src/HOL/BNF/Examples/Stream.thy
author blanchet
Thu Aug 29 23:01:04 2013 +0200 (2013-08-29)
changeset 53290 b6c3be868217
parent 52991 633ccbcd8d8c
child 53374 a14d2a854c02
permissions -rw-r--r--
renamed BNF fact
traytel@50518
     1
(*  Title:      HOL/BNF/Examples/Stream.thy
traytel@50518
     2
    Author:     Dmitriy Traytel, TU Muenchen
traytel@50518
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@51778
     4
    Copyright   2012, 2013
traytel@50518
     5
traytel@50518
     6
Infinite streams.
traytel@50518
     7
*)
traytel@50518
     8
traytel@50518
     9
header {* Infinite Streams *}
traytel@50518
    10
traytel@50518
    11
theory Stream
traytel@50518
    12
imports "../BNF"
traytel@50518
    13
begin
traytel@50518
    14
blanchet@51804
    15
codatatype (sset: 'a) stream (map: smap rel: stream_all2) =
blanchet@51804
    16
  Stream (shd: 'a) (stl: "'a stream") (infixr "##" 65)
traytel@50518
    17
traytel@51409
    18
declaration {*
traytel@51409
    19
  Nitpick_HOL.register_codatatype
traytel@51409
    20
    @{typ "'stream_element_type stream"} @{const_name stream_case} [dest_Const @{term Stream}]
traytel@51409
    21
    (*FIXME: long type variable name required to reduce the probability of
traytel@51409
    22
        a name clash of Nitpick in context. E.g.:
traytel@51409
    23
        context
traytel@51409
    24
        fixes x :: 'stream_element_type
traytel@51409
    25
        begin
traytel@51409
    26
traytel@51772
    27
        lemma "sset s = {}"
traytel@51409
    28
        nitpick
traytel@51409
    29
        oops
traytel@51409
    30
traytel@51409
    31
        end
traytel@51409
    32
    *)
traytel@51409
    33
*}
traytel@51409
    34
traytel@51409
    35
code_datatype Stream
traytel@51409
    36
lemmas [code] = stream.sels stream.sets stream.case
traytel@51409
    37
traytel@51409
    38
lemma stream_case_cert:
traytel@51409
    39
  assumes "CASE \<equiv> stream_case c"
traytel@51409
    40
  shows "CASE (a ## s) \<equiv> c a s"
traytel@51409
    41
  using assms by simp_all
traytel@51409
    42
traytel@51409
    43
setup {*
traytel@51409
    44
  Code.add_case @{thm stream_case_cert}
traytel@51409
    45
*}
traytel@51409
    46
traytel@51462
    47
(*for code generation only*)
traytel@51462
    48
definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
traytel@51772
    49
  [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
traytel@51462
    50
traytel@51462
    51
lemma smember_code[code, simp]: "smember x (Stream y s) = (if x = y then True else smember x s)"
traytel@51462
    52
  unfolding smember_def by auto
traytel@51462
    53
traytel@51462
    54
hide_const (open) smember
traytel@51462
    55
traytel@50518
    56
(* TODO: Provide by the package*)
traytel@51772
    57
theorem sset_induct:
traytel@51772
    58
  "\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow>
traytel@51772
    59
    \<forall>y \<in> sset s. P y s"
blanchet@52991
    60
  apply (rule stream.dtor_set_induct)
blanchet@52991
    61
  apply (auto simp add: shd_def stl_def fsts_def snds_def split_beta)
blanchet@52991
    62
  apply (metis Stream_def fst_conv stream.case stream.dtor_ctor stream.exhaust)
blanchet@52991
    63
  by (metis Stream_def sndI stl_def stream.collapse stream.dtor_ctor)
traytel@51141
    64
traytel@51772
    65
lemma smap_simps[simp]:
traytel@51772
    66
  "shd (smap f s) = f (shd s)" "stl (smap f s) = smap f (stl s)"
blanchet@52991
    67
  by (case_tac [!] s) auto
traytel@51141
    68
traytel@51753
    69
declare stream.map[code]
traytel@50518
    70
traytel@51772
    71
theorem shd_sset: "shd s \<in> sset s"
blanchet@52991
    72
  by (case_tac s) auto
traytel@50518
    73
traytel@51772
    74
theorem stl_sset: "y \<in> sset (stl s) \<Longrightarrow> y \<in> sset s"
blanchet@52991
    75
  by (case_tac s) auto
traytel@50518
    76
traytel@50518
    77
(* only for the non-mutual case: *)
traytel@51772
    78
theorem sset_induct1[consumes 1, case_names shd stl, induct set: "sset"]:
traytel@51772
    79
  assumes "y \<in> sset s" and "\<And>s. P (shd s) s"
traytel@51772
    80
  and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
traytel@50518
    81
  shows "P y s"
traytel@51772
    82
  using assms sset_induct by blast
traytel@50518
    83
(* end TODO *)
traytel@50518
    84
traytel@50518
    85
traytel@50518
    86
subsection {* prepend list to stream *}
traytel@50518
    87
traytel@50518
    88
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
traytel@50518
    89
  "shift [] s = s"
traytel@51023
    90
| "shift (x # xs) s = x ## shift xs s"
traytel@50518
    91
traytel@51772
    92
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
traytel@51353
    93
  by (induct xs) auto
traytel@51353
    94
traytel@50518
    95
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
traytel@51141
    96
  by (induct xs) auto
traytel@50518
    97
traytel@50518
    98
lemma shift_simps[simp]:
traytel@50518
    99
   "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
traytel@50518
   100
   "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
traytel@51141
   101
  by (induct xs) auto
traytel@50518
   102
traytel@51772
   103
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
traytel@51141
   104
  by (induct xs) auto
traytel@50518
   105
traytel@51352
   106
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
traytel@51352
   107
  by (induct xs) auto
traytel@51352
   108
traytel@50518
   109
traytel@51141
   110
subsection {* set of streams with elements in some fixes set *}
traytel@50518
   111
traytel@50518
   112
coinductive_set
traytel@50518
   113
  streams :: "'a set => 'a stream set"
traytel@50518
   114
  for A :: "'a set"
traytel@50518
   115
where
traytel@51023
   116
  Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
traytel@50518
   117
traytel@50518
   118
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
traytel@51141
   119
  by (induct w) auto
traytel@50518
   120
traytel@51772
   121
lemma sset_streams:
traytel@51772
   122
  assumes "sset s \<subseteq> A"
traytel@50518
   123
  shows "s \<in> streams A"
traytel@51772
   124
proof (coinduct rule: streams.coinduct[of "\<lambda>s'. \<exists>a s. s' = a ## s \<and> a \<in> A \<and> sset s \<subseteq> A"])
traytel@50518
   125
  case streams from assms show ?case by (cases s) auto
traytel@50518
   126
next
traytel@51772
   127
  fix s' assume "\<exists>a s. s' = a ## s \<and> a \<in> A \<and> sset s \<subseteq> A"
traytel@50518
   128
  then guess a s by (elim exE)
traytel@51023
   129
  with assms show "\<exists>a l. s' = a ## l \<and>
traytel@51772
   130
    a \<in> A \<and> ((\<exists>a s. l = a ## s \<and> a \<in> A \<and> sset s \<subseteq> A) \<or> l \<in> streams A)"
traytel@50518
   131
    by (cases s) auto
traytel@50518
   132
qed
traytel@50518
   133
traytel@50518
   134
traytel@51141
   135
subsection {* nth, take, drop for streams *}
traytel@51141
   136
traytel@51141
   137
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
traytel@51141
   138
  "s !! 0 = shd s"
traytel@51141
   139
| "s !! Suc n = stl s !! n"
traytel@51141
   140
traytel@51772
   141
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
traytel@51141
   142
  by (induct n arbitrary: s) auto
traytel@51141
   143
traytel@51141
   144
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
traytel@51141
   145
  by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
traytel@51141
   146
traytel@51141
   147
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
traytel@51141
   148
  by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
traytel@51141
   149
traytel@51772
   150
lemma snth_sset[simp]: "s !! n \<in> sset s"
traytel@51772
   151
  by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
traytel@51141
   152
traytel@51772
   153
lemma sset_range: "sset s = range (snth s)"
traytel@51141
   154
proof (intro equalityI subsetI)
traytel@51772
   155
  fix x assume "x \<in> sset s"
traytel@51141
   156
  thus "x \<in> range (snth s)"
traytel@51141
   157
  proof (induct s)
traytel@51141
   158
    case (stl s x)
traytel@51141
   159
    then obtain n where "x = stl s !! n" by auto
traytel@51141
   160
    thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
traytel@51141
   161
  qed (auto intro: range_eqI[of _ _ 0])
traytel@51141
   162
qed auto
traytel@50518
   163
traytel@50518
   164
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
traytel@50518
   165
  "stake 0 s = []"
traytel@50518
   166
| "stake (Suc n) s = shd s # stake n (stl s)"
traytel@50518
   167
traytel@51141
   168
lemma length_stake[simp]: "length (stake n s) = n"
traytel@51141
   169
  by (induct n arbitrary: s) auto
traytel@51141
   170
traytel@51772
   171
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
traytel@51141
   172
  by (induct n arbitrary: s) auto
traytel@51141
   173
traytel@50518
   174
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
traytel@50518
   175
  "sdrop 0 s = s"
traytel@50518
   176
| "sdrop (Suc n) s = sdrop n (stl s)"
traytel@50518
   177
traytel@51141
   178
lemma sdrop_simps[simp]:
traytel@51141
   179
  "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
traytel@51141
   180
  by (induct n arbitrary: s)  auto
traytel@51141
   181
traytel@51772
   182
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
traytel@51141
   183
  by (induct n arbitrary: s) auto
traytel@50518
   184
traytel@51352
   185
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
traytel@51352
   186
  by (induct n) auto
traytel@51352
   187
traytel@50518
   188
lemma stake_sdrop: "stake n s @- sdrop n s = s"
traytel@51141
   189
  by (induct n arbitrary: s) auto
traytel@51141
   190
traytel@51141
   191
lemma id_stake_snth_sdrop:
traytel@51141
   192
  "s = stake i s @- s !! i ## sdrop (Suc i) s"
traytel@51141
   193
  by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
traytel@50518
   194
traytel@51772
   195
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
traytel@51141
   196
proof
traytel@51141
   197
  assume ?R
traytel@51141
   198
  thus ?L 
blanchet@51779
   199
    by (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>n. s1 = smap f (sdrop n s) \<and> s2 = sdrop n s'", consumes 0])
traytel@51141
   200
      (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
traytel@51141
   201
qed auto
traytel@51141
   202
traytel@51141
   203
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
traytel@51141
   204
  by (induct n) auto
traytel@50518
   205
traytel@50518
   206
lemma sdrop_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> sdrop n s = s'"
traytel@51141
   207
  by (induct n arbitrary: w s) auto
traytel@50518
   208
traytel@50518
   209
lemma stake_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> stake n s = w"
traytel@51141
   210
  by (induct n arbitrary: w s) auto
traytel@50518
   211
traytel@50518
   212
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
traytel@51141
   213
  by (induct m arbitrary: s) auto
traytel@50518
   214
traytel@50518
   215
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
traytel@51141
   216
  by (induct m arbitrary: s) auto
traytel@51141
   217
traytel@51430
   218
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
traytel@51430
   219
  "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
traytel@51430
   220
traytel@51430
   221
lemma sdrop_while_Stream[code]:
traytel@51430
   222
  "sdrop_while P (Stream a s) = (if P a then sdrop_while P s else Stream a s)"
traytel@51430
   223
  by (subst sdrop_while.simps) simp
traytel@51430
   224
traytel@51430
   225
lemma sdrop_while_sdrop_LEAST:
traytel@51430
   226
  assumes "\<exists>n. P (s !! n)"
traytel@51430
   227
  shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
traytel@51430
   228
proof -
traytel@51430
   229
  from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
traytel@51430
   230
    and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
traytel@51430
   231
  thus ?thesis unfolding *
traytel@51430
   232
  proof (induct m arbitrary: s)
traytel@51430
   233
    case (Suc m)
traytel@51430
   234
    hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
traytel@51430
   235
      by (metis (full_types) not_less_eq_eq snth.simps(2))
traytel@51430
   236
    moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
traytel@51430
   237
    ultimately show ?case by (subst sdrop_while.simps) simp
traytel@51430
   238
  qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
traytel@51430
   239
qed
traytel@51430
   240
traytel@52905
   241
definition "sfilter P = stream_unfold (shd o sdrop_while (Not o P)) (stl o sdrop_while (Not o P))"
traytel@52905
   242
traytel@52905
   243
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
traytel@52905
   244
proof (cases "P x")
traytel@52905
   245
  case True thus ?thesis unfolding sfilter_def
traytel@52905
   246
    by (subst stream.unfold) (simp add: sdrop_while_Stream)
traytel@52905
   247
next
traytel@52905
   248
  case False thus ?thesis unfolding sfilter_def
traytel@52905
   249
    by (subst (1 2) stream.unfold) (simp add: sdrop_while_Stream)
traytel@52905
   250
qed
traytel@52905
   251
traytel@51141
   252
traytel@51141
   253
subsection {* unary predicates lifted to streams *}
traytel@51141
   254
traytel@51141
   255
definition "stream_all P s = (\<forall>p. P (s !! p))"
traytel@51141
   256
traytel@51772
   257
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
traytel@51772
   258
  unfolding stream_all_def sset_range by auto
traytel@51141
   259
traytel@51141
   260
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
traytel@51141
   261
  unfolding stream_all_iff list_all_iff by auto
traytel@51141
   262
traytel@51141
   263
traytel@51141
   264
subsection {* recurring stream out of a list *}
traytel@51141
   265
traytel@51141
   266
definition cycle :: "'a list \<Rightarrow> 'a stream" where
traytel@51141
   267
  "cycle = stream_unfold hd (\<lambda>xs. tl xs @ [hd xs])"
traytel@51141
   268
traytel@51141
   269
lemma cycle_simps[simp]:
traytel@51141
   270
  "shd (cycle u) = hd u"
traytel@51141
   271
  "stl (cycle u) = cycle (tl u @ [hd u])"
traytel@51141
   272
  by (auto simp: cycle_def)
traytel@51141
   273
traytel@51141
   274
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
blanchet@51788
   275
proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>u. s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []", consumes 0, case_names _ Eq_stream])
blanchet@51788
   276
  case (Eq_stream s1 s2)
traytel@51141
   277
  then obtain u where "s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []" by blast
traytel@51141
   278
  thus ?case using stream.unfold[of hd "\<lambda>xs. tl xs @ [hd xs]" u] by (auto simp: cycle_def)
traytel@51141
   279
qed auto
traytel@51141
   280
traytel@51409
   281
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
blanchet@51788
   282
proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>x xs. s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])", consumes 0, case_names _ Eq_stream])
blanchet@51788
   283
  case (Eq_stream s1 s2)
traytel@51141
   284
  then obtain x xs where "s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])" by blast
traytel@51141
   285
  thus ?case
traytel@51141
   286
    by (auto simp: cycle_def intro!: exI[of _ "hd (xs @ [x])"] exI[of _ "tl (xs @ [x])"] stream.unfold)
traytel@51141
   287
qed auto
traytel@50518
   288
traytel@50518
   289
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
traytel@51141
   290
  by (auto dest: arg_cong[of _ _ stl])
traytel@50518
   291
traytel@50518
   292
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
traytel@50518
   293
proof (induct n arbitrary: u)
traytel@50518
   294
  case (Suc n) thus ?case by (cases u) auto
traytel@50518
   295
qed auto
traytel@50518
   296
traytel@50518
   297
lemma stake_cycle_le[simp]:
traytel@50518
   298
  assumes "u \<noteq> []" "n < length u"
traytel@50518
   299
  shows "stake n (cycle u) = take n u"
traytel@50518
   300
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
traytel@51141
   301
  by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
traytel@50518
   302
traytel@50518
   303
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
traytel@51141
   304
  by (metis cycle_decomp stake_shift)
traytel@50518
   305
traytel@50518
   306
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
traytel@51141
   307
  by (metis cycle_decomp sdrop_shift)
traytel@50518
   308
traytel@50518
   309
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   310
   stake n (cycle u) = concat (replicate (n div length u) u)"
traytel@51141
   311
  by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
traytel@50518
   312
traytel@50518
   313
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   314
   sdrop n (cycle u) = cycle u"
traytel@51141
   315
  by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
traytel@50518
   316
traytel@50518
   317
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
traytel@50518
   318
   stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
traytel@51141
   319
  by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
traytel@50518
   320
traytel@50518
   321
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
traytel@51141
   322
  by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
traytel@51141
   323
traytel@51141
   324
traytel@51141
   325
subsection {* stream repeating a single element *}
traytel@51141
   326
traytel@51141
   327
definition "same x = stream_unfold (\<lambda>_. x) id ()"
traytel@51141
   328
traytel@51141
   329
lemma same_simps[simp]: "shd (same x) = x" "stl (same x) = same x"
traytel@51141
   330
  unfolding same_def by auto
traytel@51141
   331
traytel@51409
   332
lemma same_unfold[code]: "same x = x ## same x"
traytel@51141
   333
  by (metis same_simps stream.collapse)
traytel@51141
   334
traytel@51141
   335
lemma snth_same[simp]: "same x !! n = x"
traytel@51141
   336
  unfolding same_def by (induct n) auto
traytel@51141
   337
traytel@51141
   338
lemma stake_same[simp]: "stake n (same x) = replicate n x"
traytel@51141
   339
  unfolding same_def by (induct n) (auto simp: upt_rec)
traytel@51141
   340
traytel@51141
   341
lemma sdrop_same[simp]: "sdrop n (same x) = same x"
traytel@51141
   342
  unfolding same_def by (induct n) auto
traytel@51141
   343
traytel@51141
   344
lemma shift_replicate_same[simp]: "replicate n x @- same x = same x"
traytel@51141
   345
  by (metis sdrop_same stake_same stake_sdrop)
traytel@51141
   346
traytel@51141
   347
lemma stream_all_same[simp]: "stream_all P (same x) \<longleftrightarrow> P x"
traytel@51141
   348
  unfolding stream_all_def by auto
traytel@51141
   349
traytel@51141
   350
lemma same_cycle: "same x = cycle [x]"
traytel@51141
   351
  by (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. s1 = same x \<and> s2 = cycle [x]"]) auto
traytel@51141
   352
traytel@51141
   353
traytel@51141
   354
subsection {* stream of natural numbers *}
traytel@51141
   355
traytel@51141
   356
definition "fromN n = stream_unfold id Suc n"
traytel@51141
   357
traytel@51141
   358
lemma fromN_simps[simp]: "shd (fromN n) = n" "stl (fromN n) = fromN (Suc n)"
traytel@51141
   359
  unfolding fromN_def by auto
traytel@51141
   360
traytel@51409
   361
lemma fromN_unfold[code]: "fromN n = n ## fromN (Suc n)"
traytel@51409
   362
  unfolding fromN_def by (metis id_def stream.unfold)
traytel@51409
   363
traytel@51141
   364
lemma snth_fromN[simp]: "fromN n !! m = n + m"
traytel@51141
   365
  unfolding fromN_def by (induct m arbitrary: n) auto
traytel@51141
   366
traytel@51141
   367
lemma stake_fromN[simp]: "stake m (fromN n) = [n ..< m + n]"
traytel@51141
   368
  unfolding fromN_def by (induct m arbitrary: n) (auto simp: upt_rec)
traytel@51141
   369
traytel@51141
   370
lemma sdrop_fromN[simp]: "sdrop m (fromN n) = fromN (n + m)"
traytel@51141
   371
  unfolding fromN_def by (induct m arbitrary: n) auto
traytel@51141
   372
traytel@51772
   373
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}" (is "?L = ?R")
traytel@51352
   374
proof safe
traytel@51352
   375
  fix m assume "m : ?L"
traytel@51352
   376
  moreover
traytel@51772
   377
  { fix s assume "m \<in> sset s" "\<exists>n'\<ge>n. s = fromN n'"
traytel@51772
   378
    hence "n \<le> m" by (induct arbitrary: n rule: sset_induct1) fastforce+
traytel@51352
   379
  }
traytel@51352
   380
  ultimately show "n \<le> m" by blast
traytel@51352
   381
next
traytel@51772
   382
  fix m assume "n \<le> m" thus "m \<in> ?L" by (metis le_iff_add snth_fromN snth_sset)
traytel@51352
   383
qed
traytel@51352
   384
traytel@51141
   385
abbreviation "nats \<equiv> fromN 0"
traytel@51141
   386
traytel@51141
   387
traytel@51462
   388
subsection {* flatten a stream of lists *}
traytel@51462
   389
traytel@51462
   390
definition flat where
traytel@51462
   391
  "flat \<equiv> stream_unfold (hd o shd) (\<lambda>s. if tl (shd s) = [] then stl s else tl (shd s) ## stl s)"
traytel@51462
   392
traytel@51462
   393
lemma flat_simps[simp]:
traytel@51462
   394
  "shd (flat ws) = hd (shd ws)"
traytel@51462
   395
  "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
traytel@51462
   396
  unfolding flat_def by auto
traytel@51462
   397
traytel@51462
   398
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
traytel@51462
   399
  unfolding flat_def using stream.unfold[of "hd o shd" _ "(x # xs) ## ws"] by auto
traytel@51462
   400
traytel@51462
   401
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
traytel@51462
   402
  by (induct xs) auto
traytel@51462
   403
traytel@51462
   404
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
traytel@51462
   405
  by (cases ws) auto
traytel@51462
   406
traytel@51772
   407
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
traytel@51462
   408
  shd s ! n else flat (stl s) !! (n - length (shd s)))"
traytel@51772
   409
  by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
traytel@51462
   410
traytel@51772
   411
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
traytel@51772
   412
  sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
traytel@51462
   413
proof safe
traytel@51462
   414
  fix x assume ?P "x : ?L"
traytel@51772
   415
  then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
traytel@51462
   416
  with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
traytel@51462
   417
  proof (atomize_elim, induct m arbitrary: s rule: less_induct)
traytel@51462
   418
    case (less y)
traytel@51462
   419
    thus ?case
traytel@51462
   420
    proof (cases "y < length (shd s)")
traytel@51462
   421
      case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
traytel@51462
   422
    next
traytel@51462
   423
      case False
traytel@51462
   424
      hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
traytel@51462
   425
      moreover
traytel@51462
   426
      { from less(2) have "length (shd s) > 0" by (cases s) simp_all
traytel@51462
   427
        moreover with False have "y > 0" by (cases y) simp_all
traytel@51462
   428
        ultimately have "y - length (shd s) < y" by simp
traytel@51462
   429
      }
traytel@51772
   430
      moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
traytel@51462
   431
      ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
traytel@51462
   432
      thus ?thesis by (metis snth.simps(2))
traytel@51462
   433
    qed
traytel@51462
   434
  qed
traytel@51772
   435
  thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
traytel@51462
   436
next
traytel@51772
   437
  fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
traytel@51772
   438
    by (induct rule: sset_induct1)
traytel@51772
   439
      (metis UnI1 flat_unfold shift.simps(1) sset_shift,
traytel@51772
   440
       metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
traytel@51462
   441
qed
traytel@51462
   442
traytel@51462
   443
traytel@51462
   444
subsection {* merge a stream of streams *}
traytel@51462
   445
traytel@51462
   446
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
traytel@51772
   447
  "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
traytel@51462
   448
traytel@51462
   449
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
traytel@51462
   450
  by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
traytel@51462
   451
traytel@51772
   452
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
traytel@51462
   453
proof (cases "n \<le> m")
traytel@51462
   454
  case False thus ?thesis unfolding smerge_def
traytel@51772
   455
    by (subst sset_flat)
blanchet@53290
   456
      (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
traytel@51462
   457
        intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
traytel@51462
   458
next
traytel@51462
   459
  case True thus ?thesis unfolding smerge_def
traytel@51772
   460
    by (subst sset_flat)
blanchet@53290
   461
      (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
traytel@51462
   462
        intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
traytel@51462
   463
qed
traytel@51462
   464
traytel@51772
   465
lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
traytel@51462
   466
proof safe
traytel@51772
   467
  fix x assume "x \<in> sset (smerge ss)"
traytel@51772
   468
  thus "x \<in> UNION (sset ss) sset"
traytel@51772
   469
    unfolding smerge_def by (subst (asm) sset_flat)
blanchet@53290
   470
      (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
traytel@51462
   471
next
traytel@51772
   472
  fix s x assume "s \<in> sset ss" "x \<in> sset s"
traytel@51772
   473
  thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
traytel@51462
   474
qed
traytel@51462
   475
traytel@51462
   476
traytel@51462
   477
subsection {* product of two streams *}
traytel@51462
   478
traytel@51462
   479
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
traytel@51772
   480
  "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
traytel@51462
   481
traytel@51772
   482
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
blanchet@53290
   483
  unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
traytel@51462
   484
traytel@51462
   485
traytel@51462
   486
subsection {* interleave two streams *}
traytel@51462
   487
traytel@51462
   488
definition sinterleave :: "'a stream \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
traytel@51462
   489
  [code del]: "sinterleave s1 s2 =
traytel@51462
   490
    stream_unfold (\<lambda>(s1, s2). shd s1) (\<lambda>(s1, s2). (s2, stl s1)) (s1, s2)"
traytel@51462
   491
traytel@51462
   492
lemma sinterleave_simps[simp]:
traytel@51462
   493
  "shd (sinterleave s1 s2) = shd s1" "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
traytel@51462
   494
  unfolding sinterleave_def by auto
traytel@51462
   495
traytel@51462
   496
lemma sinterleave_code[code]:
traytel@51462
   497
  "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
traytel@51462
   498
  by (metis sinterleave_simps stream.exhaust stream.sels)
traytel@51462
   499
traytel@51462
   500
lemma sinterleave_snth[simp]:
traytel@51462
   501
  "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
traytel@51462
   502
   "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
traytel@51462
   503
  by (induct n arbitrary: s1 s2)
traytel@51462
   504
    (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
traytel@51462
   505
traytel@51772
   506
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
traytel@51462
   507
proof (intro equalityI subsetI)
traytel@51772
   508
  fix x assume "x \<in> sset (sinterleave s1 s2)"
traytel@51772
   509
  then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
traytel@51772
   510
  thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
traytel@51462
   511
next
traytel@51772
   512
  fix x assume "x \<in> sset s1 \<union> sset s2"
traytel@51772
   513
  thus "x \<in> sset (sinterleave s1 s2)"
traytel@51462
   514
  proof
traytel@51772
   515
    assume "x \<in> sset s1"
traytel@51772
   516
    then obtain n where "x = s1 !! n" unfolding sset_range by blast
traytel@51462
   517
    hence "sinterleave s1 s2 !! (2 * n) = x" by simp
traytel@51772
   518
    thus ?thesis unfolding sset_range by blast
traytel@51462
   519
  next
traytel@51772
   520
    assume "x \<in> sset s2"
traytel@51772
   521
    then obtain n where "x = s2 !! n" unfolding sset_range by blast
traytel@51462
   522
    hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
traytel@51772
   523
    thus ?thesis unfolding sset_range by blast
traytel@51462
   524
  qed
traytel@51462
   525
qed
traytel@51462
   526
traytel@51462
   527
traytel@51141
   528
subsection {* zip *}
traytel@51141
   529
traytel@51141
   530
definition "szip s1 s2 =
traytel@51141
   531
  stream_unfold (map_pair shd shd) (map_pair stl stl) (s1, s2)"
traytel@51141
   532
traytel@51141
   533
lemma szip_simps[simp]:
traytel@51141
   534
  "shd (szip s1 s2) = (shd s1, shd s2)" "stl (szip s1 s2) = szip (stl s1) (stl s2)"
traytel@51141
   535
  unfolding szip_def by auto
traytel@51141
   536
traytel@51409
   537
lemma szip_unfold[code]: "szip (Stream a s1) (Stream b s2) = Stream (a, b) (szip s1 s2)"
traytel@51409
   538
  unfolding szip_def by (subst stream.unfold) simp
traytel@51409
   539
traytel@51141
   540
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
traytel@51141
   541
  by (induct n arbitrary: s1 s2) auto
traytel@51141
   542
traytel@51141
   543
traytel@51141
   544
subsection {* zip via function *}
traytel@51141
   545
traytel@51772
   546
definition "smap2 f s1 s2 =
traytel@51141
   547
  stream_unfold (\<lambda>(s1,s2). f (shd s1) (shd s2)) (map_pair stl stl) (s1, s2)"
traytel@51141
   548
traytel@51772
   549
lemma smap2_simps[simp]:
traytel@51772
   550
  "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
traytel@51772
   551
  "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
traytel@51772
   552
  unfolding smap2_def by auto
traytel@51141
   553
traytel@51772
   554
lemma smap2_unfold[code]:
traytel@51772
   555
  "smap2 f (Stream a s1) (Stream b s2) = Stream (f a b) (smap2 f s1 s2)"
traytel@51772
   556
  unfolding smap2_def by (subst stream.unfold) simp
traytel@51409
   557
traytel@51772
   558
lemma smap2_szip:
traytel@51772
   559
  "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
traytel@51141
   560
  by (coinduct rule: stream.coinduct[of
traytel@51772
   561
    "\<lambda>s1 s2. \<exists>s1' s2'. s1 = smap2 f s1' s2' \<and> s2 = smap (split f) (szip s1' s2')"])
traytel@51141
   562
    fastforce+
traytel@50518
   563
traytel@51462
   564
traytel@51462
   565
subsection {* iterated application of a function *}
traytel@51462
   566
traytel@51462
   567
definition siterate :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a stream" where
traytel@51462
   568
  "siterate f x = x ## stream_unfold f f x"
traytel@51462
   569
traytel@51462
   570
lemma siterate_simps[simp]: "shd (siterate f x) = x" "stl (siterate f x) = siterate f (f x)"
traytel@51462
   571
  unfolding siterate_def by (auto intro: stream.unfold)
traytel@51462
   572
traytel@51462
   573
lemma siterate_code[code]: "siterate f x = x ## siterate f (f x)"
traytel@51462
   574
  by (metis siterate_def stream.unfold)
traytel@51462
   575
traytel@51462
   576
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
traytel@51462
   577
  by (induct n arbitrary: s) auto
traytel@51462
   578
traytel@51462
   579
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
traytel@51462
   580
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
traytel@51462
   581
traytel@51462
   582
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
traytel@51462
   583
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
traytel@51462
   584
traytel@51462
   585
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
traytel@51462
   586
  by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
traytel@51462
   587
traytel@51772
   588
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
traytel@51772
   589
  by (auto simp: sset_range)
traytel@51462
   590
traytel@50518
   591
end