wenzelm@23146
|
1 |
(* Title: ZF/int_arith.ML
|
wenzelm@23146
|
2 |
ID: $Id$
|
wenzelm@23146
|
3 |
Author: Larry Paulson
|
wenzelm@23146
|
4 |
Copyright 2000 University of Cambridge
|
wenzelm@23146
|
5 |
|
wenzelm@23146
|
6 |
Simprocs for linear arithmetic.
|
wenzelm@23146
|
7 |
*)
|
wenzelm@23146
|
8 |
|
wenzelm@23146
|
9 |
|
wenzelm@23146
|
10 |
(** To simplify inequalities involving integer negation and literals,
|
wenzelm@23146
|
11 |
such as -x = #3
|
wenzelm@23146
|
12 |
**)
|
wenzelm@23146
|
13 |
|
wenzelm@24893
|
14 |
Addsimps [inst "y" "integ_of(?w)" @{thm zminus_equation},
|
wenzelm@24893
|
15 |
inst "x" "integ_of(?w)" @{thm equation_zminus}];
|
wenzelm@23146
|
16 |
|
wenzelm@24893
|
17 |
AddIffs [inst "y" "integ_of(?w)" @{thm zminus_zless},
|
wenzelm@24893
|
18 |
inst "x" "integ_of(?w)" @{thm zless_zminus}];
|
wenzelm@23146
|
19 |
|
wenzelm@24893
|
20 |
AddIffs [inst "y" "integ_of(?w)" @{thm zminus_zle},
|
wenzelm@24893
|
21 |
inst "x" "integ_of(?w)" @{thm zle_zminus}];
|
wenzelm@23146
|
22 |
|
wenzelm@24893
|
23 |
Addsimps [inst "s" "integ_of(?w)" @{thm Let_def}];
|
wenzelm@23146
|
24 |
|
wenzelm@23146
|
25 |
(*** Simprocs for numeric literals ***)
|
wenzelm@23146
|
26 |
|
wenzelm@23146
|
27 |
(** Combining of literal coefficients in sums of products **)
|
wenzelm@23146
|
28 |
|
wenzelm@23146
|
29 |
Goal "(x $< y) <-> (x$-y $< #0)";
|
wenzelm@24893
|
30 |
by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@23146
|
31 |
qed "zless_iff_zdiff_zless_0";
|
wenzelm@23146
|
32 |
|
wenzelm@23146
|
33 |
Goal "[| x: int; y: int |] ==> (x = y) <-> (x$-y = #0)";
|
wenzelm@24893
|
34 |
by (asm_simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@23146
|
35 |
qed "eq_iff_zdiff_eq_0";
|
wenzelm@23146
|
36 |
|
wenzelm@23146
|
37 |
Goal "(x $<= y) <-> (x$-y $<= #0)";
|
wenzelm@24893
|
38 |
by (asm_simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@23146
|
39 |
qed "zle_iff_zdiff_zle_0";
|
wenzelm@23146
|
40 |
|
wenzelm@23146
|
41 |
|
wenzelm@23146
|
42 |
(** For combine_numerals **)
|
wenzelm@23146
|
43 |
|
wenzelm@23146
|
44 |
Goal "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k";
|
wenzelm@24893
|
45 |
by (simp_tac (simpset() addsimps [@{thm zadd_zmult_distrib}]@ @{thms zadd_ac}) 1);
|
wenzelm@23146
|
46 |
qed "left_zadd_zmult_distrib";
|
wenzelm@23146
|
47 |
|
wenzelm@23146
|
48 |
|
wenzelm@23146
|
49 |
(** For cancel_numerals **)
|
wenzelm@23146
|
50 |
|
wenzelm@23146
|
51 |
val rel_iff_rel_0_rls = map (inst "y" "?u$+?v")
|
wenzelm@23146
|
52 |
[zless_iff_zdiff_zless_0, eq_iff_zdiff_eq_0,
|
wenzelm@23146
|
53 |
zle_iff_zdiff_zle_0] @
|
wenzelm@23146
|
54 |
map (inst "y" "n")
|
wenzelm@23146
|
55 |
[zless_iff_zdiff_zless_0, eq_iff_zdiff_eq_0,
|
wenzelm@23146
|
56 |
zle_iff_zdiff_zle_0];
|
wenzelm@23146
|
57 |
|
wenzelm@23146
|
58 |
Goal "(i$*u $+ m = j$*u $+ n) <-> ((i$-j)$*u $+ m = intify(n))";
|
wenzelm@24893
|
59 |
by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1);
|
wenzelm@24893
|
60 |
by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@24893
|
61 |
by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1);
|
wenzelm@23146
|
62 |
qed "eq_add_iff1";
|
wenzelm@23146
|
63 |
|
wenzelm@23146
|
64 |
Goal "(i$*u $+ m = j$*u $+ n) <-> (intify(m) = (j$-i)$*u $+ n)";
|
wenzelm@24893
|
65 |
by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1);
|
wenzelm@24893
|
66 |
by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@24893
|
67 |
by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1);
|
wenzelm@23146
|
68 |
qed "eq_add_iff2";
|
wenzelm@23146
|
69 |
|
wenzelm@23146
|
70 |
Goal "(i$*u $+ m $< j$*u $+ n) <-> ((i$-j)$*u $+ m $< n)";
|
wenzelm@24893
|
71 |
by (asm_simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]@
|
wenzelm@24893
|
72 |
@{thms zadd_ac} @ rel_iff_rel_0_rls) 1);
|
wenzelm@23146
|
73 |
qed "less_add_iff1";
|
wenzelm@23146
|
74 |
|
wenzelm@23146
|
75 |
Goal "(i$*u $+ m $< j$*u $+ n) <-> (m $< (j$-i)$*u $+ n)";
|
wenzelm@24893
|
76 |
by (asm_simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]@
|
wenzelm@24893
|
77 |
@{thms zadd_ac} @ rel_iff_rel_0_rls) 1);
|
wenzelm@23146
|
78 |
qed "less_add_iff2";
|
wenzelm@23146
|
79 |
|
wenzelm@23146
|
80 |
Goal "(i$*u $+ m $<= j$*u $+ n) <-> ((i$-j)$*u $+ m $<= n)";
|
wenzelm@24893
|
81 |
by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1);
|
wenzelm@24893
|
82 |
by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@24893
|
83 |
by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1);
|
wenzelm@23146
|
84 |
qed "le_add_iff1";
|
wenzelm@23146
|
85 |
|
wenzelm@23146
|
86 |
Goal "(i$*u $+ m $<= j$*u $+ n) <-> (m $<= (j$-i)$*u $+ n)";
|
wenzelm@24893
|
87 |
by (simp_tac (simpset() addsimps [@{thm zdiff_def}, @{thm zadd_zmult_distrib}]) 1);
|
wenzelm@24893
|
88 |
by (simp_tac (simpset() addsimps @{thms zcompare_rls}) 1);
|
wenzelm@24893
|
89 |
by (simp_tac (simpset() addsimps @{thms zadd_ac}) 1);
|
wenzelm@23146
|
90 |
qed "le_add_iff2";
|
wenzelm@23146
|
91 |
|
wenzelm@23146
|
92 |
|
wenzelm@23146
|
93 |
structure Int_Numeral_Simprocs =
|
wenzelm@23146
|
94 |
struct
|
wenzelm@23146
|
95 |
|
wenzelm@23146
|
96 |
(*Utilities*)
|
wenzelm@23146
|
97 |
|
krauss@26056
|
98 |
val integ_of_const = Const (@{const_name "Bin.integ_of"}, iT --> iT);
|
wenzelm@23146
|
99 |
|
wenzelm@23146
|
100 |
fun mk_numeral n = integ_of_const $ NumeralSyntax.mk_bin n;
|
wenzelm@23146
|
101 |
|
wenzelm@23146
|
102 |
(*Decodes a binary INTEGER*)
|
krauss@26056
|
103 |
fun dest_numeral (Const(@{const_name "Bin.integ_of"}, _) $ w) =
|
wenzelm@23146
|
104 |
(NumeralSyntax.dest_bin w
|
wenzelm@23146
|
105 |
handle Match => raise TERM("Int_Numeral_Simprocs.dest_numeral:1", [w]))
|
wenzelm@23146
|
106 |
| dest_numeral t = raise TERM("Int_Numeral_Simprocs.dest_numeral:2", [t]);
|
wenzelm@23146
|
107 |
|
wenzelm@23146
|
108 |
fun find_first_numeral past (t::terms) =
|
wenzelm@23146
|
109 |
((dest_numeral t, rev past @ terms)
|
wenzelm@23146
|
110 |
handle TERM _ => find_first_numeral (t::past) terms)
|
wenzelm@23146
|
111 |
| find_first_numeral past [] = raise TERM("find_first_numeral", []);
|
wenzelm@23146
|
112 |
|
wenzelm@23146
|
113 |
val zero = mk_numeral 0;
|
wenzelm@26059
|
114 |
val mk_plus = FOLogic.mk_binop @{const_name "zadd"};
|
wenzelm@23146
|
115 |
|
wenzelm@23146
|
116 |
val iT = Ind_Syntax.iT;
|
wenzelm@23146
|
117 |
|
wenzelm@26059
|
118 |
val zminus_const = Const (@{const_name "zminus"}, iT --> iT);
|
wenzelm@23146
|
119 |
|
wenzelm@23146
|
120 |
(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
|
wenzelm@23146
|
121 |
fun mk_sum [] = zero
|
wenzelm@23146
|
122 |
| mk_sum [t,u] = mk_plus (t, u)
|
wenzelm@23146
|
123 |
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
|
wenzelm@23146
|
124 |
|
wenzelm@23146
|
125 |
(*this version ALWAYS includes a trailing zero*)
|
wenzelm@23146
|
126 |
fun long_mk_sum [] = zero
|
wenzelm@23146
|
127 |
| long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
|
wenzelm@23146
|
128 |
|
wenzelm@26059
|
129 |
val dest_plus = FOLogic.dest_bin @{const_name "zadd"} iT;
|
wenzelm@23146
|
130 |
|
wenzelm@23146
|
131 |
(*decompose additions AND subtractions as a sum*)
|
wenzelm@26059
|
132 |
fun dest_summing (pos, Const (@{const_name "zadd"}, _) $ t $ u, ts) =
|
wenzelm@23146
|
133 |
dest_summing (pos, t, dest_summing (pos, u, ts))
|
wenzelm@26059
|
134 |
| dest_summing (pos, Const (@{const_name "zdiff"}, _) $ t $ u, ts) =
|
wenzelm@23146
|
135 |
dest_summing (pos, t, dest_summing (not pos, u, ts))
|
wenzelm@23146
|
136 |
| dest_summing (pos, t, ts) =
|
wenzelm@23146
|
137 |
if pos then t::ts else zminus_const$t :: ts;
|
wenzelm@23146
|
138 |
|
wenzelm@23146
|
139 |
fun dest_sum t = dest_summing (true, t, []);
|
wenzelm@23146
|
140 |
|
wenzelm@26059
|
141 |
val mk_diff = FOLogic.mk_binop @{const_name "zdiff"};
|
wenzelm@26059
|
142 |
val dest_diff = FOLogic.dest_bin @{const_name "zdiff"} iT;
|
wenzelm@23146
|
143 |
|
wenzelm@23146
|
144 |
val one = mk_numeral 1;
|
wenzelm@26059
|
145 |
val mk_times = FOLogic.mk_binop @{const_name "zmult"};
|
wenzelm@23146
|
146 |
|
wenzelm@23146
|
147 |
fun mk_prod [] = one
|
wenzelm@23146
|
148 |
| mk_prod [t] = t
|
wenzelm@23146
|
149 |
| mk_prod (t :: ts) = if t = one then mk_prod ts
|
wenzelm@23146
|
150 |
else mk_times (t, mk_prod ts);
|
wenzelm@23146
|
151 |
|
wenzelm@26059
|
152 |
val dest_times = FOLogic.dest_bin @{const_name "zmult"} iT;
|
wenzelm@23146
|
153 |
|
wenzelm@23146
|
154 |
fun dest_prod t =
|
wenzelm@23146
|
155 |
let val (t,u) = dest_times t
|
wenzelm@23146
|
156 |
in dest_prod t @ dest_prod u end
|
wenzelm@23146
|
157 |
handle TERM _ => [t];
|
wenzelm@23146
|
158 |
|
wenzelm@23146
|
159 |
(*DON'T do the obvious simplifications; that would create special cases*)
|
wenzelm@23146
|
160 |
fun mk_coeff (k, t) = mk_times (mk_numeral k, t);
|
wenzelm@23146
|
161 |
|
wenzelm@23146
|
162 |
(*Express t as a product of (possibly) a numeral with other sorted terms*)
|
wenzelm@26059
|
163 |
fun dest_coeff sign (Const (@{const_name "zminus"}, _) $ t) = dest_coeff (~sign) t
|
wenzelm@23146
|
164 |
| dest_coeff sign t =
|
wenzelm@23146
|
165 |
let val ts = sort Term.term_ord (dest_prod t)
|
wenzelm@23146
|
166 |
val (n, ts') = find_first_numeral [] ts
|
wenzelm@23146
|
167 |
handle TERM _ => (1, ts)
|
wenzelm@23146
|
168 |
in (sign*n, mk_prod ts') end;
|
wenzelm@23146
|
169 |
|
wenzelm@23146
|
170 |
(*Find first coefficient-term THAT MATCHES u*)
|
wenzelm@23146
|
171 |
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
|
wenzelm@23146
|
172 |
| find_first_coeff past u (t::terms) =
|
wenzelm@23146
|
173 |
let val (n,u') = dest_coeff 1 t
|
wenzelm@23146
|
174 |
in if u aconv u' then (n, rev past @ terms)
|
wenzelm@23146
|
175 |
else find_first_coeff (t::past) u terms
|
wenzelm@23146
|
176 |
end
|
wenzelm@23146
|
177 |
handle TERM _ => find_first_coeff (t::past) u terms;
|
wenzelm@23146
|
178 |
|
wenzelm@23146
|
179 |
|
wenzelm@23146
|
180 |
(*Simplify #1*n and n*#1 to n*)
|
wenzelm@24893
|
181 |
val add_0s = [@{thm zadd_0_intify}, @{thm zadd_0_right_intify}];
|
wenzelm@23146
|
182 |
|
wenzelm@24893
|
183 |
val mult_1s = [@{thm zmult_1_intify}, @{thm zmult_1_right_intify},
|
wenzelm@24893
|
184 |
@{thm zmult_minus1}, @{thm zmult_minus1_right}];
|
wenzelm@23146
|
185 |
|
wenzelm@24893
|
186 |
val tc_rules = [@{thm integ_of_type}, @{thm intify_in_int},
|
wenzelm@24893
|
187 |
@{thm int_of_type}, @{thm zadd_type}, @{thm zdiff_type}, @{thm zmult_type}] @
|
wenzelm@24893
|
188 |
@{thms bin.intros};
|
wenzelm@24893
|
189 |
val intifys = [@{thm intify_ident}, @{thm zadd_intify1}, @{thm zadd_intify2},
|
wenzelm@24893
|
190 |
@{thm zdiff_intify1}, @{thm zdiff_intify2}, @{thm zmult_intify1}, @{thm zmult_intify2},
|
wenzelm@24893
|
191 |
@{thm zless_intify1}, @{thm zless_intify2}, @{thm zle_intify1}, @{thm zle_intify2}];
|
wenzelm@23146
|
192 |
|
wenzelm@23146
|
193 |
(*To perform binary arithmetic*)
|
wenzelm@24893
|
194 |
val bin_simps = [@{thm add_integ_of_left}] @ @{thms bin_arith_simps} @ @{thms bin_rel_simps};
|
wenzelm@23146
|
195 |
|
wenzelm@23146
|
196 |
(*To evaluate binary negations of coefficients*)
|
wenzelm@24893
|
197 |
val zminus_simps = @{thms NCons_simps} @
|
wenzelm@24893
|
198 |
[@{thm integ_of_minus} RS sym,
|
wenzelm@24893
|
199 |
@{thm bin_minus_1}, @{thm bin_minus_0}, @{thm bin_minus_Pls}, @{thm bin_minus_Min},
|
wenzelm@24893
|
200 |
@{thm bin_pred_1}, @{thm bin_pred_0}, @{thm bin_pred_Pls}, @{thm bin_pred_Min}];
|
wenzelm@23146
|
201 |
|
wenzelm@23146
|
202 |
(*To let us treat subtraction as addition*)
|
wenzelm@24893
|
203 |
val diff_simps = [@{thm zdiff_def}, @{thm zminus_zadd_distrib}, @{thm zminus_zminus}];
|
wenzelm@23146
|
204 |
|
wenzelm@23146
|
205 |
(*push the unary minus down: - x * y = x * - y *)
|
wenzelm@23146
|
206 |
val int_minus_mult_eq_1_to_2 =
|
wenzelm@24893
|
207 |
[@{thm zmult_zminus}, @{thm zmult_zminus_right} RS sym] MRS trans |> standard;
|
wenzelm@23146
|
208 |
|
wenzelm@23146
|
209 |
(*to extract again any uncancelled minuses*)
|
wenzelm@23146
|
210 |
val int_minus_from_mult_simps =
|
wenzelm@24893
|
211 |
[@{thm zminus_zminus}, @{thm zmult_zminus}, @{thm zmult_zminus_right}];
|
wenzelm@23146
|
212 |
|
wenzelm@23146
|
213 |
(*combine unary minus with numeric literals, however nested within a product*)
|
wenzelm@23146
|
214 |
val int_mult_minus_simps =
|
wenzelm@24893
|
215 |
[@{thm zmult_assoc}, @{thm zmult_zminus} RS sym, int_minus_mult_eq_1_to_2];
|
wenzelm@23146
|
216 |
|
wenzelm@23146
|
217 |
fun prep_simproc (name, pats, proc) =
|
wenzelm@23146
|
218 |
Simplifier.simproc (the_context ()) name pats proc;
|
wenzelm@23146
|
219 |
|
wenzelm@23146
|
220 |
structure CancelNumeralsCommon =
|
wenzelm@23146
|
221 |
struct
|
wenzelm@23146
|
222 |
val mk_sum = (fn T:typ => mk_sum)
|
wenzelm@23146
|
223 |
val dest_sum = dest_sum
|
wenzelm@23146
|
224 |
val mk_coeff = mk_coeff
|
wenzelm@23146
|
225 |
val dest_coeff = dest_coeff 1
|
wenzelm@23146
|
226 |
val find_first_coeff = find_first_coeff []
|
wenzelm@23146
|
227 |
fun trans_tac _ = ArithData.gen_trans_tac iff_trans
|
wenzelm@23146
|
228 |
|
wenzelm@24893
|
229 |
val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac}
|
wenzelm@23146
|
230 |
val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
|
wenzelm@24893
|
231 |
val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys
|
wenzelm@23146
|
232 |
fun norm_tac ss =
|
wenzelm@23146
|
233 |
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
|
wenzelm@23146
|
234 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
|
wenzelm@23146
|
235 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
|
wenzelm@23146
|
236 |
|
wenzelm@23146
|
237 |
val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
|
wenzelm@23146
|
238 |
fun numeral_simp_tac ss =
|
wenzelm@23146
|
239 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
|
wenzelm@23146
|
240 |
THEN ALLGOALS (SIMPSET' (fn simpset => asm_simp_tac (Simplifier.inherit_context ss simpset)))
|
wenzelm@23146
|
241 |
val simplify_meta_eq = ArithData.simplify_meta_eq (add_0s @ mult_1s)
|
wenzelm@23146
|
242 |
end;
|
wenzelm@23146
|
243 |
|
wenzelm@23146
|
244 |
|
wenzelm@23146
|
245 |
structure EqCancelNumerals = CancelNumeralsFun
|
wenzelm@23146
|
246 |
(open CancelNumeralsCommon
|
wenzelm@23146
|
247 |
val prove_conv = ArithData.prove_conv "inteq_cancel_numerals"
|
wenzelm@23146
|
248 |
val mk_bal = FOLogic.mk_eq
|
wenzelm@23146
|
249 |
val dest_bal = FOLogic.dest_eq
|
wenzelm@23146
|
250 |
val bal_add1 = eq_add_iff1 RS iff_trans
|
wenzelm@23146
|
251 |
val bal_add2 = eq_add_iff2 RS iff_trans
|
wenzelm@23146
|
252 |
);
|
wenzelm@23146
|
253 |
|
wenzelm@23146
|
254 |
structure LessCancelNumerals = CancelNumeralsFun
|
wenzelm@23146
|
255 |
(open CancelNumeralsCommon
|
wenzelm@23146
|
256 |
val prove_conv = ArithData.prove_conv "intless_cancel_numerals"
|
wenzelm@26059
|
257 |
val mk_bal = FOLogic.mk_binrel @{const_name "zless"}
|
wenzelm@26059
|
258 |
val dest_bal = FOLogic.dest_bin @{const_name "zless"} iT
|
wenzelm@23146
|
259 |
val bal_add1 = less_add_iff1 RS iff_trans
|
wenzelm@23146
|
260 |
val bal_add2 = less_add_iff2 RS iff_trans
|
wenzelm@23146
|
261 |
);
|
wenzelm@23146
|
262 |
|
wenzelm@23146
|
263 |
structure LeCancelNumerals = CancelNumeralsFun
|
wenzelm@23146
|
264 |
(open CancelNumeralsCommon
|
wenzelm@23146
|
265 |
val prove_conv = ArithData.prove_conv "intle_cancel_numerals"
|
wenzelm@26059
|
266 |
val mk_bal = FOLogic.mk_binrel @{const_name "zle"}
|
wenzelm@26059
|
267 |
val dest_bal = FOLogic.dest_bin @{const_name "zle"} iT
|
wenzelm@23146
|
268 |
val bal_add1 = le_add_iff1 RS iff_trans
|
wenzelm@23146
|
269 |
val bal_add2 = le_add_iff2 RS iff_trans
|
wenzelm@23146
|
270 |
);
|
wenzelm@23146
|
271 |
|
wenzelm@23146
|
272 |
val cancel_numerals =
|
wenzelm@23146
|
273 |
map prep_simproc
|
wenzelm@23146
|
274 |
[("inteq_cancel_numerals",
|
wenzelm@23146
|
275 |
["l $+ m = n", "l = m $+ n",
|
wenzelm@23146
|
276 |
"l $- m = n", "l = m $- n",
|
wenzelm@23146
|
277 |
"l $* m = n", "l = m $* n"],
|
wenzelm@23146
|
278 |
K EqCancelNumerals.proc),
|
wenzelm@23146
|
279 |
("intless_cancel_numerals",
|
wenzelm@23146
|
280 |
["l $+ m $< n", "l $< m $+ n",
|
wenzelm@23146
|
281 |
"l $- m $< n", "l $< m $- n",
|
wenzelm@23146
|
282 |
"l $* m $< n", "l $< m $* n"],
|
wenzelm@23146
|
283 |
K LessCancelNumerals.proc),
|
wenzelm@23146
|
284 |
("intle_cancel_numerals",
|
wenzelm@23146
|
285 |
["l $+ m $<= n", "l $<= m $+ n",
|
wenzelm@23146
|
286 |
"l $- m $<= n", "l $<= m $- n",
|
wenzelm@23146
|
287 |
"l $* m $<= n", "l $<= m $* n"],
|
wenzelm@23146
|
288 |
K LeCancelNumerals.proc)];
|
wenzelm@23146
|
289 |
|
wenzelm@23146
|
290 |
|
wenzelm@23146
|
291 |
(*version without the hyps argument*)
|
wenzelm@23146
|
292 |
fun prove_conv_nohyps name tacs sg = ArithData.prove_conv name tacs sg [];
|
wenzelm@23146
|
293 |
|
wenzelm@23146
|
294 |
structure CombineNumeralsData =
|
wenzelm@23146
|
295 |
struct
|
wenzelm@24630
|
296 |
type coeff = int
|
wenzelm@24630
|
297 |
val iszero = (fn x => x = 0)
|
wenzelm@24630
|
298 |
val add = op +
|
wenzelm@23146
|
299 |
val mk_sum = (fn T:typ => long_mk_sum) (*to work for #2*x $+ #3*x *)
|
wenzelm@23146
|
300 |
val dest_sum = dest_sum
|
wenzelm@23146
|
301 |
val mk_coeff = mk_coeff
|
wenzelm@23146
|
302 |
val dest_coeff = dest_coeff 1
|
wenzelm@23146
|
303 |
val left_distrib = left_zadd_zmult_distrib RS trans
|
wenzelm@23146
|
304 |
val prove_conv = prove_conv_nohyps "int_combine_numerals"
|
wenzelm@23146
|
305 |
fun trans_tac _ = ArithData.gen_trans_tac trans
|
wenzelm@23146
|
306 |
|
wenzelm@24893
|
307 |
val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} @ intifys
|
wenzelm@23146
|
308 |
val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
|
wenzelm@24893
|
309 |
val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys
|
wenzelm@23146
|
310 |
fun norm_tac ss =
|
wenzelm@23146
|
311 |
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
|
wenzelm@23146
|
312 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
|
wenzelm@23146
|
313 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
|
wenzelm@23146
|
314 |
|
wenzelm@23146
|
315 |
val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
|
wenzelm@23146
|
316 |
fun numeral_simp_tac ss =
|
wenzelm@23146
|
317 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
|
wenzelm@23146
|
318 |
val simplify_meta_eq = ArithData.simplify_meta_eq (add_0s @ mult_1s)
|
wenzelm@23146
|
319 |
end;
|
wenzelm@23146
|
320 |
|
wenzelm@23146
|
321 |
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
|
wenzelm@23146
|
322 |
|
wenzelm@23146
|
323 |
val combine_numerals =
|
wenzelm@23146
|
324 |
prep_simproc ("int_combine_numerals", ["i $+ j", "i $- j"], K CombineNumerals.proc);
|
wenzelm@23146
|
325 |
|
wenzelm@23146
|
326 |
|
wenzelm@23146
|
327 |
|
wenzelm@23146
|
328 |
(** Constant folding for integer multiplication **)
|
wenzelm@23146
|
329 |
|
wenzelm@23146
|
330 |
(*The trick is to regard products as sums, e.g. #3 $* x $* #4 as
|
wenzelm@23146
|
331 |
the "sum" of #3, x, #4; the literals are then multiplied*)
|
wenzelm@23146
|
332 |
|
wenzelm@23146
|
333 |
|
wenzelm@23146
|
334 |
structure CombineNumeralsProdData =
|
wenzelm@23146
|
335 |
struct
|
wenzelm@24630
|
336 |
type coeff = int
|
wenzelm@24630
|
337 |
val iszero = (fn x => x = 0)
|
wenzelm@24630
|
338 |
val add = op *
|
wenzelm@23146
|
339 |
val mk_sum = (fn T:typ => mk_prod)
|
wenzelm@23146
|
340 |
val dest_sum = dest_prod
|
wenzelm@23146
|
341 |
fun mk_coeff(k,t) = if t=one then mk_numeral k
|
wenzelm@23146
|
342 |
else raise TERM("mk_coeff", [])
|
wenzelm@23146
|
343 |
fun dest_coeff t = (dest_numeral t, one) (*We ONLY want pure numerals.*)
|
wenzelm@24893
|
344 |
val left_distrib = @{thm zmult_assoc} RS sym RS trans
|
wenzelm@23146
|
345 |
val prove_conv = prove_conv_nohyps "int_combine_numerals_prod"
|
wenzelm@23146
|
346 |
fun trans_tac _ = ArithData.gen_trans_tac trans
|
wenzelm@23146
|
347 |
|
wenzelm@23146
|
348 |
|
wenzelm@23146
|
349 |
|
wenzelm@23146
|
350 |
val norm_ss1 = ZF_ss addsimps mult_1s @ diff_simps @ zminus_simps
|
wenzelm@24893
|
351 |
val norm_ss2 = ZF_ss addsimps [@{thm zmult_zminus_right} RS sym] @
|
wenzelm@24893
|
352 |
bin_simps @ @{thms zmult_ac} @ tc_rules @ intifys
|
wenzelm@23146
|
353 |
fun norm_tac ss =
|
wenzelm@23146
|
354 |
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
|
wenzelm@23146
|
355 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
|
wenzelm@23146
|
356 |
|
wenzelm@23146
|
357 |
val numeral_simp_ss = ZF_ss addsimps bin_simps @ tc_rules @ intifys
|
wenzelm@23146
|
358 |
fun numeral_simp_tac ss =
|
wenzelm@23146
|
359 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
|
wenzelm@23146
|
360 |
val simplify_meta_eq = ArithData.simplify_meta_eq (mult_1s);
|
wenzelm@23146
|
361 |
end;
|
wenzelm@23146
|
362 |
|
wenzelm@23146
|
363 |
|
wenzelm@23146
|
364 |
structure CombineNumeralsProd = CombineNumeralsFun(CombineNumeralsProdData);
|
wenzelm@23146
|
365 |
|
wenzelm@23146
|
366 |
val combine_numerals_prod =
|
wenzelm@23146
|
367 |
prep_simproc ("int_combine_numerals_prod", ["i $* j"], K CombineNumeralsProd.proc);
|
wenzelm@23146
|
368 |
|
wenzelm@23146
|
369 |
end;
|
wenzelm@23146
|
370 |
|
wenzelm@23146
|
371 |
|
wenzelm@23146
|
372 |
Addsimprocs Int_Numeral_Simprocs.cancel_numerals;
|
wenzelm@23146
|
373 |
Addsimprocs [Int_Numeral_Simprocs.combine_numerals,
|
wenzelm@23146
|
374 |
Int_Numeral_Simprocs.combine_numerals_prod];
|
wenzelm@23146
|
375 |
|
wenzelm@23146
|
376 |
|
wenzelm@23146
|
377 |
(*examples:*)
|
wenzelm@23146
|
378 |
(*
|
wenzelm@23146
|
379 |
print_depth 22;
|
wenzelm@23146
|
380 |
set timing;
|
wenzelm@23146
|
381 |
set trace_simp;
|
wenzelm@23146
|
382 |
fun test s = (Goal s; by (Asm_simp_tac 1));
|
wenzelm@23146
|
383 |
val sg = #sign (rep_thm (topthm()));
|
wenzelm@23146
|
384 |
val t = FOLogic.dest_Trueprop (Logic.strip_assums_concl(getgoal 1));
|
wenzelm@23146
|
385 |
val (t,_) = FOLogic.dest_eq t;
|
wenzelm@23146
|
386 |
|
wenzelm@23146
|
387 |
(*combine_numerals_prod (products of separate literals) *)
|
wenzelm@23146
|
388 |
test "#5 $* x $* #3 = y";
|
wenzelm@23146
|
389 |
|
wenzelm@23146
|
390 |
test "y2 $+ ?x42 = y $+ y2";
|
wenzelm@23146
|
391 |
|
wenzelm@23146
|
392 |
test "oo : int ==> l $+ (l $+ #2) $+ oo = oo";
|
wenzelm@23146
|
393 |
|
wenzelm@23146
|
394 |
test "#9$*x $+ y = x$*#23 $+ z";
|
wenzelm@23146
|
395 |
test "y $+ x = x $+ z";
|
wenzelm@23146
|
396 |
|
wenzelm@23146
|
397 |
test "x : int ==> x $+ y $+ z = x $+ z";
|
wenzelm@23146
|
398 |
test "x : int ==> y $+ (z $+ x) = z $+ x";
|
wenzelm@23146
|
399 |
test "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)";
|
wenzelm@23146
|
400 |
test "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)";
|
wenzelm@23146
|
401 |
|
wenzelm@23146
|
402 |
test "#-3 $* x $+ y $<= x $* #2 $+ z";
|
wenzelm@23146
|
403 |
test "y $+ x $<= x $+ z";
|
wenzelm@23146
|
404 |
test "x $+ y $+ z $<= x $+ z";
|
wenzelm@23146
|
405 |
|
wenzelm@23146
|
406 |
test "y $+ (z $+ x) $< z $+ x";
|
wenzelm@23146
|
407 |
test "x $+ y $+ z $< (z $+ y) $+ (x $+ w)";
|
wenzelm@23146
|
408 |
test "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)";
|
wenzelm@23146
|
409 |
|
wenzelm@23146
|
410 |
test "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu";
|
wenzelm@23146
|
411 |
test "u : int ==> #2 $* u = u";
|
wenzelm@23146
|
412 |
test "(i $+ j $+ #12 $+ k) $- #15 = y";
|
wenzelm@23146
|
413 |
test "(i $+ j $+ #12 $+ k) $- #5 = y";
|
wenzelm@23146
|
414 |
|
wenzelm@23146
|
415 |
test "y $- b $< b";
|
wenzelm@23146
|
416 |
test "y $- (#3 $* b $+ c) $< b $- #2 $* c";
|
wenzelm@23146
|
417 |
|
wenzelm@23146
|
418 |
test "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w";
|
wenzelm@23146
|
419 |
test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w";
|
wenzelm@23146
|
420 |
test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w";
|
wenzelm@23146
|
421 |
test "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w";
|
wenzelm@23146
|
422 |
|
wenzelm@23146
|
423 |
test "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y";
|
wenzelm@23146
|
424 |
test "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y";
|
wenzelm@23146
|
425 |
|
wenzelm@23146
|
426 |
test "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv";
|
wenzelm@23146
|
427 |
|
wenzelm@23146
|
428 |
test "a $+ $-(b$+c) $+ b = d";
|
wenzelm@23146
|
429 |
test "a $+ $-(b$+c) $- b = d";
|
wenzelm@23146
|
430 |
|
wenzelm@23146
|
431 |
(*negative numerals*)
|
wenzelm@23146
|
432 |
test "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz";
|
wenzelm@23146
|
433 |
test "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y";
|
wenzelm@23146
|
434 |
test "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y";
|
wenzelm@23146
|
435 |
test "(i $+ j $+ #-12 $+ k) $- #15 = y";
|
wenzelm@23146
|
436 |
test "(i $+ j $+ #12 $+ k) $- #-15 = y";
|
wenzelm@23146
|
437 |
test "(i $+ j $+ #-12 $+ k) $- #-15 = y";
|
wenzelm@23146
|
438 |
|
wenzelm@23146
|
439 |
(*Multiplying separated numerals*)
|
wenzelm@23146
|
440 |
Goal "#6 $* ($# x $* #2) = uu";
|
wenzelm@23146
|
441 |
Goal "#4 $* ($# x $* $# x) $* (#2 $* $# x) = uu";
|
wenzelm@23146
|
442 |
*)
|
wenzelm@23146
|
443 |
|