wenzelm@13383
|
1 |
(* Title: HOL/ex/Tarski.thy
|
wenzelm@40945
|
2 |
Author: Florian Kammüller, Cambridge University Computer Laboratory
|
wenzelm@13383
|
3 |
*)
|
wenzelm@7112
|
4 |
|
wenzelm@58889
|
5 |
section {* The Full Theorem of Tarski *}
|
wenzelm@7112
|
6 |
|
haftmann@27681
|
7 |
theory Tarski
|
wenzelm@41413
|
8 |
imports Main "~~/src/HOL/Library/FuncSet"
|
haftmann@27681
|
9 |
begin
|
wenzelm@7112
|
10 |
|
wenzelm@13383
|
11 |
text {*
|
wenzelm@13383
|
12 |
Minimal version of lattice theory plus the full theorem of Tarski:
|
wenzelm@13383
|
13 |
The fixedpoints of a complete lattice themselves form a complete
|
wenzelm@13383
|
14 |
lattice.
|
wenzelm@13383
|
15 |
|
wenzelm@13383
|
16 |
Illustrates first-class theories, using the Sigma representation of
|
wenzelm@13383
|
17 |
structures. Tidied and converted to Isar by lcp.
|
wenzelm@13383
|
18 |
*}
|
wenzelm@13383
|
19 |
|
wenzelm@13383
|
20 |
record 'a potype =
|
wenzelm@7112
|
21 |
pset :: "'a set"
|
wenzelm@7112
|
22 |
order :: "('a * 'a) set"
|
wenzelm@7112
|
23 |
|
wenzelm@19736
|
24 |
definition
|
wenzelm@21404
|
25 |
monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
|
wenzelm@19736
|
26 |
"monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)"
|
wenzelm@7112
|
27 |
|
wenzelm@21404
|
28 |
definition
|
wenzelm@21404
|
29 |
least :: "['a => bool, 'a potype] => 'a" where
|
wenzelm@19736
|
30 |
"least P po = (SOME x. x: pset po & P x &
|
wenzelm@19736
|
31 |
(\<forall>y \<in> pset po. P y --> (x,y): order po))"
|
wenzelm@7112
|
32 |
|
wenzelm@21404
|
33 |
definition
|
wenzelm@21404
|
34 |
greatest :: "['a => bool, 'a potype] => 'a" where
|
wenzelm@19736
|
35 |
"greatest P po = (SOME x. x: pset po & P x &
|
wenzelm@19736
|
36 |
(\<forall>y \<in> pset po. P y --> (y,x): order po))"
|
wenzelm@7112
|
37 |
|
wenzelm@21404
|
38 |
definition
|
wenzelm@21404
|
39 |
lub :: "['a set, 'a potype] => 'a" where
|
wenzelm@19736
|
40 |
"lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po"
|
wenzelm@7112
|
41 |
|
wenzelm@21404
|
42 |
definition
|
wenzelm@21404
|
43 |
glb :: "['a set, 'a potype] => 'a" where
|
wenzelm@19736
|
44 |
"glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
|
wenzelm@7112
|
45 |
|
wenzelm@21404
|
46 |
definition
|
wenzelm@21404
|
47 |
isLub :: "['a set, 'a potype, 'a] => bool" where
|
wenzelm@19736
|
48 |
"isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
|
wenzelm@19736
|
49 |
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))"
|
wenzelm@7112
|
50 |
|
wenzelm@21404
|
51 |
definition
|
wenzelm@21404
|
52 |
isGlb :: "['a set, 'a potype, 'a] => bool" where
|
wenzelm@19736
|
53 |
"isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
|
wenzelm@19736
|
54 |
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))"
|
wenzelm@7112
|
55 |
|
wenzelm@21404
|
56 |
definition
|
wenzelm@21404
|
57 |
"fix" :: "[('a => 'a), 'a set] => 'a set" where
|
wenzelm@19736
|
58 |
"fix f A = {x. x: A & f x = x}"
|
wenzelm@7112
|
59 |
|
wenzelm@21404
|
60 |
definition
|
wenzelm@21404
|
61 |
interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
|
wenzelm@19736
|
62 |
"interval r a b = {x. (a,x): r & (x,b): r}"
|
wenzelm@7112
|
63 |
|
wenzelm@7112
|
64 |
|
wenzelm@19736
|
65 |
definition
|
wenzelm@21404
|
66 |
Bot :: "'a potype => 'a" where
|
wenzelm@19736
|
67 |
"Bot po = least (%x. True) po"
|
wenzelm@7112
|
68 |
|
wenzelm@21404
|
69 |
definition
|
wenzelm@21404
|
70 |
Top :: "'a potype => 'a" where
|
wenzelm@19736
|
71 |
"Top po = greatest (%x. True) po"
|
wenzelm@7112
|
72 |
|
wenzelm@21404
|
73 |
definition
|
wenzelm@21404
|
74 |
PartialOrder :: "('a potype) set" where
|
nipkow@30198
|
75 |
"PartialOrder = {P. refl_on (pset P) (order P) & antisym (order P) &
|
paulson@13585
|
76 |
trans (order P)}"
|
wenzelm@7112
|
77 |
|
wenzelm@21404
|
78 |
definition
|
wenzelm@21404
|
79 |
CompleteLattice :: "('a potype) set" where
|
wenzelm@19736
|
80 |
"CompleteLattice = {cl. cl: PartialOrder &
|
paulson@17841
|
81 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
|
paulson@17841
|
82 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
|
wenzelm@7112
|
83 |
|
wenzelm@21404
|
84 |
definition
|
haftmann@27681
|
85 |
CLF_set :: "('a potype * ('a => 'a)) set" where
|
haftmann@27681
|
86 |
"CLF_set = (SIGMA cl: CompleteLattice.
|
wenzelm@19736
|
87 |
{f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
|
wenzelm@13383
|
88 |
|
wenzelm@21404
|
89 |
definition
|
wenzelm@21404
|
90 |
induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
|
wenzelm@19736
|
91 |
"induced A r = {(a,b). a : A & b: A & (a,b): r}"
|
wenzelm@7112
|
92 |
|
wenzelm@7112
|
93 |
|
wenzelm@19736
|
94 |
definition
|
wenzelm@21404
|
95 |
sublattice :: "('a potype * 'a set)set" where
|
wenzelm@19736
|
96 |
"sublattice =
|
wenzelm@19736
|
97 |
(SIGMA cl: CompleteLattice.
|
paulson@17841
|
98 |
{S. S \<subseteq> pset cl &
|
wenzelm@19736
|
99 |
(| pset = S, order = induced S (order cl) |): CompleteLattice})"
|
wenzelm@7112
|
100 |
|
wenzelm@19736
|
101 |
abbreviation
|
wenzelm@21404
|
102 |
sublat :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50) where
|
wenzelm@19736
|
103 |
"S <<= cl == S : sublattice `` {cl}"
|
wenzelm@7112
|
104 |
|
wenzelm@19736
|
105 |
definition
|
wenzelm@21404
|
106 |
dual :: "'a potype => 'a potype" where
|
wenzelm@19736
|
107 |
"dual po = (| pset = pset po, order = converse (order po) |)"
|
wenzelm@7112
|
108 |
|
haftmann@27681
|
109 |
locale S =
|
paulson@13115
|
110 |
fixes cl :: "'a potype"
|
paulson@13115
|
111 |
and A :: "'a set"
|
paulson@13115
|
112 |
and r :: "('a * 'a) set"
|
paulson@13585
|
113 |
defines A_def: "A == pset cl"
|
paulson@13585
|
114 |
and r_def: "r == order cl"
|
wenzelm@7112
|
115 |
|
haftmann@27681
|
116 |
locale PO = S +
|
haftmann@27681
|
117 |
assumes cl_po: "cl : PartialOrder"
|
haftmann@27681
|
118 |
|
haftmann@27681
|
119 |
locale CL = S +
|
paulson@13115
|
120 |
assumes cl_co: "cl : CompleteLattice"
|
wenzelm@7112
|
121 |
|
wenzelm@49756
|
122 |
sublocale CL < po: PO
|
haftmann@27681
|
123 |
apply (simp_all add: A_def r_def)
|
haftmann@27681
|
124 |
apply unfold_locales
|
haftmann@27681
|
125 |
using cl_co unfolding CompleteLattice_def by auto
|
haftmann@27681
|
126 |
|
haftmann@27681
|
127 |
locale CLF = S +
|
paulson@13115
|
128 |
fixes f :: "'a => 'a"
|
paulson@13115
|
129 |
and P :: "'a set"
|
haftmann@27681
|
130 |
assumes f_cl: "(cl,f) : CLF_set" (*was the equivalent "f : CLF_set``{cl}"*)
|
paulson@13115
|
131 |
defines P_def: "P == fix f A"
|
wenzelm@7112
|
132 |
|
wenzelm@49756
|
133 |
sublocale CLF < cl: CL
|
haftmann@27681
|
134 |
apply (simp_all add: A_def r_def)
|
haftmann@27681
|
135 |
apply unfold_locales
|
haftmann@27681
|
136 |
using f_cl unfolding CLF_set_def by auto
|
wenzelm@7112
|
137 |
|
haftmann@27681
|
138 |
locale Tarski = CLF +
|
paulson@13115
|
139 |
fixes Y :: "'a set"
|
paulson@13115
|
140 |
and intY1 :: "'a set"
|
paulson@13115
|
141 |
and v :: "'a"
|
paulson@13115
|
142 |
assumes
|
paulson@17841
|
143 |
Y_ss: "Y \<subseteq> P"
|
paulson@13115
|
144 |
defines
|
paulson@13115
|
145 |
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"
|
wenzelm@13383
|
146 |
and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
|
paulson@13115
|
147 |
x: intY1}
|
wenzelm@13383
|
148 |
(| pset=intY1, order=induced intY1 r|)"
|
paulson@13115
|
149 |
|
paulson@13115
|
150 |
|
nipkow@14569
|
151 |
subsection {* Partial Order *}
|
paulson@13115
|
152 |
|
haftmann@27681
|
153 |
lemma (in PO) dual:
|
haftmann@27681
|
154 |
"PO (dual cl)"
|
haftmann@27681
|
155 |
apply unfold_locales
|
haftmann@27681
|
156 |
using cl_po
|
haftmann@27681
|
157 |
unfolding PartialOrder_def dual_def
|
haftmann@27681
|
158 |
by auto
|
haftmann@27681
|
159 |
|
nipkow@30198
|
160 |
lemma (in PO) PO_imp_refl_on [simp]: "refl_on A r"
|
wenzelm@13383
|
161 |
apply (insert cl_po)
|
paulson@13115
|
162 |
apply (simp add: PartialOrder_def A_def r_def)
|
paulson@13115
|
163 |
done
|
paulson@13115
|
164 |
|
haftmann@27681
|
165 |
lemma (in PO) PO_imp_sym [simp]: "antisym r"
|
wenzelm@13383
|
166 |
apply (insert cl_po)
|
paulson@19316
|
167 |
apply (simp add: PartialOrder_def r_def)
|
paulson@13115
|
168 |
done
|
paulson@13115
|
169 |
|
haftmann@27681
|
170 |
lemma (in PO) PO_imp_trans [simp]: "trans r"
|
wenzelm@13383
|
171 |
apply (insert cl_po)
|
paulson@19316
|
172 |
apply (simp add: PartialOrder_def r_def)
|
paulson@13115
|
173 |
done
|
paulson@13115
|
174 |
|
paulson@18705
|
175 |
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"
|
wenzelm@13383
|
176 |
apply (insert cl_po)
|
nipkow@30198
|
177 |
apply (simp add: PartialOrder_def refl_on_def A_def r_def)
|
paulson@13115
|
178 |
done
|
paulson@13115
|
179 |
|
paulson@18705
|
180 |
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"
|
wenzelm@13383
|
181 |
apply (insert cl_po)
|
paulson@19316
|
182 |
apply (simp add: PartialOrder_def antisym_def r_def)
|
paulson@13115
|
183 |
done
|
paulson@13115
|
184 |
|
paulson@18705
|
185 |
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"
|
wenzelm@13383
|
186 |
apply (insert cl_po)
|
paulson@19316
|
187 |
apply (simp add: PartialOrder_def r_def)
|
paulson@13115
|
188 |
apply (unfold trans_def, fast)
|
paulson@13115
|
189 |
done
|
paulson@13115
|
190 |
|
paulson@13115
|
191 |
lemma (in PO) monotoneE:
|
paulson@13115
|
192 |
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"
|
paulson@13115
|
193 |
by (simp add: monotone_def)
|
paulson@13115
|
194 |
|
paulson@13115
|
195 |
lemma (in PO) po_subset_po:
|
paulson@17841
|
196 |
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"
|
paulson@13115
|
197 |
apply (simp (no_asm) add: PartialOrder_def)
|
paulson@13115
|
198 |
apply auto
|
wenzelm@13383
|
199 |
-- {* refl *}
|
nipkow@30198
|
200 |
apply (simp add: refl_on_def induced_def)
|
paulson@18705
|
201 |
apply (blast intro: reflE)
|
wenzelm@13383
|
202 |
-- {* antisym *}
|
paulson@13115
|
203 |
apply (simp add: antisym_def induced_def)
|
paulson@18705
|
204 |
apply (blast intro: antisymE)
|
wenzelm@13383
|
205 |
-- {* trans *}
|
paulson@13115
|
206 |
apply (simp add: trans_def induced_def)
|
paulson@18705
|
207 |
apply (blast intro: transE)
|
paulson@13115
|
208 |
done
|
paulson@13115
|
209 |
|
paulson@17841
|
210 |
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"
|
paulson@13115
|
211 |
by (simp add: add: induced_def)
|
paulson@13115
|
212 |
|
paulson@13115
|
213 |
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"
|
paulson@13115
|
214 |
by (simp add: add: induced_def)
|
paulson@13115
|
215 |
|
paulson@17841
|
216 |
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"
|
wenzelm@13383
|
217 |
apply (insert cl_co)
|
paulson@13115
|
218 |
apply (simp add: CompleteLattice_def A_def)
|
paulson@13115
|
219 |
done
|
paulson@13115
|
220 |
|
paulson@13115
|
221 |
declare (in CL) cl_co [simp]
|
paulson@13115
|
222 |
|
paulson@13115
|
223 |
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"
|
paulson@13115
|
224 |
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
|
paulson@13115
|
225 |
|
paulson@13115
|
226 |
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"
|
paulson@13115
|
227 |
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
|
paulson@13115
|
228 |
|
paulson@13115
|
229 |
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
|
haftmann@46752
|
230 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold)
|
paulson@13115
|
231 |
|
paulson@13115
|
232 |
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
|
haftmann@46752
|
233 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold)
|
paulson@13115
|
234 |
|
paulson@13115
|
235 |
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"
|
wenzelm@13383
|
236 |
apply (insert cl_po)
|
nipkow@30198
|
237 |
apply (simp add: PartialOrder_def dual_def refl_on_converse
|
paulson@13115
|
238 |
trans_converse antisym_converse)
|
paulson@13115
|
239 |
done
|
paulson@13115
|
240 |
|
paulson@13115
|
241 |
lemma Rdual:
|
paulson@17841
|
242 |
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))
|
paulson@17841
|
243 |
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"
|
paulson@13115
|
244 |
apply safe
|
paulson@13115
|
245 |
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
|
paulson@13115
|
246 |
(|pset = A, order = r|) " in exI)
|
paulson@13115
|
247 |
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
|
paulson@13115
|
248 |
apply (drule mp, fast)
|
paulson@13115
|
249 |
apply (simp add: isLub_lub isGlb_def)
|
paulson@13115
|
250 |
apply (simp add: isLub_def, blast)
|
paulson@13115
|
251 |
done
|
paulson@13115
|
252 |
|
paulson@13115
|
253 |
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
|
haftmann@46752
|
254 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)
|
paulson@13115
|
255 |
|
paulson@13115
|
256 |
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
|
haftmann@46752
|
257 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)
|
paulson@13115
|
258 |
|
paulson@17841
|
259 |
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"
|
paulson@13115
|
260 |
by (simp add: PartialOrder_def CompleteLattice_def, fast)
|
paulson@13115
|
261 |
|
paulson@13115
|
262 |
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
|
paulson@13115
|
263 |
|
haftmann@27681
|
264 |
(*declare CL_imp_PO [THEN PO.PO_imp_refl, simp]
|
wenzelm@21232
|
265 |
declare CL_imp_PO [THEN PO.PO_imp_sym, simp]
|
haftmann@27681
|
266 |
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*)
|
paulson@13115
|
267 |
|
nipkow@30198
|
268 |
lemma (in CL) CO_refl_on: "refl_on A r"
|
nipkow@30198
|
269 |
by (rule PO_imp_refl_on)
|
paulson@13115
|
270 |
|
paulson@13115
|
271 |
lemma (in CL) CO_antisym: "antisym r"
|
paulson@13115
|
272 |
by (rule PO_imp_sym)
|
paulson@13115
|
273 |
|
paulson@13115
|
274 |
lemma (in CL) CO_trans: "trans r"
|
paulson@13115
|
275 |
by (rule PO_imp_trans)
|
paulson@13115
|
276 |
|
paulson@13115
|
277 |
lemma CompleteLatticeI:
|
paulson@17841
|
278 |
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));
|
paulson@17841
|
279 |
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]
|
paulson@13115
|
280 |
==> po \<in> CompleteLattice"
|
wenzelm@13383
|
281 |
apply (unfold CompleteLattice_def, blast)
|
paulson@13115
|
282 |
done
|
paulson@13115
|
283 |
|
paulson@13115
|
284 |
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"
|
wenzelm@13383
|
285 |
apply (insert cl_co)
|
paulson@13115
|
286 |
apply (simp add: CompleteLattice_def dual_def)
|
wenzelm@13383
|
287 |
apply (fold dual_def)
|
wenzelm@13383
|
288 |
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
|
paulson@13115
|
289 |
dualPO)
|
paulson@13115
|
290 |
done
|
paulson@13115
|
291 |
|
paulson@13585
|
292 |
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
|
paulson@13115
|
293 |
by (simp add: dual_def)
|
paulson@13115
|
294 |
|
paulson@13585
|
295 |
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"
|
paulson@13115
|
296 |
by (simp add: dual_def)
|
paulson@13115
|
297 |
|
paulson@13115
|
298 |
lemma (in PO) monotone_dual:
|
paulson@13585
|
299 |
"monotone f (pset cl) (order cl)
|
paulson@13585
|
300 |
==> monotone f (pset (dual cl)) (order(dual cl))"
|
paulson@13585
|
301 |
by (simp add: monotone_def dualA_iff dualr_iff)
|
paulson@13115
|
302 |
|
paulson@13115
|
303 |
lemma (in PO) interval_dual:
|
paulson@13585
|
304 |
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"
|
paulson@13115
|
305 |
apply (simp add: interval_def dualr_iff)
|
paulson@13115
|
306 |
apply (fold r_def, fast)
|
paulson@13115
|
307 |
done
|
paulson@13115
|
308 |
|
haftmann@27681
|
309 |
lemma (in PO) trans:
|
haftmann@27681
|
310 |
"(x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r"
|
haftmann@27681
|
311 |
using cl_po apply (auto simp add: PartialOrder_def r_def)
|
haftmann@27681
|
312 |
unfolding trans_def by blast
|
haftmann@27681
|
313 |
|
paulson@13115
|
314 |
lemma (in PO) interval_not_empty:
|
haftmann@27681
|
315 |
"interval r a b \<noteq> {} ==> (a, b) \<in> r"
|
paulson@13115
|
316 |
apply (simp add: interval_def)
|
haftmann@27681
|
317 |
using trans by blast
|
paulson@13115
|
318 |
|
paulson@13115
|
319 |
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"
|
paulson@13115
|
320 |
by (simp add: interval_def)
|
paulson@13115
|
321 |
|
paulson@13115
|
322 |
lemma (in PO) left_in_interval:
|
paulson@13115
|
323 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
|
paulson@13115
|
324 |
apply (simp (no_asm_simp) add: interval_def)
|
paulson@13115
|
325 |
apply (simp add: PO_imp_trans interval_not_empty)
|
paulson@18705
|
326 |
apply (simp add: reflE)
|
paulson@13115
|
327 |
done
|
paulson@13115
|
328 |
|
paulson@13115
|
329 |
lemma (in PO) right_in_interval:
|
paulson@13115
|
330 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
|
paulson@13115
|
331 |
apply (simp (no_asm_simp) add: interval_def)
|
paulson@13115
|
332 |
apply (simp add: PO_imp_trans interval_not_empty)
|
paulson@18705
|
333 |
apply (simp add: reflE)
|
paulson@13115
|
334 |
done
|
paulson@13115
|
335 |
|
wenzelm@13383
|
336 |
|
nipkow@14569
|
337 |
subsection {* sublattice *}
|
wenzelm@13383
|
338 |
|
paulson@13115
|
339 |
lemma (in PO) sublattice_imp_CL:
|
paulson@18750
|
340 |
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
|
paulson@19316
|
341 |
by (simp add: sublattice_def CompleteLattice_def r_def)
|
paulson@13115
|
342 |
|
paulson@13115
|
343 |
lemma (in CL) sublatticeI:
|
paulson@17841
|
344 |
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]
|
paulson@18750
|
345 |
==> S <<= cl"
|
paulson@13115
|
346 |
by (simp add: sublattice_def A_def r_def)
|
paulson@13115
|
347 |
|
haftmann@27681
|
348 |
lemma (in CL) dual:
|
haftmann@27681
|
349 |
"CL (dual cl)"
|
haftmann@27681
|
350 |
apply unfold_locales
|
haftmann@27681
|
351 |
using cl_co unfolding CompleteLattice_def
|
haftmann@27681
|
352 |
apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff)
|
haftmann@27681
|
353 |
done
|
haftmann@27681
|
354 |
|
wenzelm@13383
|
355 |
|
nipkow@14569
|
356 |
subsection {* lub *}
|
wenzelm@13383
|
357 |
|
paulson@17841
|
358 |
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"
|
paulson@13115
|
359 |
apply (rule antisymE)
|
paulson@13115
|
360 |
apply (auto simp add: isLub_def r_def)
|
paulson@13115
|
361 |
done
|
paulson@13115
|
362 |
|
paulson@17841
|
363 |
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"
|
paulson@13115
|
364 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
|
paulson@13115
|
365 |
apply (unfold lub_def least_def)
|
paulson@13115
|
366 |
apply (rule some_equality [THEN ssubst])
|
paulson@13115
|
367 |
apply (simp add: isLub_def)
|
wenzelm@13383
|
368 |
apply (simp add: lub_unique A_def isLub_def)
|
paulson@13115
|
369 |
apply (simp add: isLub_def r_def)
|
paulson@13115
|
370 |
done
|
paulson@13115
|
371 |
|
paulson@13115
|
372 |
lemma (in CL) lub_least:
|
paulson@17841
|
373 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"
|
paulson@13115
|
374 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
|
paulson@13115
|
375 |
apply (unfold lub_def least_def)
|
paulson@13115
|
376 |
apply (rule_tac s=x in some_equality [THEN ssubst])
|
paulson@13115
|
377 |
apply (simp add: isLub_def)
|
wenzelm@13383
|
378 |
apply (simp add: lub_unique A_def isLub_def)
|
paulson@13115
|
379 |
apply (simp add: isLub_def r_def A_def)
|
paulson@13115
|
380 |
done
|
paulson@13115
|
381 |
|
paulson@17841
|
382 |
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"
|
paulson@13115
|
383 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
|
paulson@13115
|
384 |
apply (unfold lub_def least_def)
|
paulson@13115
|
385 |
apply (subst some_equality)
|
paulson@13115
|
386 |
apply (simp add: isLub_def)
|
paulson@13115
|
387 |
prefer 2 apply (simp add: isLub_def A_def)
|
wenzelm@13383
|
388 |
apply (simp add: lub_unique A_def isLub_def)
|
paulson@13115
|
389 |
done
|
paulson@13115
|
390 |
|
paulson@13115
|
391 |
lemma (in CL) lubI:
|
paulson@17841
|
392 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;
|
paulson@13115
|
393 |
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"
|
paulson@13115
|
394 |
apply (rule lub_unique, assumption)
|
paulson@13115
|
395 |
apply (simp add: isLub_def A_def r_def)
|
paulson@13115
|
396 |
apply (unfold isLub_def)
|
paulson@13115
|
397 |
apply (rule conjI)
|
paulson@13115
|
398 |
apply (fold A_def r_def)
|
paulson@13115
|
399 |
apply (rule lub_in_lattice, assumption)
|
paulson@13115
|
400 |
apply (simp add: lub_upper lub_least)
|
paulson@13115
|
401 |
done
|
paulson@13115
|
402 |
|
paulson@17841
|
403 |
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"
|
paulson@13115
|
404 |
by (simp add: lubI isLub_def A_def r_def)
|
paulson@13115
|
405 |
|
paulson@13115
|
406 |
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"
|
paulson@13115
|
407 |
by (simp add: isLub_def A_def)
|
paulson@13115
|
408 |
|
paulson@13115
|
409 |
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"
|
paulson@13115
|
410 |
by (simp add: isLub_def r_def)
|
paulson@13115
|
411 |
|
paulson@13115
|
412 |
lemma (in CL) isLub_least:
|
paulson@13115
|
413 |
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"
|
paulson@13115
|
414 |
by (simp add: isLub_def A_def r_def)
|
paulson@13115
|
415 |
|
paulson@13115
|
416 |
lemma (in CL) isLubI:
|
wenzelm@13383
|
417 |
"[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;
|
paulson@13115
|
418 |
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"
|
paulson@13115
|
419 |
by (simp add: isLub_def A_def r_def)
|
paulson@13115
|
420 |
|
wenzelm@13383
|
421 |
|
nipkow@14569
|
422 |
subsection {* glb *}
|
wenzelm@13383
|
423 |
|
paulson@17841
|
424 |
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"
|
paulson@13115
|
425 |
apply (subst glb_dual_lub)
|
paulson@13115
|
426 |
apply (simp add: A_def)
|
paulson@13115
|
427 |
apply (rule dualA_iff [THEN subst])
|
wenzelm@21232
|
428 |
apply (rule CL.lub_in_lattice)
|
haftmann@27681
|
429 |
apply (rule dual)
|
paulson@13115
|
430 |
apply (simp add: dualA_iff)
|
paulson@13115
|
431 |
done
|
paulson@13115
|
432 |
|
paulson@17841
|
433 |
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"
|
paulson@13115
|
434 |
apply (subst glb_dual_lub)
|
paulson@13115
|
435 |
apply (simp add: r_def)
|
paulson@13115
|
436 |
apply (rule dualr_iff [THEN subst])
|
wenzelm@21232
|
437 |
apply (rule CL.lub_upper)
|
haftmann@27681
|
438 |
apply (rule dual)
|
paulson@13115
|
439 |
apply (simp add: dualA_iff A_def, assumption)
|
paulson@13115
|
440 |
done
|
paulson@13115
|
441 |
|
wenzelm@13383
|
442 |
text {*
|
wenzelm@13383
|
443 |
Reduce the sublattice property by using substructural properties;
|
wenzelm@13383
|
444 |
abandoned see @{text "Tarski_4.ML"}.
|
wenzelm@13383
|
445 |
*}
|
paulson@13115
|
446 |
|
paulson@13115
|
447 |
lemma (in CLF) [simp]:
|
paulson@13585
|
448 |
"f: pset cl -> pset cl & monotone f (pset cl) (order cl)"
|
wenzelm@13383
|
449 |
apply (insert f_cl)
|
haftmann@27681
|
450 |
apply (simp add: CLF_set_def)
|
paulson@13115
|
451 |
done
|
paulson@13115
|
452 |
|
paulson@13115
|
453 |
declare (in CLF) f_cl [simp]
|
paulson@13115
|
454 |
|
paulson@13115
|
455 |
|
paulson@13585
|
456 |
lemma (in CLF) f_in_funcset: "f \<in> A -> A"
|
paulson@13115
|
457 |
by (simp add: A_def)
|
paulson@13115
|
458 |
|
paulson@13115
|
459 |
lemma (in CLF) monotone_f: "monotone f A r"
|
paulson@13115
|
460 |
by (simp add: A_def r_def)
|
paulson@13115
|
461 |
|
haftmann@27681
|
462 |
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set"
|
haftmann@27681
|
463 |
apply (simp add: CLF_set_def CL_dualCL monotone_dual)
|
paulson@13115
|
464 |
apply (simp add: dualA_iff)
|
paulson@13115
|
465 |
done
|
paulson@13115
|
466 |
|
haftmann@27681
|
467 |
lemma (in CLF) dual:
|
haftmann@27681
|
468 |
"CLF (dual cl) f"
|
haftmann@27681
|
469 |
apply (rule CLF.intro)
|
haftmann@27681
|
470 |
apply (rule CLF_dual)
|
haftmann@27681
|
471 |
done
|
haftmann@27681
|
472 |
|
wenzelm@13383
|
473 |
|
nipkow@14569
|
474 |
subsection {* fixed points *}
|
wenzelm@13383
|
475 |
|
paulson@17841
|
476 |
lemma fix_subset: "fix f A \<subseteq> A"
|
paulson@13115
|
477 |
by (simp add: fix_def, fast)
|
paulson@13115
|
478 |
|
paulson@13115
|
479 |
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"
|
paulson@13115
|
480 |
by (simp add: fix_def)
|
paulson@13115
|
481 |
|
paulson@13115
|
482 |
lemma fixf_subset:
|
paulson@17841
|
483 |
"[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"
|
paulson@17841
|
484 |
by (simp add: fix_def, auto)
|
paulson@13115
|
485 |
|
wenzelm@13383
|
486 |
|
nipkow@14569
|
487 |
subsection {* lemmas for Tarski, lub *}
|
paulson@13115
|
488 |
lemma (in CLF) lubH_le_flubH:
|
paulson@13115
|
489 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
|
paulson@13115
|
490 |
apply (rule lub_least, fast)
|
paulson@13115
|
491 |
apply (rule f_in_funcset [THEN funcset_mem])
|
paulson@13115
|
492 |
apply (rule lub_in_lattice, fast)
|
wenzelm@13383
|
493 |
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
|
paulson@13115
|
494 |
apply (rule ballI)
|
paulson@13115
|
495 |
apply (rule transE)
|
paulson@13585
|
496 |
-- {* instantiates @{text "(x, ???z) \<in> order cl to (x, f x)"}, *}
|
wenzelm@13383
|
497 |
-- {* because of the def of @{text H} *}
|
paulson@13115
|
498 |
apply fast
|
wenzelm@13383
|
499 |
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
|
paulson@13115
|
500 |
apply (rule_tac f = "f" in monotoneE)
|
paulson@13115
|
501 |
apply (rule monotone_f, fast)
|
paulson@13115
|
502 |
apply (rule lub_in_lattice, fast)
|
paulson@13115
|
503 |
apply (rule lub_upper, fast)
|
paulson@13115
|
504 |
apply assumption
|
paulson@13115
|
505 |
done
|
paulson@13115
|
506 |
|
paulson@13115
|
507 |
lemma (in CLF) flubH_le_lubH:
|
paulson@13115
|
508 |
"[| H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
|
paulson@13115
|
509 |
apply (rule lub_upper, fast)
|
paulson@13115
|
510 |
apply (rule_tac t = "H" in ssubst, assumption)
|
paulson@13115
|
511 |
apply (rule CollectI)
|
paulson@13115
|
512 |
apply (rule conjI)
|
paulson@13115
|
513 |
apply (rule_tac [2] f_in_funcset [THEN funcset_mem])
|
paulson@13115
|
514 |
apply (rule_tac [2] lub_in_lattice)
|
paulson@13115
|
515 |
prefer 2 apply fast
|
paulson@13115
|
516 |
apply (rule_tac f = "f" in monotoneE)
|
paulson@13115
|
517 |
apply (rule monotone_f)
|
wenzelm@13383
|
518 |
apply (blast intro: lub_in_lattice)
|
wenzelm@13383
|
519 |
apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem])
|
paulson@13115
|
520 |
apply (simp add: lubH_le_flubH)
|
paulson@13115
|
521 |
done
|
paulson@13115
|
522 |
|
paulson@13115
|
523 |
lemma (in CLF) lubH_is_fixp:
|
paulson@13115
|
524 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
|
paulson@13115
|
525 |
apply (simp add: fix_def)
|
paulson@13115
|
526 |
apply (rule conjI)
|
paulson@13115
|
527 |
apply (rule lub_in_lattice, fast)
|
paulson@13115
|
528 |
apply (rule antisymE)
|
paulson@13115
|
529 |
apply (simp add: flubH_le_lubH)
|
paulson@13115
|
530 |
apply (simp add: lubH_le_flubH)
|
paulson@13115
|
531 |
done
|
paulson@13115
|
532 |
|
paulson@13115
|
533 |
lemma (in CLF) fix_in_H:
|
paulson@13115
|
534 |
"[| H = {x. (x, f x) \<in> r & x \<in> A}; x \<in> P |] ==> x \<in> H"
|
nipkow@30198
|
535 |
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on
|
wenzelm@13383
|
536 |
fix_subset [of f A, THEN subsetD])
|
paulson@13115
|
537 |
|
paulson@13115
|
538 |
lemma (in CLF) fixf_le_lubH:
|
paulson@13115
|
539 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
|
paulson@13115
|
540 |
apply (rule ballI)
|
paulson@13115
|
541 |
apply (rule lub_upper, fast)
|
paulson@13115
|
542 |
apply (rule fix_in_H)
|
wenzelm@13383
|
543 |
apply (simp_all add: P_def)
|
paulson@13115
|
544 |
done
|
paulson@13115
|
545 |
|
paulson@13115
|
546 |
lemma (in CLF) lubH_least_fixf:
|
wenzelm@13383
|
547 |
"H = {x. (x, f x) \<in> r & x \<in> A}
|
paulson@13115
|
548 |
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"
|
paulson@13115
|
549 |
apply (rule allI)
|
paulson@13115
|
550 |
apply (rule impI)
|
paulson@13115
|
551 |
apply (erule bspec)
|
paulson@13115
|
552 |
apply (rule lubH_is_fixp, assumption)
|
paulson@13115
|
553 |
done
|
paulson@13115
|
554 |
|
nipkow@14569
|
555 |
subsection {* Tarski fixpoint theorem 1, first part *}
|
paulson@13115
|
556 |
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
|
paulson@13115
|
557 |
apply (rule sym)
|
wenzelm@13383
|
558 |
apply (simp add: P_def)
|
paulson@13115
|
559 |
apply (rule lubI)
|
paulson@13115
|
560 |
apply (rule fix_subset)
|
paulson@13115
|
561 |
apply (rule lub_in_lattice, fast)
|
paulson@13115
|
562 |
apply (simp add: fixf_le_lubH)
|
paulson@13115
|
563 |
apply (simp add: lubH_least_fixf)
|
paulson@13115
|
564 |
done
|
paulson@13115
|
565 |
|
paulson@13115
|
566 |
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
|
wenzelm@13383
|
567 |
-- {* Tarski for glb *}
|
paulson@13115
|
568 |
apply (simp add: glb_dual_lub P_def A_def r_def)
|
paulson@13115
|
569 |
apply (rule dualA_iff [THEN subst])
|
wenzelm@21232
|
570 |
apply (rule CLF.lubH_is_fixp)
|
haftmann@27681
|
571 |
apply (rule dual)
|
paulson@13115
|
572 |
apply (simp add: dualr_iff dualA_iff)
|
paulson@13115
|
573 |
done
|
paulson@13115
|
574 |
|
paulson@13115
|
575 |
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
|
paulson@13115
|
576 |
apply (simp add: glb_dual_lub P_def A_def r_def)
|
paulson@13115
|
577 |
apply (rule dualA_iff [THEN subst])
|
haftmann@27681
|
578 |
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual]
|
paulson@13115
|
579 |
dualPO CL_dualCL CLF_dual dualr_iff)
|
paulson@13115
|
580 |
done
|
paulson@13115
|
581 |
|
nipkow@14569
|
582 |
subsection {* interval *}
|
wenzelm@13383
|
583 |
|
paulson@13115
|
584 |
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"
|
nipkow@30198
|
585 |
apply (insert CO_refl_on)
|
nipkow@30198
|
586 |
apply (simp add: refl_on_def, blast)
|
paulson@13115
|
587 |
done
|
paulson@13115
|
588 |
|
paulson@17841
|
589 |
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"
|
paulson@13115
|
590 |
apply (simp add: interval_def)
|
paulson@13115
|
591 |
apply (blast intro: rel_imp_elem)
|
paulson@13115
|
592 |
done
|
paulson@13115
|
593 |
|
paulson@13115
|
594 |
lemma (in CLF) intervalI:
|
paulson@13115
|
595 |
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"
|
paulson@17841
|
596 |
by (simp add: interval_def)
|
paulson@13115
|
597 |
|
paulson@13115
|
598 |
lemma (in CLF) interval_lemma1:
|
paulson@17841
|
599 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"
|
paulson@17841
|
600 |
by (unfold interval_def, fast)
|
paulson@13115
|
601 |
|
paulson@13115
|
602 |
lemma (in CLF) interval_lemma2:
|
paulson@17841
|
603 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"
|
paulson@17841
|
604 |
by (unfold interval_def, fast)
|
paulson@13115
|
605 |
|
paulson@13115
|
606 |
lemma (in CLF) a_less_lub:
|
paulson@17841
|
607 |
"[| S \<subseteq> A; S \<noteq> {};
|
paulson@13115
|
608 |
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"
|
paulson@18705
|
609 |
by (blast intro: transE)
|
paulson@13115
|
610 |
|
paulson@13115
|
611 |
lemma (in CLF) glb_less_b:
|
paulson@17841
|
612 |
"[| S \<subseteq> A; S \<noteq> {};
|
paulson@13115
|
613 |
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"
|
paulson@18705
|
614 |
by (blast intro: transE)
|
paulson@13115
|
615 |
|
paulson@13115
|
616 |
lemma (in CLF) S_intv_cl:
|
paulson@17841
|
617 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"
|
paulson@13115
|
618 |
by (simp add: subset_trans [OF _ interval_subset])
|
paulson@13115
|
619 |
|
paulson@13115
|
620 |
lemma (in CLF) L_in_interval:
|
paulson@17841
|
621 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;
|
paulson@13115
|
622 |
S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
|
paulson@13115
|
623 |
apply (rule intervalI)
|
paulson@13115
|
624 |
apply (rule a_less_lub)
|
paulson@13115
|
625 |
prefer 2 apply assumption
|
paulson@13115
|
626 |
apply (simp add: S_intv_cl)
|
paulson@13115
|
627 |
apply (rule ballI)
|
paulson@13115
|
628 |
apply (simp add: interval_lemma1)
|
paulson@13115
|
629 |
apply (simp add: isLub_upper)
|
wenzelm@13383
|
630 |
-- {* @{text "(L, b) \<in> r"} *}
|
paulson@13115
|
631 |
apply (simp add: isLub_least interval_lemma2)
|
paulson@13115
|
632 |
done
|
paulson@13115
|
633 |
|
paulson@13115
|
634 |
lemma (in CLF) G_in_interval:
|
paulson@17841
|
635 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
|
paulson@13115
|
636 |
S \<noteq> {} |] ==> G \<in> interval r a b"
|
paulson@13115
|
637 |
apply (simp add: interval_dual)
|
haftmann@27681
|
638 |
apply (simp add: CLF.L_in_interval [of _ f, OF dual]
|
haftmann@27681
|
639 |
dualA_iff A_def isGlb_dual_isLub)
|
paulson@13115
|
640 |
done
|
paulson@13115
|
641 |
|
paulson@13115
|
642 |
lemma (in CLF) intervalPO:
|
wenzelm@13383
|
643 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
|
paulson@13115
|
644 |
==> (| pset = interval r a b, order = induced (interval r a b) r |)
|
paulson@13115
|
645 |
\<in> PartialOrder"
|
paulson@13115
|
646 |
apply (rule po_subset_po)
|
paulson@13115
|
647 |
apply (simp add: interval_subset)
|
paulson@13115
|
648 |
done
|
paulson@13115
|
649 |
|
paulson@13115
|
650 |
lemma (in CLF) intv_CL_lub:
|
wenzelm@13383
|
651 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
|
paulson@17841
|
652 |
==> \<forall>S. S \<subseteq> interval r a b -->
|
wenzelm@13383
|
653 |
(\<exists>L. isLub S (| pset = interval r a b,
|
paulson@13115
|
654 |
order = induced (interval r a b) r |) L)"
|
paulson@13115
|
655 |
apply (intro strip)
|
paulson@13115
|
656 |
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
|
paulson@13115
|
657 |
prefer 2 apply assumption
|
paulson@13115
|
658 |
apply assumption
|
paulson@13115
|
659 |
apply (erule exE)
|
wenzelm@13383
|
660 |
-- {* define the lub for the interval as *}
|
paulson@13115
|
661 |
apply (rule_tac x = "if S = {} then a else L" in exI)
|
paulson@13115
|
662 |
apply (simp (no_asm_simp) add: isLub_def split del: split_if)
|
wenzelm@13383
|
663 |
apply (intro impI conjI)
|
wenzelm@13383
|
664 |
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
|
paulson@13115
|
665 |
apply (simp add: CL_imp_PO L_in_interval)
|
paulson@13115
|
666 |
apply (simp add: left_in_interval)
|
wenzelm@13383
|
667 |
-- {* lub prop 1 *}
|
paulson@13115
|
668 |
apply (case_tac "S = {}")
|
wenzelm@13383
|
669 |
-- {* @{text "S = {}, y \<in> S = False => everything"} *}
|
paulson@13115
|
670 |
apply fast
|
wenzelm@13383
|
671 |
-- {* @{text "S \<noteq> {}"} *}
|
paulson@13115
|
672 |
apply simp
|
wenzelm@13383
|
673 |
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
|
paulson@13115
|
674 |
apply (rule ballI)
|
paulson@13115
|
675 |
apply (simp add: induced_def L_in_interval)
|
paulson@13115
|
676 |
apply (rule conjI)
|
paulson@13115
|
677 |
apply (rule subsetD)
|
paulson@13115
|
678 |
apply (simp add: S_intv_cl, assumption)
|
paulson@13115
|
679 |
apply (simp add: isLub_upper)
|
wenzelm@13383
|
680 |
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
|
paulson@13115
|
681 |
apply (rule ballI)
|
paulson@13115
|
682 |
apply (rule impI)
|
paulson@13115
|
683 |
apply (case_tac "S = {}")
|
wenzelm@13383
|
684 |
-- {* @{text "S = {}"} *}
|
paulson@13115
|
685 |
apply simp
|
paulson@13115
|
686 |
apply (simp add: induced_def interval_def)
|
paulson@13115
|
687 |
apply (rule conjI)
|
paulson@18705
|
688 |
apply (rule reflE, assumption)
|
paulson@13115
|
689 |
apply (rule interval_not_empty)
|
paulson@13115
|
690 |
apply (simp add: interval_def)
|
wenzelm@13383
|
691 |
-- {* @{text "S \<noteq> {}"} *}
|
paulson@13115
|
692 |
apply simp
|
paulson@13115
|
693 |
apply (simp add: induced_def L_in_interval)
|
paulson@13115
|
694 |
apply (rule isLub_least, assumption)
|
paulson@13115
|
695 |
apply (rule subsetD)
|
paulson@13115
|
696 |
prefer 2 apply assumption
|
paulson@13115
|
697 |
apply (simp add: S_intv_cl, fast)
|
paulson@13115
|
698 |
done
|
paulson@13115
|
699 |
|
paulson@13115
|
700 |
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
|
paulson@13115
|
701 |
|
paulson@13115
|
702 |
lemma (in CLF) interval_is_sublattice:
|
wenzelm@13383
|
703 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
|
paulson@18750
|
704 |
==> interval r a b <<= cl"
|
paulson@13115
|
705 |
apply (rule sublatticeI)
|
paulson@13115
|
706 |
apply (simp add: interval_subset)
|
paulson@13115
|
707 |
apply (rule CompleteLatticeI)
|
paulson@13115
|
708 |
apply (simp add: intervalPO)
|
paulson@13115
|
709 |
apply (simp add: intv_CL_lub)
|
paulson@13115
|
710 |
apply (simp add: intv_CL_glb)
|
paulson@13115
|
711 |
done
|
paulson@13115
|
712 |
|
wenzelm@13383
|
713 |
lemmas (in CLF) interv_is_compl_latt =
|
paulson@13115
|
714 |
interval_is_sublattice [THEN sublattice_imp_CL]
|
paulson@13115
|
715 |
|
wenzelm@13383
|
716 |
|
nipkow@14569
|
717 |
subsection {* Top and Bottom *}
|
paulson@13115
|
718 |
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
|
paulson@13115
|
719 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
|
paulson@13115
|
720 |
|
paulson@13115
|
721 |
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
|
paulson@13115
|
722 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
|
paulson@13115
|
723 |
|
paulson@13115
|
724 |
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"
|
paulson@13115
|
725 |
apply (simp add: Bot_def least_def)
|
paulson@17841
|
726 |
apply (rule_tac a="glb A cl" in someI2)
|
paulson@17841
|
727 |
apply (simp_all add: glb_in_lattice glb_lower
|
paulson@17841
|
728 |
r_def [symmetric] A_def [symmetric])
|
paulson@13115
|
729 |
done
|
paulson@13115
|
730 |
|
paulson@13115
|
731 |
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
|
paulson@13115
|
732 |
apply (simp add: Top_dual_Bot A_def)
|
wenzelm@13383
|
733 |
apply (rule dualA_iff [THEN subst])
|
haftmann@27681
|
734 |
apply (rule CLF.Bot_in_lattice [OF dual])
|
paulson@13115
|
735 |
done
|
paulson@13115
|
736 |
|
paulson@13115
|
737 |
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"
|
paulson@13115
|
738 |
apply (simp add: Top_def greatest_def)
|
paulson@17841
|
739 |
apply (rule_tac a="lub A cl" in someI2)
|
paulson@13115
|
740 |
apply (rule someI2)
|
paulson@17841
|
741 |
apply (simp_all add: lub_in_lattice lub_upper
|
paulson@17841
|
742 |
r_def [symmetric] A_def [symmetric])
|
paulson@13115
|
743 |
done
|
paulson@13115
|
744 |
|
paulson@13115
|
745 |
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"
|
paulson@13115
|
746 |
apply (simp add: Bot_dual_Top r_def)
|
paulson@13115
|
747 |
apply (rule dualr_iff [THEN subst])
|
haftmann@27681
|
748 |
apply (rule CLF.Top_prop [OF dual])
|
haftmann@27681
|
749 |
apply (simp add: dualA_iff A_def)
|
paulson@13115
|
750 |
done
|
paulson@13115
|
751 |
|
paulson@13115
|
752 |
lemma (in CLF) Top_intv_not_empty: "x \<in> A ==> interval r x (Top cl) \<noteq> {}"
|
paulson@13115
|
753 |
apply (rule notI)
|
paulson@13115
|
754 |
apply (drule_tac a = "Top cl" in equals0D)
|
paulson@13115
|
755 |
apply (simp add: interval_def)
|
nipkow@30198
|
756 |
apply (simp add: refl_on_def Top_in_lattice Top_prop)
|
paulson@13115
|
757 |
done
|
paulson@13115
|
758 |
|
paulson@13115
|
759 |
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
|
paulson@13115
|
760 |
apply (simp add: Bot_dual_Top)
|
paulson@13115
|
761 |
apply (subst interval_dual)
|
paulson@13115
|
762 |
prefer 2 apply assumption
|
paulson@13115
|
763 |
apply (simp add: A_def)
|
paulson@13115
|
764 |
apply (rule dualA_iff [THEN subst])
|
haftmann@27681
|
765 |
apply (rule CLF.Top_in_lattice [OF dual])
|
haftmann@27681
|
766 |
apply (rule CLF.Top_intv_not_empty [OF dual])
|
haftmann@27681
|
767 |
apply (simp add: dualA_iff A_def)
|
paulson@13115
|
768 |
done
|
paulson@13115
|
769 |
|
nipkow@14569
|
770 |
subsection {* fixed points form a partial order *}
|
wenzelm@13383
|
771 |
|
paulson@13115
|
772 |
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"
|
paulson@13115
|
773 |
by (simp add: P_def fix_subset po_subset_po)
|
paulson@13115
|
774 |
|
paulson@17841
|
775 |
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"
|
paulson@13115
|
776 |
apply (rule subset_trans [OF _ fix_subset])
|
paulson@13115
|
777 |
apply (rule Y_ss [simplified P_def])
|
paulson@13115
|
778 |
done
|
paulson@13115
|
779 |
|
paulson@13115
|
780 |
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
|
paulson@18750
|
781 |
by (rule Y_subset_A [THEN lub_in_lattice])
|
paulson@13115
|
782 |
|
paulson@13115
|
783 |
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
|
paulson@13115
|
784 |
apply (rule lub_least)
|
paulson@13115
|
785 |
apply (rule Y_subset_A)
|
paulson@13115
|
786 |
apply (rule f_in_funcset [THEN funcset_mem])
|
paulson@13115
|
787 |
apply (rule lubY_in_A)
|
paulson@17841
|
788 |
-- {* @{text "Y \<subseteq> P ==> f x = x"} *}
|
paulson@13115
|
789 |
apply (rule ballI)
|
paulson@13115
|
790 |
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
|
paulson@13115
|
791 |
apply (erule Y_ss [simplified P_def, THEN subsetD])
|
wenzelm@13383
|
792 |
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
|
paulson@13115
|
793 |
apply (rule_tac f = "f" in monotoneE)
|
paulson@13115
|
794 |
apply (rule monotone_f)
|
paulson@13115
|
795 |
apply (simp add: Y_subset_A [THEN subsetD])
|
paulson@13115
|
796 |
apply (rule lubY_in_A)
|
paulson@13115
|
797 |
apply (simp add: lub_upper Y_subset_A)
|
paulson@13115
|
798 |
done
|
paulson@13115
|
799 |
|
paulson@17841
|
800 |
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"
|
paulson@13115
|
801 |
apply (unfold intY1_def)
|
paulson@13115
|
802 |
apply (rule interval_subset)
|
paulson@13115
|
803 |
apply (rule lubY_in_A)
|
paulson@13115
|
804 |
apply (rule Top_in_lattice)
|
paulson@13115
|
805 |
done
|
paulson@13115
|
806 |
|
paulson@13115
|
807 |
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
|
paulson@13115
|
808 |
|
paulson@13115
|
809 |
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"
|
paulson@13115
|
810 |
apply (simp add: intY1_def interval_def)
|
paulson@13115
|
811 |
apply (rule conjI)
|
paulson@13115
|
812 |
apply (rule transE)
|
paulson@13115
|
813 |
apply (rule lubY_le_flubY)
|
wenzelm@13383
|
814 |
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
|
paulson@13115
|
815 |
apply (rule_tac f=f in monotoneE)
|
paulson@13115
|
816 |
apply (rule monotone_f)
|
paulson@13115
|
817 |
apply (rule lubY_in_A)
|
paulson@13115
|
818 |
apply (simp add: intY1_def interval_def intY1_elem)
|
paulson@13115
|
819 |
apply (simp add: intY1_def interval_def)
|
wenzelm@13383
|
820 |
-- {* @{text "(f x, Top cl) \<in> r"} *}
|
paulson@13115
|
821 |
apply (rule Top_prop)
|
paulson@13115
|
822 |
apply (rule f_in_funcset [THEN funcset_mem])
|
paulson@13115
|
823 |
apply (simp add: intY1_def interval_def intY1_elem)
|
paulson@13115
|
824 |
done
|
paulson@13115
|
825 |
|
paulson@13115
|
826 |
lemma (in Tarski) intY1_mono:
|
paulson@13115
|
827 |
"monotone (%x: intY1. f x) intY1 (induced intY1 r)"
|
paulson@13115
|
828 |
apply (auto simp add: monotone_def induced_def intY1_f_closed)
|
paulson@13115
|
829 |
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
|
paulson@13115
|
830 |
done
|
paulson@13115
|
831 |
|
wenzelm@13383
|
832 |
lemma (in Tarski) intY1_is_cl:
|
paulson@13115
|
833 |
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"
|
paulson@13115
|
834 |
apply (unfold intY1_def)
|
paulson@13115
|
835 |
apply (rule interv_is_compl_latt)
|
paulson@13115
|
836 |
apply (rule lubY_in_A)
|
paulson@13115
|
837 |
apply (rule Top_in_lattice)
|
paulson@13115
|
838 |
apply (rule Top_intv_not_empty)
|
paulson@13115
|
839 |
apply (rule lubY_in_A)
|
paulson@13115
|
840 |
done
|
paulson@13115
|
841 |
|
paulson@13115
|
842 |
lemma (in Tarski) v_in_P: "v \<in> P"
|
paulson@13115
|
843 |
apply (unfold P_def)
|
paulson@13115
|
844 |
apply (rule_tac A = "intY1" in fixf_subset)
|
paulson@13115
|
845 |
apply (rule intY1_subset)
|
haftmann@27681
|
846 |
unfolding v_def
|
haftmann@27681
|
847 |
apply (rule CLF.glbH_is_fixp [OF CLF.intro, unfolded CLF_set_def, of "\<lparr>pset = intY1, order = induced intY1 r\<rparr>", simplified])
|
haftmann@27681
|
848 |
apply auto
|
haftmann@27681
|
849 |
apply (rule intY1_is_cl)
|
nipkow@31754
|
850 |
apply (erule intY1_f_closed)
|
haftmann@27681
|
851 |
apply (rule intY1_mono)
|
paulson@13115
|
852 |
done
|
paulson@13115
|
853 |
|
wenzelm@13383
|
854 |
lemma (in Tarski) z_in_interval:
|
paulson@13115
|
855 |
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"
|
paulson@13115
|
856 |
apply (unfold intY1_def P_def)
|
paulson@13115
|
857 |
apply (rule intervalI)
|
wenzelm@13383
|
858 |
prefer 2
|
paulson@13115
|
859 |
apply (erule fix_subset [THEN subsetD, THEN Top_prop])
|
paulson@13115
|
860 |
apply (rule lub_least)
|
paulson@13115
|
861 |
apply (rule Y_subset_A)
|
paulson@13115
|
862 |
apply (fast elim!: fix_subset [THEN subsetD])
|
paulson@13115
|
863 |
apply (simp add: induced_def)
|
paulson@13115
|
864 |
done
|
paulson@13115
|
865 |
|
wenzelm@13383
|
866 |
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]
|
paulson@13115
|
867 |
==> ((%x: intY1. f x) z, z) \<in> induced intY1 r"
|
paulson@13115
|
868 |
apply (simp add: induced_def intY1_f_closed z_in_interval P_def)
|
wenzelm@13383
|
869 |
apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD]
|
paulson@18705
|
870 |
reflE)
|
paulson@13115
|
871 |
done
|
paulson@13115
|
872 |
|
paulson@13115
|
873 |
lemma (in Tarski) tarski_full_lemma:
|
paulson@13115
|
874 |
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L"
|
paulson@13115
|
875 |
apply (rule_tac x = "v" in exI)
|
paulson@13115
|
876 |
apply (simp add: isLub_def)
|
wenzelm@13383
|
877 |
-- {* @{text "v \<in> P"} *}
|
paulson@13115
|
878 |
apply (simp add: v_in_P)
|
paulson@13115
|
879 |
apply (rule conjI)
|
wenzelm@13383
|
880 |
-- {* @{text v} is lub *}
|
wenzelm@13383
|
881 |
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
|
paulson@13115
|
882 |
apply (rule ballI)
|
paulson@13115
|
883 |
apply (simp add: induced_def subsetD v_in_P)
|
paulson@13115
|
884 |
apply (rule conjI)
|
paulson@13115
|
885 |
apply (erule Y_ss [THEN subsetD])
|
paulson@13115
|
886 |
apply (rule_tac b = "lub Y cl" in transE)
|
paulson@13115
|
887 |
apply (rule lub_upper)
|
paulson@13115
|
888 |
apply (rule Y_subset_A, assumption)
|
paulson@13115
|
889 |
apply (rule_tac b = "Top cl" in interval_imp_mem)
|
paulson@13115
|
890 |
apply (simp add: v_def)
|
paulson@13115
|
891 |
apply (fold intY1_def)
|
haftmann@27681
|
892 |
apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified])
|
haftmann@27681
|
893 |
apply auto
|
paulson@13115
|
894 |
apply (rule indI)
|
paulson@13115
|
895 |
prefer 3 apply assumption
|
paulson@13115
|
896 |
prefer 2 apply (simp add: v_in_P)
|
paulson@13115
|
897 |
apply (unfold v_def)
|
paulson@13115
|
898 |
apply (rule indE)
|
paulson@13115
|
899 |
apply (rule_tac [2] intY1_subset)
|
haftmann@27681
|
900 |
apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified])
|
wenzelm@13383
|
901 |
apply (simp add: CL_imp_PO intY1_is_cl)
|
paulson@13115
|
902 |
apply force
|
paulson@13115
|
903 |
apply (simp add: induced_def intY1_f_closed z_in_interval)
|
paulson@18705
|
904 |
apply (simp add: P_def fix_imp_eq [of _ f A] reflE
|
paulson@18705
|
905 |
fix_subset [of f A, THEN subsetD])
|
paulson@13115
|
906 |
done
|
paulson@13115
|
907 |
|
paulson@13115
|
908 |
lemma CompleteLatticeI_simp:
|
wenzelm@13383
|
909 |
"[| (| pset = A, order = r |) \<in> PartialOrder;
|
paulson@17841
|
910 |
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |]
|
paulson@13115
|
911 |
==> (| pset = A, order = r |) \<in> CompleteLattice"
|
paulson@13115
|
912 |
by (simp add: CompleteLatticeI Rdual)
|
paulson@13115
|
913 |
|
paulson@13115
|
914 |
theorem (in CLF) Tarski_full:
|
paulson@13115
|
915 |
"(| pset = P, order = induced P r|) \<in> CompleteLattice"
|
paulson@13115
|
916 |
apply (rule CompleteLatticeI_simp)
|
paulson@13115
|
917 |
apply (rule fixf_po, clarify)
|
wenzelm@13383
|
918 |
apply (simp add: P_def A_def r_def)
|
haftmann@27681
|
919 |
apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]])
|
haftmann@28823
|
920 |
proof - show "CLF cl f" .. qed
|
wenzelm@7112
|
921 |
|
wenzelm@7112
|
922 |
end
|