1478

1 
(* Title: ZF/univ.thy

0

2 
ID: $Id$

1478

3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory

0

4 
Copyright 1992 University of Cambridge


5 


6 
The cumulative hierarchy and a small universe for recursive types


7 


8 
Standard notation for Vset(i) is V(i), but users might want V for a variable

516

9 


10 
NOTE: univ(A) could be a translation; would simplify many proofs!


11 
But Ind_Syntax.univ refers to the constant "univ"

0

12 
*)


13 

2469

14 
Univ = Arith + Sum + Finite + mono +

0

15 
consts

1401

16 
Vfrom :: [i,i]=>i


17 
Vset :: i=>i


18 
Vrec :: [i, [i,i]=>i] =>i


19 
univ :: i=>i

0

20 


21 
translations

1478

22 
"Vset(x)" == "Vfrom(0,x)"

0

23 

753

24 
defs

0

25 
Vfrom_def "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))"


26 


27 
Vrec_def

1478

28 
"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).

1155

29 
H(z, lam w:Vset(x). g`rank(w)`w)) ` a"

0

30 


31 
univ_def "univ(A) == Vfrom(A,nat)"


32 


33 
end
