src/HOL/Arith.ML
author nipkow
Thu Jun 22 12:44:29 1995 +0200 (1995-06-22)
changeset 1152 b6e1e74695f6
parent 972 e61b058d58d2
child 1198 23be92d5bf4d
permissions -rw-r--r--
Added add_lessD1
clasohm@923
     1
(*  Title: 	HOL/Arith.ML
clasohm@923
     2
    ID:         $Id$
clasohm@923
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1993  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Proofs about elementary arithmetic: addition, multiplication, etc.
clasohm@923
     7
Tests definitions and simplifier.
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
open Arith;
clasohm@923
    11
clasohm@923
    12
(*** Basic rewrite rules for the arithmetic operators ***)
clasohm@923
    13
clasohm@923
    14
val [pred_0, pred_Suc] = nat_recs pred_def;
clasohm@923
    15
val [add_0,add_Suc] = nat_recs add_def; 
clasohm@923
    16
val [mult_0,mult_Suc] = nat_recs mult_def; 
clasohm@923
    17
clasohm@923
    18
(** Difference **)
clasohm@923
    19
clasohm@923
    20
val diff_0 = diff_def RS def_nat_rec_0;
clasohm@923
    21
clasohm@923
    22
qed_goalw "diff_0_eq_0" Arith.thy [diff_def, pred_def]
clasohm@923
    23
    "0 - n = 0"
clasohm@923
    24
 (fn _ => [nat_ind_tac "n" 1,  ALLGOALS(asm_simp_tac nat_ss)]);
clasohm@923
    25
clasohm@923
    26
(*Must simplify BEFORE the induction!!  (Else we get a critical pair)
clasohm@923
    27
  Suc(m) - Suc(n)   rewrites to   pred(Suc(m) - n)  *)
clasohm@923
    28
qed_goalw "diff_Suc_Suc" Arith.thy [diff_def, pred_def]
clasohm@923
    29
    "Suc(m) - Suc(n) = m - n"
clasohm@923
    30
 (fn _ =>
clasohm@923
    31
  [simp_tac nat_ss 1, nat_ind_tac "n" 1, ALLGOALS(asm_simp_tac nat_ss)]);
clasohm@923
    32
clasohm@923
    33
(*** Simplification over add, mult, diff ***)
clasohm@923
    34
clasohm@923
    35
val arith_simps =
clasohm@923
    36
 [pred_0, pred_Suc, add_0, add_Suc, mult_0, mult_Suc,
clasohm@923
    37
  diff_0, diff_0_eq_0, diff_Suc_Suc];
clasohm@923
    38
clasohm@923
    39
val arith_ss = nat_ss addsimps arith_simps;
clasohm@923
    40
clasohm@923
    41
(**** Inductive properties of the operators ****)
clasohm@923
    42
clasohm@923
    43
(*** Addition ***)
clasohm@923
    44
clasohm@923
    45
qed_goal "add_0_right" Arith.thy "m + 0 = m"
clasohm@923
    46
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
    47
clasohm@923
    48
qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)"
clasohm@923
    49
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
    50
clasohm@923
    51
val arith_ss = arith_ss addsimps [add_0_right,add_Suc_right];
clasohm@923
    52
clasohm@923
    53
(*Associative law for addition*)
clasohm@923
    54
qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)"
clasohm@923
    55
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
    56
clasohm@923
    57
(*Commutative law for addition*)  
clasohm@923
    58
qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)"
clasohm@923
    59
 (fn _ =>  [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
    60
clasohm@923
    61
qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)"
clasohm@923
    62
 (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1,
clasohm@923
    63
           rtac (add_commute RS arg_cong) 1]);
clasohm@923
    64
clasohm@923
    65
(*Addition is an AC-operator*)
clasohm@923
    66
val add_ac = [add_assoc, add_commute, add_left_commute];
clasohm@923
    67
clasohm@923
    68
goal Arith.thy "!!k::nat. (k + m = k + n) = (m=n)";
clasohm@923
    69
by (nat_ind_tac "k" 1);
clasohm@923
    70
by (simp_tac arith_ss 1);
clasohm@923
    71
by (asm_simp_tac arith_ss 1);
clasohm@923
    72
qed "add_left_cancel";
clasohm@923
    73
clasohm@923
    74
goal Arith.thy "!!k::nat. (m + k = n + k) = (m=n)";
clasohm@923
    75
by (nat_ind_tac "k" 1);
clasohm@923
    76
by (simp_tac arith_ss 1);
clasohm@923
    77
by (asm_simp_tac arith_ss 1);
clasohm@923
    78
qed "add_right_cancel";
clasohm@923
    79
clasohm@923
    80
goal Arith.thy "!!k::nat. (k + m <= k + n) = (m<=n)";
clasohm@923
    81
by (nat_ind_tac "k" 1);
clasohm@923
    82
by (simp_tac arith_ss 1);
clasohm@923
    83
by (asm_simp_tac (arith_ss addsimps [Suc_le_mono]) 1);
clasohm@923
    84
qed "add_left_cancel_le";
clasohm@923
    85
clasohm@923
    86
goal Arith.thy "!!k::nat. (k + m < k + n) = (m<n)";
clasohm@923
    87
by (nat_ind_tac "k" 1);
clasohm@923
    88
by (simp_tac arith_ss 1);
clasohm@923
    89
by (asm_simp_tac arith_ss 1);
clasohm@923
    90
qed "add_left_cancel_less";
clasohm@923
    91
clasohm@923
    92
(*** Multiplication ***)
clasohm@923
    93
clasohm@923
    94
(*right annihilation in product*)
clasohm@923
    95
qed_goal "mult_0_right" Arith.thy "m * 0 = 0"
clasohm@923
    96
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
    97
clasohm@923
    98
(*right Sucessor law for multiplication*)
clasohm@923
    99
qed_goal "mult_Suc_right" Arith.thy  "m * Suc(n) = m + (m * n)"
clasohm@923
   100
 (fn _ => [nat_ind_tac "m" 1,
clasohm@923
   101
           ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]);
clasohm@923
   102
clasohm@923
   103
val arith_ss = arith_ss addsimps [mult_0_right,mult_Suc_right];
clasohm@923
   104
clasohm@923
   105
(*Commutative law for multiplication*)
clasohm@923
   106
qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)"
clasohm@923
   107
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS (asm_simp_tac arith_ss)]);
clasohm@923
   108
clasohm@923
   109
(*addition distributes over multiplication*)
clasohm@923
   110
qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)"
clasohm@923
   111
 (fn _ => [nat_ind_tac "m" 1,
clasohm@923
   112
           ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]);
clasohm@923
   113
clasohm@923
   114
qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)"
clasohm@923
   115
 (fn _ => [nat_ind_tac "m" 1,
clasohm@923
   116
           ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]);
clasohm@923
   117
clasohm@923
   118
val arith_ss = arith_ss addsimps [add_mult_distrib,add_mult_distrib2];
clasohm@923
   119
clasohm@923
   120
(*Associative law for multiplication*)
clasohm@923
   121
qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)"
clasohm@923
   122
  (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
   123
clasohm@923
   124
qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)"
clasohm@923
   125
 (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1,
clasohm@923
   126
           rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]);
clasohm@923
   127
clasohm@923
   128
val mult_ac = [mult_assoc,mult_commute,mult_left_commute];
clasohm@923
   129
clasohm@923
   130
(*** Difference ***)
clasohm@923
   131
clasohm@923
   132
qed_goal "diff_self_eq_0" Arith.thy "m - m = 0"
clasohm@923
   133
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
clasohm@923
   134
clasohm@923
   135
(*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *)
clasohm@923
   136
val [prem] = goal Arith.thy "[| ~ m<n |] ==> n+(m-n) = (m::nat)";
clasohm@923
   137
by (rtac (prem RS rev_mp) 1);
clasohm@923
   138
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   139
by (ALLGOALS(asm_simp_tac arith_ss));
clasohm@923
   140
qed "add_diff_inverse";
clasohm@923
   141
clasohm@923
   142
clasohm@923
   143
(*** Remainder ***)
clasohm@923
   144
clasohm@923
   145
goal Arith.thy "m - n < Suc(m)";
clasohm@923
   146
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   147
by (etac less_SucE 3);
clasohm@923
   148
by (ALLGOALS(asm_simp_tac arith_ss));
clasohm@923
   149
qed "diff_less_Suc";
clasohm@923
   150
clasohm@923
   151
goal Arith.thy "!!m::nat. m - n <= m";
clasohm@923
   152
by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1);
clasohm@923
   153
by (ALLGOALS (asm_simp_tac arith_ss));
clasohm@923
   154
by (etac le_trans 1);
clasohm@923
   155
by (simp_tac (HOL_ss addsimps [le_eq_less_or_eq, lessI]) 1);
clasohm@923
   156
qed "diff_le_self";
clasohm@923
   157
clasohm@923
   158
goal Arith.thy "!!n::nat. (n+m) - n = m";
clasohm@923
   159
by (nat_ind_tac "n" 1);
clasohm@923
   160
by (ALLGOALS (asm_simp_tac arith_ss));
clasohm@923
   161
qed "diff_add_inverse";
clasohm@923
   162
clasohm@923
   163
goal Arith.thy "!!n::nat. n - (n+m) = 0";
clasohm@923
   164
by (nat_ind_tac "n" 1);
clasohm@923
   165
by (ALLGOALS (asm_simp_tac arith_ss));
clasohm@923
   166
qed "diff_add_0";
clasohm@923
   167
clasohm@923
   168
(*In ordinary notation: if 0<n and n<=m then m-n < m *)
clasohm@923
   169
goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
clasohm@923
   170
by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
clasohm@923
   171
by (fast_tac HOL_cs 1);
clasohm@923
   172
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   173
by (ALLGOALS(asm_simp_tac(arith_ss addsimps [diff_less_Suc])));
clasohm@923
   174
qed "div_termination";
clasohm@923
   175
clasohm@923
   176
val wf_less_trans = wf_pred_nat RS wf_trancl RSN (2, def_wfrec RS trans);
clasohm@923
   177
clasohm@972
   178
goalw Nat.thy [less_def] "(m,n) : pred_nat^+ = (m<n)";
clasohm@923
   179
by (rtac refl 1);
clasohm@923
   180
qed "less_eq";
clasohm@923
   181
clasohm@923
   182
goal Arith.thy "!!m. m<n ==> m mod n = m";
clasohm@923
   183
by (rtac (mod_def RS wf_less_trans) 1);
clasohm@923
   184
by(asm_simp_tac HOL_ss 1);
clasohm@923
   185
qed "mod_less";
clasohm@923
   186
clasohm@923
   187
goal Arith.thy "!!m. [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n";
clasohm@923
   188
by (rtac (mod_def RS wf_less_trans) 1);
clasohm@923
   189
by(asm_simp_tac (nat_ss addsimps [div_termination, cut_apply, less_eq]) 1);
clasohm@923
   190
qed "mod_geq";
clasohm@923
   191
clasohm@923
   192
clasohm@923
   193
(*** Quotient ***)
clasohm@923
   194
clasohm@923
   195
goal Arith.thy "!!m. m<n ==> m div n = 0";
clasohm@923
   196
by (rtac (div_def RS wf_less_trans) 1);
clasohm@923
   197
by(asm_simp_tac nat_ss 1);
clasohm@923
   198
qed "div_less";
clasohm@923
   199
clasohm@923
   200
goal Arith.thy "!!M. [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
clasohm@923
   201
by (rtac (div_def RS wf_less_trans) 1);
clasohm@923
   202
by(asm_simp_tac (nat_ss addsimps [div_termination, cut_apply, less_eq]) 1);
clasohm@923
   203
qed "div_geq";
clasohm@923
   204
clasohm@923
   205
(*Main Result about quotient and remainder.*)
clasohm@923
   206
goal Arith.thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
clasohm@923
   207
by (res_inst_tac [("n","m")] less_induct 1);
clasohm@923
   208
by (rename_tac "k" 1);    (*Variable name used in line below*)
clasohm@923
   209
by (case_tac "k<n" 1);
clasohm@923
   210
by (ALLGOALS (asm_simp_tac(arith_ss addsimps (add_ac @
clasohm@923
   211
                       [mod_less, mod_geq, div_less, div_geq,
clasohm@923
   212
	                add_diff_inverse, div_termination]))));
clasohm@923
   213
qed "mod_div_equality";
clasohm@923
   214
clasohm@923
   215
clasohm@923
   216
(*** More results about difference ***)
clasohm@923
   217
clasohm@923
   218
val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0";
clasohm@923
   219
by (rtac (prem RS rev_mp) 1);
clasohm@923
   220
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   221
by (ALLGOALS (asm_simp_tac arith_ss));
clasohm@923
   222
qed "less_imp_diff_is_0";
clasohm@923
   223
clasohm@923
   224
val prems = goal Arith.thy "m-n = 0  -->  n-m = 0  -->  m=n";
clasohm@923
   225
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   226
by (REPEAT(simp_tac arith_ss 1 THEN TRY(atac 1)));
clasohm@923
   227
qed "diffs0_imp_equal_lemma";
clasohm@923
   228
clasohm@923
   229
(*  [| m-n = 0;  n-m = 0 |] ==> m=n  *)
clasohm@923
   230
bind_thm ("diffs0_imp_equal", (diffs0_imp_equal_lemma RS mp RS mp));
clasohm@923
   231
clasohm@923
   232
val [prem] = goal Arith.thy "m<n ==> 0<n-m";
clasohm@923
   233
by (rtac (prem RS rev_mp) 1);
clasohm@923
   234
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   235
by (ALLGOALS(asm_simp_tac arith_ss));
clasohm@923
   236
qed "less_imp_diff_positive";
clasohm@923
   237
clasohm@923
   238
val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
clasohm@923
   239
by (rtac (prem RS rev_mp) 1);
clasohm@923
   240
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   241
by (ALLGOALS(asm_simp_tac arith_ss));
clasohm@923
   242
qed "Suc_diff_n";
clasohm@923
   243
clasohm@965
   244
goal Arith.thy "Suc(m)-n = (if m<n then 0 else Suc m-n)";
clasohm@923
   245
by(simp_tac (nat_ss addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
clasohm@923
   246
                    setloop (split_tac [expand_if])) 1);
clasohm@923
   247
qed "if_Suc_diff_n";
clasohm@923
   248
clasohm@923
   249
goal Arith.thy "P(k) --> (!n. P(Suc(n))--> P(n)) --> P(k-i)";
clasohm@923
   250
by (res_inst_tac [("m","k"),("n","i")] diff_induct 1);
clasohm@923
   251
by (ALLGOALS (strip_tac THEN' simp_tac arith_ss THEN' TRY o fast_tac HOL_cs));
clasohm@923
   252
qed "zero_induct_lemma";
clasohm@923
   253
clasohm@923
   254
val prems = goal Arith.thy "[| P(k);  !!n. P(Suc(n)) ==> P(n) |] ==> P(0)";
clasohm@923
   255
by (rtac (diff_self_eq_0 RS subst) 1);
clasohm@923
   256
by (rtac (zero_induct_lemma RS mp RS mp) 1);
clasohm@923
   257
by (REPEAT (ares_tac ([impI,allI]@prems) 1));
clasohm@923
   258
qed "zero_induct";
clasohm@923
   259
clasohm@923
   260
(*13 July 1992: loaded in 105.7s*)
clasohm@923
   261
clasohm@923
   262
(**** Additional theorems about "less than" ****)
clasohm@923
   263
clasohm@923
   264
goal Arith.thy "!!m. m<n --> (? k. n=Suc(m+k))";
clasohm@923
   265
by (nat_ind_tac "n" 1);
clasohm@923
   266
by (ALLGOALS(simp_tac arith_ss));
clasohm@923
   267
by (REPEAT_FIRST (ares_tac [conjI, impI]));
clasohm@923
   268
by (res_inst_tac [("x","0")] exI 2);
clasohm@923
   269
by (simp_tac arith_ss 2);
clasohm@923
   270
by (safe_tac HOL_cs);
clasohm@923
   271
by (res_inst_tac [("x","Suc(k)")] exI 1);
clasohm@923
   272
by (simp_tac arith_ss 1);
clasohm@923
   273
val less_eq_Suc_add_lemma = result();
clasohm@923
   274
clasohm@923
   275
(*"m<n ==> ? k. n = Suc(m+k)"*)
clasohm@923
   276
bind_thm ("less_eq_Suc_add", less_eq_Suc_add_lemma RS mp);
clasohm@923
   277
clasohm@923
   278
clasohm@923
   279
goal Arith.thy "n <= ((m + n)::nat)";
clasohm@923
   280
by (nat_ind_tac "m" 1);
clasohm@923
   281
by (ALLGOALS(simp_tac arith_ss));
clasohm@923
   282
by (etac le_trans 1);
clasohm@923
   283
by (rtac (lessI RS less_imp_le) 1);
clasohm@923
   284
qed "le_add2";
clasohm@923
   285
clasohm@923
   286
goal Arith.thy "n <= ((n + m)::nat)";
clasohm@923
   287
by (simp_tac (arith_ss addsimps add_ac) 1);
clasohm@923
   288
by (rtac le_add2 1);
clasohm@923
   289
qed "le_add1";
clasohm@923
   290
clasohm@923
   291
bind_thm ("less_add_Suc1", (lessI RS (le_add1 RS le_less_trans)));
clasohm@923
   292
bind_thm ("less_add_Suc2", (lessI RS (le_add2 RS le_less_trans)));
clasohm@923
   293
clasohm@923
   294
(*"i <= j ==> i <= j+m"*)
clasohm@923
   295
bind_thm ("trans_le_add1", le_add1 RSN (2,le_trans));
clasohm@923
   296
clasohm@923
   297
(*"i <= j ==> i <= m+j"*)
clasohm@923
   298
bind_thm ("trans_le_add2", le_add2 RSN (2,le_trans));
clasohm@923
   299
clasohm@923
   300
(*"i < j ==> i < j+m"*)
clasohm@923
   301
bind_thm ("trans_less_add1", le_add1 RSN (2,less_le_trans));
clasohm@923
   302
clasohm@923
   303
(*"i < j ==> i < m+j"*)
clasohm@923
   304
bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans));
clasohm@923
   305
nipkow@1152
   306
goal Arith.thy "!!i. i+j < (k::nat) ==> i<k";
nipkow@1152
   307
be rev_mp 1;
nipkow@1152
   308
by(nat_ind_tac "j" 1);
nipkow@1152
   309
by (ALLGOALS(asm_simp_tac arith_ss));
nipkow@1152
   310
by(fast_tac (HOL_cs addDs [Suc_lessD]) 1);
nipkow@1152
   311
qed "add_lessD1";
nipkow@1152
   312
clasohm@923
   313
goal Arith.thy "!!k::nat. m <= n ==> m <= n+k";
clasohm@923
   314
by (eresolve_tac [le_trans] 1);
clasohm@923
   315
by (resolve_tac [le_add1] 1);
clasohm@923
   316
qed "le_imp_add_le";
clasohm@923
   317
clasohm@923
   318
goal Arith.thy "!!k::nat. m < n ==> m < n+k";
clasohm@923
   319
by (eresolve_tac [less_le_trans] 1);
clasohm@923
   320
by (resolve_tac [le_add1] 1);
clasohm@923
   321
qed "less_imp_add_less";
clasohm@923
   322
clasohm@923
   323
goal Arith.thy "m+k<=n --> m<=(n::nat)";
clasohm@923
   324
by (nat_ind_tac "k" 1);
clasohm@923
   325
by (ALLGOALS (asm_simp_tac arith_ss));
clasohm@923
   326
by (fast_tac (HOL_cs addDs [Suc_leD]) 1);
clasohm@923
   327
val add_leD1_lemma = result();
clasohm@923
   328
bind_thm ("add_leD1", add_leD1_lemma RS mp);;
clasohm@923
   329
clasohm@923
   330
goal Arith.thy "!!k l::nat. [| k<l; m+l = k+n |] ==> m<n";
clasohm@923
   331
by (safe_tac (HOL_cs addSDs [less_eq_Suc_add]));
clasohm@923
   332
by (asm_full_simp_tac
clasohm@923
   333
    (HOL_ss addsimps ([add_Suc_right RS sym, add_left_cancel] @add_ac)) 1);
clasohm@923
   334
by (eresolve_tac [subst] 1);
clasohm@923
   335
by (simp_tac (arith_ss addsimps [less_add_Suc1]) 1);
clasohm@923
   336
qed "less_add_eq_less";
clasohm@923
   337
clasohm@923
   338
clasohm@923
   339
(** Monotonicity of addition (from ZF/Arith) **)
clasohm@923
   340
clasohm@923
   341
(** Monotonicity results **)
clasohm@923
   342
clasohm@923
   343
(*strict, in 1st argument*)
clasohm@923
   344
goal Arith.thy "!!i j k::nat. i < j ==> i + k < j + k";
clasohm@923
   345
by (nat_ind_tac "k" 1);
clasohm@923
   346
by (ALLGOALS (asm_simp_tac arith_ss));
clasohm@923
   347
qed "add_less_mono1";
clasohm@923
   348
clasohm@923
   349
(*strict, in both arguments*)
clasohm@923
   350
goal Arith.thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l";
clasohm@923
   351
by (rtac (add_less_mono1 RS less_trans) 1);
clasohm@923
   352
by (REPEAT (etac asm_rl 1));
clasohm@923
   353
by (nat_ind_tac "j" 1);
clasohm@923
   354
by (ALLGOALS(asm_simp_tac arith_ss));
clasohm@923
   355
qed "add_less_mono";
clasohm@923
   356
clasohm@923
   357
(*A [clumsy] way of lifting < monotonicity to <= monotonicity *)
clasohm@923
   358
val [lt_mono,le] = goal Arith.thy
clasohm@923
   359
     "[| !!i j::nat. i<j ==> f(i) < f(j);	\
clasohm@923
   360
\        i <= j					\
clasohm@923
   361
\     |] ==> f(i) <= (f(j)::nat)";
clasohm@923
   362
by (cut_facts_tac [le] 1);
clasohm@923
   363
by (asm_full_simp_tac (HOL_ss addsimps [le_eq_less_or_eq]) 1);
clasohm@923
   364
by (fast_tac (HOL_cs addSIs [lt_mono]) 1);
clasohm@923
   365
qed "less_mono_imp_le_mono";
clasohm@923
   366
clasohm@923
   367
(*non-strict, in 1st argument*)
clasohm@923
   368
goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k";
clasohm@923
   369
by (res_inst_tac [("f", "%j.j+k")] less_mono_imp_le_mono 1);
clasohm@923
   370
by (eresolve_tac [add_less_mono1] 1);
clasohm@923
   371
by (assume_tac 1);
clasohm@923
   372
qed "add_le_mono1";
clasohm@923
   373
clasohm@923
   374
(*non-strict, in both arguments*)
clasohm@923
   375
goal Arith.thy "!!k l::nat. [|i<=j;  k<=l |] ==> i + k <= j + l";
clasohm@923
   376
by (etac (add_le_mono1 RS le_trans) 1);
clasohm@923
   377
by (simp_tac (HOL_ss addsimps [add_commute]) 1);
clasohm@923
   378
(*j moves to the end because it is free while k, l are bound*)
clasohm@923
   379
by (eresolve_tac [add_le_mono1] 1);
clasohm@923
   380
qed "add_le_mono";