src/HOL/Algebra/Sylow.thy
author wenzelm
Sun Mar 21 17:12:31 2010 +0100 (2010-03-21)
changeset 35849 b5522b51cb1e
parent 33657 a4179bf442d1
child 41541 1fa4725c4656
permissions -rw-r--r--
standard headers;
wenzelm@14706
     1
(*  Title:      HOL/Algebra/Sylow.thy
paulson@13870
     2
    Author:     Florian Kammueller, with new proofs by L C Paulson
paulson@13870
     3
*)
paulson@13870
     4
wenzelm@35849
     5
theory Sylow
wenzelm@35849
     6
imports Coset Exponent
wenzelm@35849
     7
begin
paulson@13870
     8
wenzelm@14706
     9
text {*
wenzelm@14706
    10
  See also \cite{Kammueller-Paulson:1999}.
wenzelm@14706
    11
*}
wenzelm@14706
    12
paulson@13870
    13
text{*The combinatorial argument is in theory Exponent*}
paulson@13870
    14
paulson@14747
    15
locale sylow = group +
paulson@13870
    16
  fixes p and a and m and calM and RelM
nipkow@16663
    17
  assumes prime_p:   "prime p"
paulson@13870
    18
      and order_G:   "order(G) = (p^a) * m"
paulson@13870
    19
      and finite_G [iff]:  "finite (carrier G)"
paulson@14747
    20
  defines "calM == {s. s \<subseteq> carrier(G) & card(s) = p^a}"
paulson@13870
    21
      and "RelM == {(N1,N2). N1 \<in> calM & N2 \<in> calM &
wenzelm@14666
    22
                             (\<exists>g \<in> carrier(G). N1 = (N2 #> g) )}"
paulson@13870
    23
nipkow@30198
    24
lemma (in sylow) RelM_refl_on: "refl_on calM RelM"
nipkow@30198
    25
apply (auto simp add: refl_on_def RelM_def calM_def)
wenzelm@14666
    26
apply (blast intro!: coset_mult_one [symmetric])
paulson@13870
    27
done
paulson@13870
    28
paulson@13870
    29
lemma (in sylow) RelM_sym: "sym RelM"
paulson@13870
    30
proof (unfold sym_def RelM_def, clarify)
paulson@13870
    31
  fix y g
paulson@13870
    32
  assume   "y \<in> calM"
paulson@13870
    33
    and g: "g \<in> carrier G"
paulson@13870
    34
  hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
paulson@13870
    35
  thus "\<exists>g'\<in>carrier G. y = y #> g #> g'"
paulson@13870
    36
   by (blast intro: g inv_closed)
paulson@13870
    37
qed
paulson@13870
    38
paulson@13870
    39
lemma (in sylow) RelM_trans: "trans RelM"
wenzelm@14666
    40
by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
paulson@13870
    41
paulson@13870
    42
lemma (in sylow) RelM_equiv: "equiv calM RelM"
paulson@13870
    43
apply (unfold equiv_def)
nipkow@30198
    44
apply (blast intro: RelM_refl_on RelM_sym RelM_trans)
paulson@13870
    45
done
paulson@13870
    46
paulson@14747
    47
lemma (in sylow) M_subset_calM_prep: "M' \<in> calM // RelM  ==> M' \<subseteq> calM"
paulson@13870
    48
apply (unfold RelM_def)
paulson@13870
    49
apply (blast elim!: quotientE)
paulson@13870
    50
done
paulson@13870
    51
ballarin@20318
    52
paulson@13870
    53
subsection{*Main Part of the Proof*}
paulson@13870
    54
paulson@13870
    55
locale sylow_central = sylow +
paulson@13870
    56
  fixes H and M1 and M
paulson@13870
    57
  assumes M_in_quot:  "M \<in> calM // RelM"
paulson@13870
    58
      and not_dvd_M:  "~(p ^ Suc(exponent p m) dvd card(M))"
paulson@13870
    59
      and M1_in_M:    "M1 \<in> M"
paulson@13870
    60
  defines "H == {g. g\<in>carrier G & M1 #> g = M1}"
paulson@13870
    61
paulson@14747
    62
lemma (in sylow_central) M_subset_calM: "M \<subseteq> calM"
paulson@13870
    63
by (rule M_in_quot [THEN M_subset_calM_prep])
paulson@13870
    64
paulson@13870
    65
lemma (in sylow_central) card_M1: "card(M1) = p^a"
paulson@13870
    66
apply (cut_tac M_subset_calM M1_in_M)
paulson@13870
    67
apply (simp add: calM_def, blast)
paulson@13870
    68
done
paulson@13870
    69
paulson@13870
    70
lemma card_nonempty: "0 < card(S) ==> S \<noteq> {}"
paulson@13870
    71
by force
paulson@13870
    72
wenzelm@14666
    73
lemma (in sylow_central) exists_x_in_M1: "\<exists>x. x\<in>M1"
wenzelm@14666
    74
apply (subgoal_tac "0 < card M1")
wenzelm@14666
    75
 apply (blast dest: card_nonempty)
paulson@13870
    76
apply (cut_tac prime_p [THEN prime_imp_one_less])
paulson@13870
    77
apply (simp (no_asm_simp) add: card_M1)
paulson@13870
    78
done
paulson@13870
    79
paulson@14747
    80
lemma (in sylow_central) M1_subset_G [simp]: "M1 \<subseteq> carrier G"
paulson@13870
    81
apply (rule subsetD [THEN PowD])
paulson@13870
    82
apply (rule_tac [2] M1_in_M)
paulson@13870
    83
apply (rule M_subset_calM [THEN subset_trans])
paulson@13870
    84
apply (auto simp add: calM_def)
paulson@13870
    85
done
paulson@13870
    86
paulson@13870
    87
lemma (in sylow_central) M1_inj_H: "\<exists>f \<in> H\<rightarrow>M1. inj_on f H"
paulson@13870
    88
  proof -
paulson@13870
    89
    from exists_x_in_M1 obtain m1 where m1M: "m1 \<in> M1"..
paulson@13870
    90
    have m1G: "m1 \<in> carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
paulson@13870
    91
    show ?thesis
paulson@13870
    92
    proof
paulson@13870
    93
      show "inj_on (\<lambda>z\<in>H. m1 \<otimes> z) H"
wenzelm@14666
    94
        by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1G)
paulson@13870
    95
      show "restrict (op \<otimes> m1) H \<in> H \<rightarrow> M1"
paulson@13870
    96
      proof (rule restrictI)
wenzelm@14666
    97
        fix z assume zH: "z \<in> H"
wenzelm@14666
    98
        show "m1 \<otimes> z \<in> M1"
wenzelm@14666
    99
        proof -
wenzelm@14666
   100
          from zH
wenzelm@14666
   101
          have zG: "z \<in> carrier G" and M1zeq: "M1 #> z = M1"
wenzelm@14666
   102
            by (auto simp add: H_def)
wenzelm@14666
   103
          show ?thesis
wenzelm@14666
   104
            by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
wenzelm@14666
   105
        qed
paulson@13870
   106
      qed
paulson@13870
   107
    qed
paulson@13870
   108
  qed
paulson@13870
   109
paulson@13870
   110
paulson@13870
   111
subsection{*Discharging the Assumptions of @{text sylow_central}*}
paulson@13870
   112
paulson@13870
   113
lemma (in sylow) EmptyNotInEquivSet: "{} \<notin> calM // RelM"
paulson@13870
   114
by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
paulson@13870
   115
paulson@13870
   116
lemma (in sylow) existsM1inM: "M \<in> calM // RelM ==> \<exists>M1. M1 \<in> M"
wenzelm@14666
   117
apply (subgoal_tac "M \<noteq> {}")
wenzelm@14666
   118
 apply blast
paulson@13870
   119
apply (cut_tac EmptyNotInEquivSet, blast)
paulson@13870
   120
done
paulson@13870
   121
paulson@13870
   122
lemma (in sylow) zero_less_o_G: "0 < order(G)"
paulson@13870
   123
apply (unfold order_def)
paulson@13870
   124
apply (blast intro: one_closed zero_less_card_empty)
paulson@13870
   125
done
paulson@13870
   126
nipkow@25162
   127
lemma (in sylow) zero_less_m: "m > 0"
paulson@13870
   128
apply (cut_tac zero_less_o_G)
paulson@13870
   129
apply (simp add: order_G)
paulson@13870
   130
done
paulson@13870
   131
paulson@13870
   132
lemma (in sylow) card_calM: "card(calM) = (p^a) * m choose p^a"
paulson@13870
   133
by (simp add: calM_def n_subsets order_G [symmetric] order_def)
paulson@13870
   134
nipkow@25162
   135
lemma (in sylow) zero_less_card_calM: "card calM > 0"
paulson@13870
   136
by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
paulson@13870
   137
paulson@13870
   138
lemma (in sylow) max_p_div_calM:
paulson@13870
   139
     "~ (p ^ Suc(exponent p m) dvd card(calM))"
paulson@13870
   140
apply (subgoal_tac "exponent p m = exponent p (card calM) ")
paulson@13870
   141
 apply (cut_tac zero_less_card_calM prime_p)
paulson@13870
   142
 apply (force dest: power_Suc_exponent_Not_dvd)
paulson@13870
   143
apply (simp add: card_calM zero_less_m [THEN const_p_fac])
paulson@13870
   144
done
paulson@13870
   145
paulson@13870
   146
lemma (in sylow) finite_calM: "finite calM"
paulson@13870
   147
apply (unfold calM_def)
paulson@13870
   148
apply (rule_tac B = "Pow (carrier G) " in finite_subset)
paulson@13870
   149
apply auto
paulson@13870
   150
done
paulson@13870
   151
paulson@13870
   152
lemma (in sylow) lemma_A1:
paulson@13870
   153
     "\<exists>M \<in> calM // RelM. ~ (p ^ Suc(exponent p m) dvd card(M))"
paulson@13870
   154
apply (rule max_p_div_calM [THEN contrapos_np])
paulson@13870
   155
apply (simp add: finite_calM equiv_imp_dvd_card [OF _ RelM_equiv])
paulson@13870
   156
done
paulson@13870
   157
paulson@13870
   158
paulson@13870
   159
subsubsection{*Introduction and Destruct Rules for @{term H}*}
paulson@13870
   160
paulson@13870
   161
lemma (in sylow_central) H_I: "[|g \<in> carrier G; M1 #> g = M1|] ==> g \<in> H"
paulson@13870
   162
by (simp add: H_def)
paulson@13870
   163
paulson@13870
   164
lemma (in sylow_central) H_into_carrier_G: "x \<in> H ==> x \<in> carrier G"
paulson@13870
   165
by (simp add: H_def)
paulson@13870
   166
paulson@13870
   167
lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
paulson@13870
   168
by (simp add: H_def)
paulson@13870
   169
paulson@13870
   170
lemma (in sylow_central) H_m_closed: "[| x\<in>H; y\<in>H|] ==> x \<otimes> y \<in> H"
paulson@13870
   171
apply (unfold H_def)
paulson@13870
   172
apply (simp add: coset_mult_assoc [symmetric] m_closed)
paulson@13870
   173
done
paulson@13870
   174
paulson@13870
   175
lemma (in sylow_central) H_not_empty: "H \<noteq> {}"
paulson@13870
   176
apply (simp add: H_def)
paulson@13870
   177
apply (rule exI [of _ \<one>], simp)
paulson@13870
   178
done
paulson@13870
   179
paulson@13870
   180
lemma (in sylow_central) H_is_subgroup: "subgroup H G"
paulson@13870
   181
apply (rule subgroupI)
paulson@13870
   182
apply (rule subsetI)
paulson@13870
   183
apply (erule H_into_carrier_G)
paulson@13870
   184
apply (rule H_not_empty)
paulson@13870
   185
apply (simp add: H_def, clarify)
paulson@13870
   186
apply (erule_tac P = "%z. ?lhs(z) = M1" in subst)
paulson@13870
   187
apply (simp add: coset_mult_assoc )
paulson@13870
   188
apply (blast intro: H_m_closed)
paulson@13870
   189
done
paulson@13870
   190
paulson@13870
   191
paulson@13870
   192
lemma (in sylow_central) rcosetGM1g_subset_G:
paulson@13870
   193
     "[| g \<in> carrier G; x \<in> M1 #>  g |] ==> x \<in> carrier G"
paulson@13870
   194
by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
paulson@13870
   195
paulson@13870
   196
lemma (in sylow_central) finite_M1: "finite M1"
paulson@13870
   197
by (rule finite_subset [OF M1_subset_G finite_G])
paulson@13870
   198
paulson@13870
   199
lemma (in sylow_central) finite_rcosetGM1g: "g\<in>carrier G ==> finite (M1 #> g)"
paulson@13870
   200
apply (rule finite_subset)
paulson@13870
   201
apply (rule subsetI)
paulson@13870
   202
apply (erule rcosetGM1g_subset_G, assumption)
paulson@13870
   203
apply (rule finite_G)
paulson@13870
   204
done
paulson@13870
   205
paulson@13870
   206
lemma (in sylow_central) M1_cardeq_rcosetGM1g:
paulson@13870
   207
     "g \<in> carrier G ==> card(M1 #> g) = card(M1)"
paulson@14963
   208
by (simp (no_asm_simp) add: M1_subset_G card_cosets_equal rcosetsI)
paulson@13870
   209
paulson@13870
   210
lemma (in sylow_central) M1_RelM_rcosetGM1g:
paulson@13870
   211
     "g \<in> carrier G ==> (M1, M1 #> g) \<in> RelM"
paulson@13870
   212
apply (simp (no_asm) add: RelM_def calM_def card_M1 M1_subset_G)
paulson@13870
   213
apply (rule conjI)
paulson@13870
   214
 apply (blast intro: rcosetGM1g_subset_G)
paulson@13870
   215
apply (simp (no_asm_simp) add: card_M1 M1_cardeq_rcosetGM1g)
paulson@13870
   216
apply (rule bexI [of _ "inv g"])
paulson@13870
   217
apply (simp_all add: coset_mult_assoc M1_subset_G)
paulson@13870
   218
done
paulson@13870
   219
paulson@13870
   220
paulson@14963
   221
subsection{*Equal Cardinalities of @{term M} and the Set of Cosets*}
paulson@13870
   222
paulson@14963
   223
text{*Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
paulson@13870
   224
 their cardinalities are equal.*}
paulson@13870
   225
wenzelm@14666
   226
lemma ElemClassEquiv:
paulson@14963
   227
     "[| equiv A r; C \<in> A // r |] ==> \<forall>x \<in> C. \<forall>y \<in> C. (x,y)\<in>r"
paulson@14963
   228
by (unfold equiv_def quotient_def sym_def trans_def, blast)
paulson@13870
   229
paulson@13870
   230
lemma (in sylow_central) M_elem_map:
paulson@13870
   231
     "M2 \<in> M ==> \<exists>g. g \<in> carrier G & M1 #> g = M2"
paulson@13870
   232
apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]])
paulson@13870
   233
apply (simp add: RelM_def)
paulson@13870
   234
apply (blast dest!: bspec)
paulson@13870
   235
done
paulson@13870
   236
wenzelm@14666
   237
lemmas (in sylow_central) M_elem_map_carrier =
wenzelm@14666
   238
        M_elem_map [THEN someI_ex, THEN conjunct1]
paulson@13870
   239
paulson@13870
   240
lemmas (in sylow_central) M_elem_map_eq =
wenzelm@14666
   241
        M_elem_map [THEN someI_ex, THEN conjunct2]
paulson@13870
   242
paulson@14963
   243
lemma (in sylow_central) M_funcset_rcosets_H:
paulson@14963
   244
     "(%x:M. H #> (SOME g. g \<in> carrier G & M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
paulson@14963
   245
apply (rule rcosetsI [THEN restrictI])
paulson@13870
   246
apply (rule H_is_subgroup [THEN subgroup.subset])
paulson@13870
   247
apply (erule M_elem_map_carrier)
paulson@13870
   248
done
paulson@13870
   249
paulson@14963
   250
lemma (in sylow_central) inj_M_GmodH: "\<exists>f \<in> M\<rightarrow>rcosets H. inj_on f M"
paulson@13870
   251
apply (rule bexI)
paulson@14963
   252
apply (rule_tac [2] M_funcset_rcosets_H)
paulson@13870
   253
apply (rule inj_onI, simp)
paulson@13870
   254
apply (rule trans [OF _ M_elem_map_eq])
paulson@13870
   255
prefer 2 apply assumption
paulson@13870
   256
apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
paulson@13870
   257
apply (rule coset_mult_inv1)
paulson@13870
   258
apply (erule_tac [2] M_elem_map_carrier)+
paulson@13870
   259
apply (rule_tac [2] M1_subset_G)
paulson@13870
   260
apply (rule coset_join1 [THEN in_H_imp_eq])
paulson@13870
   261
apply (rule_tac [3] H_is_subgroup)
paulson@13870
   262
prefer 2 apply (blast intro: m_closed M_elem_map_carrier inv_closed)
berghofe@26806
   263
apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
paulson@13870
   264
done
paulson@13870
   265
paulson@13870
   266
ballarin@20318
   267
subsubsection{*The Opposite Injection*}
paulson@13870
   268
paulson@13870
   269
lemma (in sylow_central) H_elem_map:
paulson@14963
   270
     "H1 \<in> rcosets H ==> \<exists>g. g \<in> carrier G & H #> g = H1"
paulson@14963
   271
by (auto simp add: RCOSETS_def)
paulson@13870
   272
wenzelm@14666
   273
lemmas (in sylow_central) H_elem_map_carrier =
wenzelm@14666
   274
        H_elem_map [THEN someI_ex, THEN conjunct1]
paulson@13870
   275
paulson@13870
   276
lemmas (in sylow_central) H_elem_map_eq =
wenzelm@14666
   277
        H_elem_map [THEN someI_ex, THEN conjunct2]
paulson@13870
   278
paulson@13870
   279
wenzelm@14666
   280
lemma EquivElemClass:
paulson@14963
   281
     "[|equiv A r; M \<in> A//r; M1\<in>M; (M1,M2) \<in> r |] ==> M2 \<in> M"
paulson@14963
   282
by (unfold equiv_def quotient_def sym_def trans_def, blast)
paulson@14963
   283
paulson@13870
   284
paulson@14963
   285
lemma (in sylow_central) rcosets_H_funcset_M:
paulson@14963
   286
  "(\<lambda>C \<in> rcosets H. M1 #> (@g. g \<in> carrier G \<and> H #> g = C)) \<in> rcosets H \<rightarrow> M"
paulson@14963
   287
apply (simp add: RCOSETS_def)
paulson@13870
   288
apply (fast intro: someI2
paulson@13870
   289
            intro!: restrictI M1_in_M
paulson@13870
   290
              EquivElemClass [OF RelM_equiv M_in_quot _  M1_RelM_rcosetGM1g])
paulson@13870
   291
done
paulson@13870
   292
paulson@13870
   293
text{*close to a duplicate of @{text inj_M_GmodH}*}
paulson@13870
   294
lemma (in sylow_central) inj_GmodH_M:
paulson@14963
   295
     "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
paulson@13870
   296
apply (rule bexI)
paulson@14963
   297
apply (rule_tac [2] rcosets_H_funcset_M)
paulson@13870
   298
apply (rule inj_onI)
paulson@13870
   299
apply (simp)
paulson@13870
   300
apply (rule trans [OF _ H_elem_map_eq])
paulson@13870
   301
prefer 2 apply assumption
paulson@13870
   302
apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
paulson@13870
   303
apply (rule coset_mult_inv1)
paulson@13870
   304
apply (erule_tac [2] H_elem_map_carrier)+
paulson@13870
   305
apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
paulson@13870
   306
apply (rule coset_join2)
paulson@13870
   307
apply (blast intro: m_closed inv_closed H_elem_map_carrier)
wenzelm@14666
   308
apply (rule H_is_subgroup)
paulson@13870
   309
apply (simp add: H_I coset_mult_inv2 M1_subset_G H_elem_map_carrier)
paulson@13870
   310
done
paulson@13870
   311
paulson@14747
   312
lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow(carrier G)"
paulson@13870
   313
by (auto simp add: calM_def)
paulson@13870
   314
paulson@13870
   315
paulson@13870
   316
lemma (in sylow_central) finite_M: "finite M"
paulson@13870
   317
apply (rule finite_subset)
paulson@13870
   318
apply (rule M_subset_calM [THEN subset_trans])
paulson@13870
   319
apply (rule calM_subset_PowG, blast)
paulson@13870
   320
done
paulson@13870
   321
paulson@14963
   322
lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets H)"
wenzelm@14666
   323
apply (insert inj_M_GmodH inj_GmodH_M)
wenzelm@14666
   324
apply (blast intro: card_bij finite_M H_is_subgroup
paulson@14963
   325
             rcosets_subset_PowG [THEN finite_subset]
paulson@13870
   326
             finite_Pow_iff [THEN iffD2])
paulson@13870
   327
done
paulson@13870
   328
paulson@13870
   329
lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)"
paulson@13870
   330
by (simp add: cardMeqIndexH lagrange H_is_subgroup)
paulson@13870
   331
paulson@14747
   332
lemma (in sylow_central) lemma_leq1: "p^a \<le> card(H)"
paulson@13870
   333
apply (rule dvd_imp_le)
paulson@13870
   334
 apply (rule div_combine [OF prime_p not_dvd_M])
paulson@13870
   335
 prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
paulson@13870
   336
apply (simp add: index_lem order_G power_add mult_dvd_mono power_exponent_dvd
paulson@13870
   337
                 zero_less_m)
paulson@13870
   338
done
paulson@13870
   339
paulson@14747
   340
lemma (in sylow_central) lemma_leq2: "card(H) \<le> p^a"
paulson@13870
   341
apply (subst card_M1 [symmetric])
paulson@13870
   342
apply (cut_tac M1_inj_H)
wenzelm@14666
   343
apply (blast intro!: M1_subset_G intro:
paulson@13870
   344
             card_inj H_into_carrier_G finite_subset [OF _ finite_G])
paulson@13870
   345
done
paulson@13870
   346
paulson@13870
   347
lemma (in sylow_central) card_H_eq: "card(H) = p^a"
nipkow@33657
   348
by (blast intro: le_antisym lemma_leq1 lemma_leq2)
paulson@13870
   349
paulson@13870
   350
lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G & card(H) = p^a"
wenzelm@14666
   351
apply (cut_tac lemma_A1, clarify)
wenzelm@14666
   352
apply (frule existsM1inM, clarify)
paulson@13870
   353
apply (subgoal_tac "sylow_central G p a m M1 M")
paulson@13870
   354
 apply (blast dest:  sylow_central.H_is_subgroup sylow_central.card_H_eq)
wenzelm@14666
   355
apply (simp add: sylow_central_def sylow_central_axioms_def prems)
paulson@13870
   356
done
paulson@13870
   357
paulson@13870
   358
text{*Needed because the locale's automatic definition refers to
wenzelm@14666
   359
   @{term "semigroup G"} and @{term "group_axioms G"} rather than
paulson@13870
   360
  simply to @{term "group G"}.*}
paulson@13870
   361
lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)"
paulson@13870
   362
by (simp add: sylow_def group_def)
paulson@13870
   363
ballarin@20318
   364
ballarin@20318
   365
subsection {* Sylow's Theorem *}
ballarin@20318
   366
paulson@13870
   367
theorem sylow_thm:
nipkow@16663
   368
     "[| prime p;  group(G);  order(G) = (p^a) * m; finite (carrier G)|]
paulson@13870
   369
      ==> \<exists>H. subgroup H G & card(H) = p^a"
paulson@13870
   370
apply (rule sylow.sylow_thm [of G p a m])
wenzelm@14666
   371
apply (simp add: sylow_eq sylow_axioms_def)
paulson@13870
   372
done
paulson@13870
   373
paulson@13870
   374
end