034
    fun botc skel ss t =
skalberg@15531
  1035
          if is_Var skel then NONE
berghofe@10413
  1036
          else
wenzelm@15023
  1037
          (case subc skel ss t of
skalberg@15531
  1038
             some as SOME thm1 =>
wenzelm@22902
  1039
               (case rewritec (prover, thy, maxidx) ss (Thm.rhs_of thm1) of
skalberg@15531
  1040
                  SOME (thm2, skel2) =>
wenzelm@36944
  1041
                    transitive2 (Thm.transitive thm1 thm2)
wenzelm@22902
  1042
                      (botc skel2 ss (Thm.rhs_of thm2))
skalberg@15531
  1043
                | NONE => some)
skalberg@15531
  1044
           | NONE =>
wenzelm@16458
  1045
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
  1046
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@22902
  1047
                    (botc skel2 ss (Thm.rhs_of thm2))
skalberg@15531
  1048
                | NONE => NONE))
berghofe@10413
  1049
wenzelm@15023
  1050
    and try_botc ss t =
wenzelm@15023
  1051
          (case botc skel0 ss t of
wenzelm@36944
  1052
             SOME trec1 => trec1 | NONE => (Thm.reflexive t))
berghofe@10413
  1053
wenzelm@15023
  1054
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
  1055
       (case term_of t0 of
wenzelm@32797
  1056
           Abs (a, T, _) =>
wenzelm@15023
  1057
             let
wenzelm@20079
  1058
                 val b = Name.bound (#1 bounds);
wenzelm@16985
  1059
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
  1060
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@21962
  1061
                 val _ =
wenzelm@21962
  1062
                   if b <> b' then
wenzelm@35231
  1063
                     warning ("Simplifier: renamed bound variable " ^
wenzelm@35231
  1064
                       quote b ^ " to " ^ quote b' ^ Position.str_of (Position.thread_data ()))
wenzelm@21962
  1065
                   else ();
wenzelm@17614
  1066
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
  1067
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
  1068
             in case botc skel' ss' t' of
wenzelm@36944
  1069
                  SOME thm => SOME (Thm.abstract_rule a v thm)
skalberg@15531
  1070
                | NONE => NONE
berghofe@10413
  1071
             end
berghofe@10413
  1072
         | t $ _ => (case t of
wenzelm@15023
  1073
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
  1074
           | Abs _ =>
wenzelm@36944
  1075
               let val thm = Thm.beta_conversion false t0
wenzelm@22902
  1076
               in case subc skel0 ss (Thm.rhs_of thm) of
skalberg@15531
  1077
                    NONE => SOME thm
wenzelm@36944
  1078
                  | SOME thm' => SOME (Thm.transitive thm thm')
berghofe@10413
  1079
               end
berghofe@10413
  1080
           | _  =>
berghofe@10413
  1081
               let fun appc () =
berghofe@10413
  1082
                     let
berghofe@10413
  1083
                       val (tskel, uskel) = case skel of
berghofe@10413
  1084
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
  1085
                         | _ => (skel0, skel0);
wenzelm@10767
  1086
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
  1087
                     in
wenzelm@15023
  1088
                     (case botc tskel ss ct of
skalberg@15531
  1089
                        SOME thm1 =>
wenzelm@15023
  1090
                          (case botc uskel ss cu of
wenzelm@36944
  1091
                             SOME thm2 => SOME (Thm.combination thm1 thm2)
wenzelm@36944
  1092
                           | NONE => SOME (Thm.combination thm1 (Thm.reflexive cu)))
skalberg@15531
  1093
                      | NONE =>
wenzelm@15023
  1094
                          (case botc uskel ss cu of
wenzelm@36944
  1095
                             SOME thm1 => SOME (Thm.combination (Thm.reflexive ct) thm1)
skalberg@15531
  1096
                           | NONE => NONE))
berghofe@10413
  1097
                     end
berghofe@10413
  1098
                   val (h, ts) = strip_comb t
ballarin@13835
  1099
               in case cong_name h of
skalberg@15531
  1100
                    SOME a =>
haftmann@17232
  1101
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
  1102
                         NONE => appc ()
skalberg@15531
  1103
                       | SOME cong =>
wenzelm@15023
  1104
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
  1105
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1106
                          (let
wenzelm@16985
  1107
                             val thm = congc (prover ss) ss maxidx cong t0;
wenzelm@22902
  1108
                             val t = the_default t0 (Option.map Thm.rhs_of thm);
wenzelm@10767
  1109
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1110
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1111
                             val skel =
berghofe@10413
  1112
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1113
                           in case botc skel ss cl of
skalberg@15531
  1114
                                NONE => thm
skalberg@15531
  1115
                              | SOME thm' => transitive3 thm
wenzelm@36944
  1116
                                  (Thm.combination thm' (Thm.reflexive cr))
wenzelm@20057
  1117
                           end handle Pattern.MATCH => appc ()))
berghofe@10413
  1118
                  | _ => appc ()
berghofe@10413
  1119
               end)
skalberg@15531
  1120
         | _ => NONE)
berghofe@10413
  1121
wenzelm@15023
  1122
    and impc ct ss =
wenzelm@15023
  1123
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1124
wenzelm@15023
  1125
    and rules_of_prem ss prem =
berghofe@13607
  1126
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1127
      then (trace_cterm true
wenzelm@22254
  1128
        (fn () => "Cannot add premise as rewrite rule because it contains (type) unknowns:")
wenzelm@22254
  1129
          ss prem; ([], NONE))
berghofe@13607
  1130
      else
wenzelm@36944
  1131
        let val asm = Thm.assume prem
skalberg@15531
  1132
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1133
wenzelm@15023
  1134
    and add_rrules (rrss, asms) ss =
wenzelm@20028
  1135
      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)
berghofe@10413
  1136
wenzelm@23178
  1137
    and disch r prem eq =
berghofe@13607
  1138
      let
wenzelm@22902
  1139
        val (lhs, rhs) = Thm.dest_equals (Thm.cprop_of eq);
wenzelm@36944
  1140
        val eq' = Thm.implies_elim (Thm.instantiate
berghofe@13607
  1141
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
wenzelm@36944
  1142
          (Thm.implies_intr prem eq)
berghofe@13607
  1143
      in if not r then eq' else
berghofe@10413
  1144
        let
wenzelm@22902
  1145
          val (prem', concl) = Thm.dest_implies lhs;
wenzelm@22902
  1146
          val (prem'', _) = Thm.dest_implies rhs
wenzelm@36944
  1147
        in Thm.transitive (Thm.transitive
berghofe@13607
  1148
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1149
             Drule.swap_prems_eq) eq')
berghofe@13607
  1150
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1151
             Drule.swap_prems_eq)
berghofe@10413
  1152
        end
berghofe@10413
  1153
      end
berghofe@10413
  1154
berghofe@13607
  1155
    and rebuild [] _ _ _ _ eq = eq
wenzelm@32797
  1156
      | rebuild (prem :: prems) concl (_ :: rrss) (_ :: asms) ss eq =
berghofe@13607
  1157
          let
wenzelm@15023
  1158
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1159
            val concl' =
wenzelm@22902
  1160
              Drule.mk_implies (prem, the_default concl (Option.map Thm.rhs_of eq));
wenzelm@23178
  1161
            val dprem = Option.map (disch false prem)
wenzelm@38834
  1162
          in
wenzelm@38834
  1163
            (case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1164
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
wenzelm@23178
  1165
            | SOME (eq', _) => transitive2 (fold (disch false)
wenzelm@23178
  1166
                  prems (the (transitive3 (dprem eq) eq')))
wenzelm@38834
  1167
                (mut_impc0 (rev prems) (Thm.rhs_of eq') (rev rrss) (rev asms) ss))
berghofe@13607
  1168
          end
wenzelm@15023
  1169
wenzelm@15023
  1170
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1171
      let
berghofe@13607
  1172
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1173
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
wenzelm@38834
  1174
      in
wenzelm@38834
  1175
        mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@38834
  1176
          (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1177
      end
wenzelm@15023
  1178
wenzelm@15023
  1179
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
wenzelm@33245
  1180
        transitive1 (fold (fn (eq1, prem) => fn eq2 => transitive1 eq1
wenzelm@33245
  1181
            (Option.map (disch false prem) eq2)) (eqns ~~ prems') NONE)
berghofe@13607
  1182
          (if changed > 0 then
berghofe@13607
  1183
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1184
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1185
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1186
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1187
berghofe@13607
  1188
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1189
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1190
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1191
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1192
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1193
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1194
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1195
          | SOME eqn =>
berghofe@13607
  1196
            let
wenzelm@22902
  1197
              val prem' = Thm.rhs_of eqn;
berghofe@13607
  1198
              val tprems = map term_of prems;
wenzelm@33029
  1199
              val i = 1 + fold Integer.max (map (fn p =>
wenzelm@33029
  1200
                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn))) ~1;
wenzelm@15023
  1201
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1202
            in mut_impc prems concl rrss asms (prem' :: prems')
wenzelm@23178
  1203
              (rrs' :: rrss') (asm' :: asms') (SOME (fold_rev (disch true)
haftmann@33957
  1204
                (take i prems)
wenzelm@36944
  1205
                (Drule.imp_cong_rule eqn (Thm.reflexive (Drule.list_implies
haftmann@33957
  1206
                  (drop i prems, concl))))) :: eqns)
wenzelm@20671
  1207
                  ss (length prems') ~1
berghofe@13607
  1208
            end
berghofe@13607
  1209
wenzelm@15023
  1210
     (*legacy code - only for backwards compatibility*)
wenzelm@38834
  1211
    and nonmut_impc ct ss =
wenzelm@38834
  1212
      let
wenzelm@38834
  1213
        val (prem, conc) = Thm.dest_implies ct;
wenzelm@38834
  1214
        val thm1 = if simprem then botc skel0 ss prem else NONE;
wenzelm@38834
  1215
        val prem1 = the_default prem (Option.map Thm.rhs_of thm1);
wenzelm@38834
  1216
        val ss1 =
wenzelm@38834
  1217
          if not useprem then ss
wenzelm@38834
  1218
          else add_rrules (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@38834
  1219
      in
wenzelm@38834
  1220
        (case botc skel0 ss1 conc of
wenzelm@38834
  1221
          NONE =>
wenzelm@38834
  1222
            (case thm1 of
wenzelm@38834
  1223
              NONE => NONE
wenzelm@38834
  1224
            | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (Thm.reflexive conc)))
wenzelm@38834
  1225
        | SOME thm2 =>
wenzelm@38834
  1226
            let val thm2' = disch false prem1 thm2 in
wenzelm@38834
  1227
              (case thm1 of
wenzelm@38834
  1228
                NONE => SOME thm2'
wenzelm@38834
  1229
              | SOME thm1' =>
wenzelm@36944
  1230
                 SOME (Thm.transitive (Drule.imp_cong_rule thm1' (Thm.reflexive conc)) thm2'))
wenzelm@38834
  1231
            end)
wenzelm@38834
  1232
      end
berghofe@10413
  1233
wenzelm@15023
  1234
 in try_botc end;
berghofe@10413
  1235
berghofe@10413
  1236
wenzelm@15023
  1237
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1238
berghofe@10413
  1239
(*
berghofe@10413
  1240
  Parameters:
berghofe@10413
  1241
    mode = (simplify A,
berghofe@10413
  1242
            use A in simplifying B,
berghofe@10413
  1243
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1244
           when simplifying A ==> B
berghofe@10413
  1245
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1246
*)
berghofe@10413
  1247
wenzelm@32738
  1248
val debug_bounds = Unsynchronized.ref false;
wenzelm@17705
  1249
wenzelm@21962
  1250
fun check_bounds ss ct =
wenzelm@21962
  1251
  if ! debug_bounds then
wenzelm@21962
  1252
    let
wenzelm@21962
  1253
      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@21962
  1254
      val bs = fold_aterms (fn Free (x, _) =>
wenzelm@21962
  1255
          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@21962
  1256
          then insert (op =) x else I
wenzelm@21962
  1257
        | _ => I) (term_of ct) [];
wenzelm@21962
  1258
    in
wenzelm@21962
  1259
      if null bs then ()
boehmes@35979
  1260
      else print_term_global ss true ("Simplifier: term contains loose bounds: " ^ commas_quote bs)
wenzelm@21962
  1261
        (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@21962
  1262
    end
wenzelm@21962
  1263
  else ();
wenzelm@17614
  1264
wenzelm@19052
  1265
fun rewrite_cterm mode prover raw_ss raw_ct =
wenzelm@17882
  1266
  let
wenzelm@26626
  1267
    val thy = Thm.theory_of_cterm raw_ct;
wenzelm@20260
  1268
    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
wenzelm@32797
  1269
    val {maxidx, ...} = Thm.rep_cterm ct;
wenzelm@22892
  1270
    val ss = inc_simp_depth (activate_context thy raw_ss);
wenzelm@22892
  1271
    val depth = simp_depth ss;
wenzelm@21962
  1272
    val _ =
wenzelm@22892
  1273
      if depth mod 20 = 0 then
wenzelm@38834
  1274
        if_visible ss warning ("Simplification depth " ^ string_of_int depth)
wenzelm@21962
  1275
      else ();
wenzelm@22254
  1276
    val _ = trace_cterm false (fn () => "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:") ss ct;
wenzelm@17882
  1277
    val _ = check_bounds ss ct;
wenzelm@22892
  1278
  in bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct end;
berghofe@10413
  1279
wenzelm@21708
  1280
val simple_prover =
wenzelm@43597
  1281
  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of ss)));
wenzelm@21708
  1282
wenzelm@21708
  1283
fun rewrite _ [] ct = Thm.reflexive ct
haftmann@27582
  1284
  | rewrite full thms ct = rewrite_cterm (full, false, false) simple_prover
wenzelm@35232
  1285
      (global_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1286
wenzelm@23598
  1287
fun simplify full thms = Conv.fconv_rule (rewrite full thms);
wenzelm@21708
  1288
val rewrite_rule = simplify true;
wenzelm@21708
  1289
wenzelm@15023
  1290
(*simple term rewriting -- no proof*)
wenzelm@16458
  1291
fun rewrite_term thy rules procs =
wenzelm@17203
  1292
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1293
wenzelm@22902
  1294
fun rewrite_thm mode prover ss = Conv.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1295
wenzelm@23536
  1296
(*Rewrite the subgoals of a proof state (represented by a theorem)*)
wenzelm@21708
  1297
fun rewrite_goals_rule thms th =
wenzelm@23584
  1298
  Conv.fconv_rule (Conv.prems_conv ~1 (rewrite_cterm (true, true, true) simple_prover
wenzelm@35232
  1299
    (global_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1300
wenzelm@15023
  1301
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1302
fun rewrite_goal_rule mode prover ss i thm =
wenzelm@23536
  1303
  if 0 < i andalso i <= Thm.nprems_of thm
wenzelm@23584
  1304
  then Conv.gconv_rule (rewrite_cterm mode prover ss) i thm
wenzelm@23536
  1305
  else raise THM ("rewrite_goal_rule", i, [thm]);
berghofe@10413
  1306
wenzelm@20228
  1307
wenzelm@21708
  1308
(** meta-rewriting tactics **)
wenzelm@21708
  1309
wenzelm@28839
  1310
(*Rewrite all subgoals*)
wenzelm@21708
  1311
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
wenzelm@21708
  1312
fun rewtac def = rewrite_goals_tac [def];
wenzelm@21708
  1313
wenzelm@28839
  1314
(*Rewrite one subgoal*)
wenzelm@25203
  1315
fun asm_rewrite_goal_tac mode prover_tac ss i thm =
wenzelm@25203
  1316
  if 0 < i andalso i <= Thm.nprems_of thm then
wenzelm@25203
  1317
    Seq.single (Conv.gconv_rule (rewrite_cterm mode (SINGLE o prover_tac) ss) i thm)
wenzelm@25203
  1318
  else Seq.empty;
wenzelm@23536
  1319
wenzelm@23536
  1320
fun rewrite_goal_tac rews =
wenzelm@23536
  1321
  let val ss = empty_ss addsimps rews in
wenzelm@23536
  1322
    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@35232
  1323
      (global_context (Thm.theory_of_thm st) ss) i st
wenzelm@23536
  1324
  end;
wenzelm@23536
  1325
wenzelm@21708
  1326
(*Prunes all redundant parameters from the proof state by rewriting.
wenzelm@21708
  1327
  DOES NOT rewrite main goal, where quantification over an unused bound
wenzelm@21708
  1328
    variable is sometimes done to avoid the need for cut_facts_tac.*)
wenzelm@21708
  1329
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
wenzelm@21708
  1330
wenzelm@21708
  1331
wenzelm@21708
  1332
(* for folding definitions, handling critical pairs *)
wenzelm@21708
  1333
wenzelm@21708
  1334
(*The depth of nesting in a term*)
wenzelm@32797
  1335
fun term_depth (Abs (_, _, t)) = 1 + term_depth t
wenzelm@32797
  1336
  | term_depth (f $ t) = 1 + Int.max (term_depth f, term_depth t)
wenzelm@21708
  1337
  | term_depth _ = 0;
wenzelm@21708
  1338
wenzelm@21708
  1339
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
wenzelm@21708
  1340
wenzelm@21708
  1341
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
wenzelm@21708
  1342
  Returns longest lhs first to avoid folding its subexpressions.*)
wenzelm@21708
  1343
fun sort_lhs_depths defs =
wenzelm@21708
  1344
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@21708
  1345
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
wenzelm@21708
  1346
  in map (AList.find (op =) keylist) keys end;
wenzelm@21708
  1347
wenzelm@36944
  1348
val rev_defs = sort_lhs_depths o map Thm.symmetric;
wenzelm@21708
  1349
wenzelm@21708
  1350
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@21708
  1351
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
wenzelm@21708
  1352
wenzelm@21708
  1353
wenzelm@20228
  1354
(* HHF normal form: !! before ==>, outermost !! generalized *)
wenzelm@20228
  1355
wenzelm@20228
  1356
local
wenzelm@20228
  1357
wenzelm@21565
  1358
fun gen_norm_hhf ss th =
wenzelm@21565
  1359
  (if Drule.is_norm_hhf (Thm.prop_of th) then th
wenzelm@26424
  1360
   else Conv.fconv_rule
wenzelm@35232
  1361
    (rewrite_cterm (true, false, false) (K (K NONE)) (global_context (Thm.theory_of_thm th) ss)) th)
wenzelm@21565
  1362
  |> Thm.adjust_maxidx_thm ~1
wenzelm@21565
  1363
  |> Drule.gen_all;
wenzelm@20228
  1364
wenzelm@28620
  1365
val hhf_ss = empty_ss addsimps Drule.norm_hhf_eqs;
wenzelm@20228
  1366
wenzelm@20228
  1367
in
wenzelm@20228
  1368
wenzelm@26424
  1369
val norm_hhf = gen_norm_hhf hhf_ss;
wenzelm@26424
  1370
val norm_hhf_protect = gen_norm_hhf (hhf_ss addeqcongs [Drule.protect_cong]);
wenzelm@20228
  1371
wenzelm@20228
  1372
end;
wenzelm@20228
  1373
berghofe@10413
  1374
end;
berghofe@10413
  1375
wenzelm@41228
  1376
structure Basic_Meta_Simplifier: BASIC_RAW_SIMPLIFIER = Raw_Simplifier;
wenzelm@32738
  1377
open Basic_Meta_Simplifier;