src/HOL/ex/SOS.thy
author wenzelm
Mon Aug 31 21:28:08 2015 +0200 (2015-08-31)
changeset 61070 b72a990adfe2
parent 58630 71cdb885b3bb
child 61156 931b732617a2
permissions -rw-r--r--
prefer symbols;
wenzelm@58419
     1
(*  Title:      HOL/ex/SOS.thy
wenzelm@58418
     2
    Author:     Amine Chaieb, University of Cambridge
wenzelm@58418
     3
    Author:     Philipp Meyer, TU Muenchen
wenzelm@58418
     4
wenzelm@58419
     5
Examples for Sum_of_Squares.
wenzelm@58418
     6
*)
wenzelm@58418
     7
wenzelm@58419
     8
theory SOS
wenzelm@58418
     9
imports "~~/src/HOL/Library/Sum_of_Squares"
wenzelm@58418
    10
begin
wenzelm@58418
    11
wenzelm@58418
    12
lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
wenzelm@58630
    13
  by sos
wenzelm@58418
    14
wenzelm@58418
    15
lemma "a1 >= 0 & a2 >= 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)"
wenzelm@58630
    16
  by sos
wenzelm@58418
    17
wenzelm@58418
    18
lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0"
wenzelm@58630
    19
  by sos
wenzelm@58418
    20
wenzelm@58418
    21
lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1  --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1"
wenzelm@58630
    22
  by sos
wenzelm@58418
    23
wenzelm@58418
    24
lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z"
wenzelm@58630
    25
  by sos
wenzelm@58418
    26
wenzelm@58418
    27
lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3"
wenzelm@58630
    28
  by sos
wenzelm@58418
    29
wenzelm@58418
    30
lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)"
wenzelm@58630
    31
  by sos
wenzelm@58418
    32
wenzelm@58418
    33
lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1"
wenzelm@58630
    34
  by sos
wenzelm@58418
    35
wenzelm@58418
    36
lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1"
wenzelm@58630
    37
  by sos
wenzelm@58418
    38
wenzelm@58418
    39
lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)"
wenzelm@58630
    40
  by sos
wenzelm@58418
    41
wenzelm@58418
    42
wenzelm@58418
    43
text \<open>One component of denominator in dodecahedral example.\<close>
wenzelm@58418
    44
wenzelm@58418
    45
lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)"
wenzelm@58630
    46
  by sos
wenzelm@58418
    47
wenzelm@58418
    48
wenzelm@58418
    49
text \<open>Over a larger but simpler interval.\<close>
wenzelm@58418
    50
wenzelm@58418
    51
lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
wenzelm@58630
    52
  by sos
wenzelm@58418
    53
wenzelm@58418
    54
wenzelm@58418
    55
text \<open>We can do 12. I think 12 is a sharp bound; see PP's certificate.\<close>
wenzelm@58418
    56
wenzelm@58418
    57
lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
wenzelm@58630
    58
  by sos
wenzelm@58418
    59
wenzelm@58418
    60
wenzelm@58418
    61
text \<open>Inequality from sci.math (see "Leon-Sotelo, por favor").\<close>
wenzelm@58418
    62
wenzelm@58418
    63
lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2"
wenzelm@58630
    64
  by sos
wenzelm@58418
    65
wenzelm@58418
    66
lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2"
wenzelm@58630
    67
  by sos
wenzelm@58418
    68
wenzelm@58418
    69
lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2"
wenzelm@58630
    70
  by sos
wenzelm@58418
    71
wenzelm@58418
    72
lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \<longrightarrow> c * a^2 * b <= x"
wenzelm@58630
    73
  by sos
wenzelm@58418
    74
wenzelm@58418
    75
lemma "(0::real) < x --> 0 < 1 + x + x^2"
wenzelm@58630
    76
  by sos
wenzelm@58418
    77
wenzelm@58418
    78
lemma "(0::real) <= x --> 0 < 1 + x + x^2"
wenzelm@58630
    79
  by sos
wenzelm@58418
    80
wenzelm@58418
    81
lemma "(0::real) < 1 + x^2"
wenzelm@58630
    82
  by sos
wenzelm@58418
    83
wenzelm@58418
    84
lemma "(0::real) <= 1 + 2 * x + x^2"
wenzelm@58630
    85
  by sos
wenzelm@58418
    86
wenzelm@58418
    87
lemma "(0::real) < 1 + abs x"
wenzelm@58630
    88
  by sos
wenzelm@58418
    89
wenzelm@58418
    90
lemma "(0::real) < 1 + (1 + x)^2 * (abs x)"
wenzelm@58630
    91
  by sos
wenzelm@58418
    92
wenzelm@58418
    93
wenzelm@58418
    94
lemma "abs ((1::real) + x^2) = (1::real) + x^2"
wenzelm@58630
    95
  by sos
wenzelm@58418
    96
lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0"
wenzelm@58630
    97
  by sos
wenzelm@58418
    98
wenzelm@58418
    99
lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z"
wenzelm@58630
   100
  by sos
wenzelm@58418
   101
lemma "(1::real) < x --> x^2 < y --> 1 < y"
wenzelm@58630
   102
  by sos
wenzelm@58418
   103
lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
wenzelm@58630
   104
  by sos
wenzelm@58418
   105
lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
wenzelm@58630
   106
  by sos
wenzelm@58418
   107
lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c"
wenzelm@58630
   108
  by sos
wenzelm@58418
   109
lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x"
wenzelm@58630
   110
  by sos
wenzelm@58418
   111
lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)"
wenzelm@58630
   112
  by sos
wenzelm@58418
   113
wenzelm@58418
   114
wenzelm@58418
   115
(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*)
wenzelm@58418
   116
wenzelm@58418
   117
lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x"
wenzelm@58630
   118
  by sos
wenzelm@58418
   119
wenzelm@58418
   120
lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)"
wenzelm@58630
   121
  by sos
wenzelm@58418
   122
wenzelm@58418
   123
lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)"
wenzelm@58630
   124
  by sos
wenzelm@58418
   125
wenzelm@58418
   126
lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r"
wenzelm@58630
   127
  by sos
wenzelm@58418
   128
wenzelm@58418
   129
end
wenzelm@58418
   130