nipkow@33436
|
1 |
(* Title: HOL/ex/Tree23.thy
|
nipkow@33436
|
2 |
Author: Tobias Nipkow, TU Muenchen
|
nipkow@33436
|
3 |
*)
|
nipkow@33436
|
4 |
|
wenzelm@58889
|
5 |
section {* 2-3 Trees *}
|
nipkow@33436
|
6 |
|
nipkow@33436
|
7 |
theory Tree23
|
nipkow@33436
|
8 |
imports Main
|
nipkow@33436
|
9 |
begin
|
nipkow@33436
|
10 |
|
nipkow@33436
|
11 |
text{* This is a very direct translation of some of the functions in table.ML
|
nipkow@33436
|
12 |
in the Isabelle source code. That source is due to Makarius Wenzel and Stefan
|
nipkow@33436
|
13 |
Berghofer.
|
nipkow@33436
|
14 |
|
nipkow@33436
|
15 |
So far this file contains only data types and functions, but no proofs. Feel
|
nipkow@33436
|
16 |
free to have a go at the latter!
|
nipkow@33436
|
17 |
|
nipkow@33436
|
18 |
Note that because of complicated patterns and mutual recursion, these
|
nipkow@33436
|
19 |
function definitions take a few minutes and can also be seen as stress tests
|
nipkow@33436
|
20 |
for the function definition facility. *}
|
nipkow@33436
|
21 |
|
wenzelm@42463
|
22 |
type_synonym key = int -- {*for simplicity, should be a type class*}
|
nipkow@33436
|
23 |
|
blanchet@58310
|
24 |
datatype ord = LESS | EQUAL | GREATER
|
nipkow@33436
|
25 |
|
nipkow@33436
|
26 |
definition "ord i j = (if i<j then LESS else if i=j then EQUAL else GREATER)"
|
nipkow@33436
|
27 |
|
blanchet@58310
|
28 |
datatype 'a tree23 =
|
nipkow@33436
|
29 |
Empty |
|
nipkow@33436
|
30 |
Branch2 "'a tree23" "key * 'a" "'a tree23" |
|
nipkow@33436
|
31 |
Branch3 "'a tree23" "key * 'a" "'a tree23" "key * 'a" "'a tree23"
|
nipkow@33436
|
32 |
|
blanchet@58310
|
33 |
datatype 'a growth =
|
nipkow@33436
|
34 |
Stay "'a tree23" |
|
nipkow@33436
|
35 |
Sprout "'a tree23" "key * 'a" "'a tree23"
|
nipkow@33436
|
36 |
|
nipkow@33436
|
37 |
fun add :: "key \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a growth" where
|
nipkow@33436
|
38 |
"add key y Empty = Sprout Empty (key,y) Empty" |
|
nipkow@33436
|
39 |
"add key y (Branch2 left (k,x) right) =
|
nipkow@33436
|
40 |
(case ord key k of
|
nipkow@33436
|
41 |
LESS =>
|
nipkow@33436
|
42 |
(case add key y left of
|
nipkow@33436
|
43 |
Stay left' => Stay (Branch2 left' (k,x) right)
|
nipkow@33436
|
44 |
| Sprout left1 q left2
|
nipkow@33436
|
45 |
=> Stay (Branch3 left1 q left2 (k,x) right))
|
nipkow@33436
|
46 |
| EQUAL => Stay (Branch2 left (k,y) right)
|
nipkow@33436
|
47 |
| GREATER =>
|
nipkow@33436
|
48 |
(case add key y right of
|
nipkow@33436
|
49 |
Stay right' => Stay (Branch2 left (k,x) right')
|
nipkow@33436
|
50 |
| Sprout right1 q right2
|
nipkow@33436
|
51 |
=> Stay (Branch3 left (k,x) right1 q right2)))" |
|
nipkow@33436
|
52 |
"add key y (Branch3 left (k1,x1) mid (k2,x2) right) =
|
nipkow@33436
|
53 |
(case ord key k1 of
|
nipkow@33436
|
54 |
LESS =>
|
nipkow@33436
|
55 |
(case add key y left of
|
nipkow@33436
|
56 |
Stay left' => Stay (Branch3 left' (k1,x1) mid (k2,x2) right)
|
nipkow@33436
|
57 |
| Sprout left1 q left2
|
nipkow@33436
|
58 |
=> Sprout (Branch2 left1 q left2) (k1,x1) (Branch2 mid (k2,x2) right))
|
nipkow@33436
|
59 |
| EQUAL => Stay (Branch3 left (k1,y) mid (k2,x2) right)
|
nipkow@33436
|
60 |
| GREATER =>
|
nipkow@33436
|
61 |
(case ord key k2 of
|
nipkow@33436
|
62 |
LESS =>
|
nipkow@33436
|
63 |
(case add key y mid of
|
nipkow@33436
|
64 |
Stay mid' => Stay (Branch3 left (k1,x1) mid' (k2,x2) right)
|
nipkow@33436
|
65 |
| Sprout mid1 q mid2
|
nipkow@33436
|
66 |
=> Sprout (Branch2 left (k1,x1) mid1) q (Branch2 mid2 (k2,x2) right))
|
nipkow@33436
|
67 |
| EQUAL => Stay (Branch3 left (k1,x1) mid (k2,y) right)
|
nipkow@33436
|
68 |
| GREATER =>
|
nipkow@33436
|
69 |
(case add key y right of
|
nipkow@33436
|
70 |
Stay right' => Stay (Branch3 left (k1,x1) mid (k2,x2) right')
|
nipkow@33436
|
71 |
| Sprout right1 q right2
|
nipkow@33436
|
72 |
=> Sprout (Branch2 left (k1,x1) mid) (k2,x2) (Branch2 right1 q right2))))"
|
nipkow@33436
|
73 |
|
nipkow@33436
|
74 |
definition add0 :: "key \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
|
nipkow@33436
|
75 |
"add0 k y t =
|
nipkow@33436
|
76 |
(case add k y t of Stay t' => t' | Sprout l p r => Branch2 l p r)"
|
nipkow@33436
|
77 |
|
nipkow@33436
|
78 |
value "add0 5 e (add0 4 d (add0 3 c (add0 2 b (add0 1 a Empty))))"
|
nipkow@33436
|
79 |
|
nipkow@33436
|
80 |
fun compare where
|
nipkow@33436
|
81 |
"compare None (k2, _) = LESS" |
|
nipkow@33436
|
82 |
"compare (Some k1) (k2, _) = ord k1 k2"
|
nipkow@33436
|
83 |
|
nipkow@33436
|
84 |
fun if_eq where
|
nipkow@33436
|
85 |
"if_eq EQUAL x y = x" |
|
nipkow@33436
|
86 |
"if_eq _ x y = y"
|
nipkow@33436
|
87 |
|
nipkow@33436
|
88 |
fun del :: "key option \<Rightarrow> 'a tree23 \<Rightarrow> ((key * 'a) * bool * 'a tree23)option"
|
nipkow@33436
|
89 |
where
|
nipkow@33436
|
90 |
"del (Some k) Empty = None" |
|
nipkow@33436
|
91 |
"del None (Branch2 Empty p Empty) = Some(p, (True, Empty))" |
|
nipkow@33436
|
92 |
"del None (Branch3 Empty p Empty q Empty) = Some(p, (False, Branch2 Empty q Empty))" |
|
nipkow@33436
|
93 |
"del k (Branch2 Empty p Empty) = (case compare k p of
|
nipkow@33436
|
94 |
EQUAL => Some(p, (True, Empty)) | _ => None)" |
|
nipkow@33436
|
95 |
"del k (Branch3 Empty p Empty q Empty) = (case compare k p of
|
nipkow@33436
|
96 |
EQUAL => Some(p, (False, Branch2 Empty q Empty))
|
nipkow@33436
|
97 |
| _ => (case compare k q of
|
nipkow@33436
|
98 |
EQUAL => Some(q, (False, Branch2 Empty p Empty))
|
nipkow@33436
|
99 |
| _ => None))" |
|
nipkow@33436
|
100 |
"del k (Branch2 l p r) = (case compare k p of
|
nipkow@33436
|
101 |
LESS => (case del k l of None \<Rightarrow> None |
|
nipkow@33436
|
102 |
Some(p', (False, l')) => Some(p', (False, Branch2 l' p r))
|
nipkow@33436
|
103 |
| Some(p', (True, l')) => Some(p', case r of
|
nipkow@33436
|
104 |
Branch2 rl rp rr => (True, Branch3 l' p rl rp rr)
|
nipkow@33436
|
105 |
| Branch3 rl rp rm rq rr => (False, Branch2
|
nipkow@33436
|
106 |
(Branch2 l' p rl) rp (Branch2 rm rq rr))))
|
nipkow@33436
|
107 |
| or => (case del (if_eq or None k) r of None \<Rightarrow> None |
|
nipkow@33436
|
108 |
Some(p', (False, r')) => Some(p', (False, Branch2 l (if_eq or p' p) r'))
|
nipkow@33436
|
109 |
| Some(p', (True, r')) => Some(p', case l of
|
nipkow@33436
|
110 |
Branch2 ll lp lr => (True, Branch3 ll lp lr (if_eq or p' p) r')
|
nipkow@33436
|
111 |
| Branch3 ll lp lm lq lr => (False, Branch2
|
nipkow@33436
|
112 |
(Branch2 ll lp lm) lq (Branch2 lr (if_eq or p' p) r')))))" |
|
nipkow@33436
|
113 |
"del k (Branch3 l p m q r) = (case compare k q of
|
nipkow@33436
|
114 |
LESS => (case compare k p of
|
nipkow@33436
|
115 |
LESS => (case del k l of None \<Rightarrow> None |
|
nipkow@33436
|
116 |
Some(p', (False, l')) => Some(p', (False, Branch3 l' p m q r))
|
nipkow@33436
|
117 |
| Some(p', (True, l')) => Some(p', (False, case (m, r) of
|
nipkow@33436
|
118 |
(Branch2 ml mp mr, Branch2 _ _ _) => Branch2 (Branch3 l' p ml mp mr) q r
|
nipkow@33436
|
119 |
| (Branch3 ml mp mm mq mr, _) => Branch3 (Branch2 l' p ml) mp (Branch2 mm mq mr) q r
|
nipkow@33436
|
120 |
| (Branch2 ml mp mr, Branch3 rl rp rm rq rr) =>
|
nipkow@33436
|
121 |
Branch3 (Branch2 l' p ml) mp (Branch2 mr q rl) rp (Branch2 rm rq rr))))
|
nipkow@33436
|
122 |
| or => (case del (if_eq or None k) m of None \<Rightarrow> None |
|
nipkow@33436
|
123 |
Some(p', (False, m')) => Some(p', (False, Branch3 l (if_eq or p' p) m' q r))
|
nipkow@33436
|
124 |
| Some(p', (True, m')) => Some(p', (False, case (l, r) of
|
nipkow@33436
|
125 |
(Branch2 ll lp lr, Branch2 _ _ _) => Branch2 (Branch3 ll lp lr (if_eq or p' p) m') q r
|
nipkow@33436
|
126 |
| (Branch3 ll lp lm lq lr, _) => Branch3 (Branch2 ll lp lm) lq (Branch2 lr (if_eq or p' p) m') q r
|
nipkow@33436
|
127 |
| (_, Branch3 rl rp rm rq rr) => Branch3 l (if_eq or p' p) (Branch2 m' q rl) rp (Branch2 rm rq rr)))))
|
nipkow@33436
|
128 |
| or => (case del (if_eq or None k) r of None \<Rightarrow> None |
|
nipkow@33436
|
129 |
Some(q', (False, r')) => Some(q', (False, Branch3 l p m (if_eq or q' q) r'))
|
nipkow@33436
|
130 |
| Some(q', (True, r')) => Some(q', (False, case (l, m) of
|
nipkow@33436
|
131 |
(Branch2 _ _ _, Branch2 ml mp mr) => Branch2 l p (Branch3 ml mp mr (if_eq or q' q) r')
|
nipkow@33436
|
132 |
| (_, Branch3 ml mp mm mq mr) => Branch3 l p (Branch2 ml mp mm) mq (Branch2 mr (if_eq or q' q) r')
|
nipkow@33436
|
133 |
| (Branch3 ll lp lm lq lr, Branch2 ml mp mr) =>
|
nipkow@33436
|
134 |
Branch3 (Branch2 ll lp lm) lq (Branch2 lr p ml) mp (Branch2 mr (if_eq or q' q) r')))))"
|
nipkow@33436
|
135 |
|
nipkow@33436
|
136 |
definition del0 :: "key \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
|
nipkow@33436
|
137 |
"del0 k t = (case del (Some k) t of None \<Rightarrow> t | Some(_,(_,t')) \<Rightarrow> t')"
|
nipkow@33436
|
138 |
|
huffman@45334
|
139 |
text {* Ordered trees *}
|
nipkow@33436
|
140 |
|
huffman@45325
|
141 |
definition opt_less :: "key option \<Rightarrow> key option \<Rightarrow> bool" where
|
huffman@45325
|
142 |
"opt_less x y = (case x of None \<Rightarrow> True | Some a \<Rightarrow> (case y of None \<Rightarrow> True | Some b \<Rightarrow> a < b))"
|
huffman@45325
|
143 |
|
huffman@45325
|
144 |
lemma opt_less_simps [simp]:
|
huffman@45325
|
145 |
"opt_less None y = True"
|
huffman@45325
|
146 |
"opt_less x None = True"
|
huffman@45325
|
147 |
"opt_less (Some a) (Some b) = (a < b)"
|
huffman@45325
|
148 |
unfolding opt_less_def by (auto simp add: ord_def split: option.split)
|
huffman@45325
|
149 |
|
huffman@45333
|
150 |
primrec ord' :: "key option \<Rightarrow> 'a tree23 \<Rightarrow> key option \<Rightarrow> bool" where
|
huffman@45325
|
151 |
"ord' x Empty y = opt_less x y" |
|
huffman@45325
|
152 |
"ord' x (Branch2 l p r) y = (ord' x l (Some (fst p)) & ord' (Some (fst p)) r y)" |
|
huffman@45325
|
153 |
"ord' x (Branch3 l p m q r) y = (ord' x l (Some (fst p)) & ord' (Some (fst p)) m (Some (fst q)) & ord' (Some (fst q)) r y)"
|
huffman@45325
|
154 |
|
huffman@45333
|
155 |
definition ord0 :: "'a tree23 \<Rightarrow> bool" where
|
huffman@45333
|
156 |
"ord0 t = ord' None t None"
|
huffman@45325
|
157 |
|
huffman@45334
|
158 |
text {* Balanced trees *}
|
huffman@45334
|
159 |
|
huffman@45334
|
160 |
inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where
|
huffman@45334
|
161 |
"full 0 Empty" |
|
huffman@45334
|
162 |
"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Branch2 l p r)" |
|
huffman@45334
|
163 |
"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Branch3 l p m q r)"
|
huffman@45334
|
164 |
|
huffman@45334
|
165 |
inductive_cases full_elims:
|
huffman@45334
|
166 |
"full n Empty"
|
huffman@45334
|
167 |
"full n (Branch2 l p r)"
|
huffman@45334
|
168 |
"full n (Branch3 l p m q r)"
|
huffman@45334
|
169 |
|
huffman@45334
|
170 |
inductive_cases full_0_elim: "full 0 t"
|
huffman@45334
|
171 |
inductive_cases full_Suc_elim: "full (Suc n) t"
|
huffman@45334
|
172 |
|
huffman@45334
|
173 |
lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Empty"
|
huffman@45334
|
174 |
by (auto elim: full_0_elim intro: full.intros)
|
huffman@45334
|
175 |
|
huffman@45334
|
176 |
lemma full_Empty_iff [simp]: "full n Empty \<longleftrightarrow> n = 0"
|
huffman@45334
|
177 |
by (auto elim: full_elims intro: full.intros)
|
huffman@45334
|
178 |
|
huffman@45334
|
179 |
lemma full_Suc_Branch2_iff [simp]:
|
huffman@45334
|
180 |
"full (Suc n) (Branch2 l p r) \<longleftrightarrow> full n l \<and> full n r"
|
huffman@45334
|
181 |
by (auto elim: full_elims intro: full.intros)
|
huffman@45334
|
182 |
|
huffman@45334
|
183 |
lemma full_Suc_Branch3_iff [simp]:
|
huffman@45334
|
184 |
"full (Suc n) (Branch3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"
|
huffman@45334
|
185 |
by (auto elim: full_elims intro: full.intros)
|
huffman@45334
|
186 |
|
nipkow@33436
|
187 |
fun height :: "'a tree23 \<Rightarrow> nat" where
|
nipkow@33436
|
188 |
"height Empty = 0" |
|
nipkow@33436
|
189 |
"height (Branch2 l _ r) = Suc(max (height l) (height r))" |
|
nipkow@33436
|
190 |
"height (Branch3 l _ m _ r) = Suc(max (height l) (max (height m) (height r)))"
|
nipkow@33436
|
191 |
|
nipkow@33436
|
192 |
text{* Is a tree balanced? *}
|
nipkow@33436
|
193 |
fun bal :: "'a tree23 \<Rightarrow> bool" where
|
nipkow@33436
|
194 |
"bal Empty = True" |
|
nipkow@33436
|
195 |
"bal (Branch2 l _ r) = (bal l & bal r & height l = height r)" |
|
nipkow@33436
|
196 |
"bal (Branch3 l _ m _ r) = (bal l & bal m & bal r & height l = height m & height m = height r)"
|
nipkow@33436
|
197 |
|
huffman@45334
|
198 |
lemma full_imp_height: "full n t \<Longrightarrow> height t = n"
|
huffman@45334
|
199 |
by (induct set: full, simp_all)
|
huffman@45334
|
200 |
|
huffman@45334
|
201 |
lemma full_imp_bal: "full n t \<Longrightarrow> bal t"
|
huffman@45334
|
202 |
by (induct set: full, auto dest: full_imp_height)
|
huffman@45334
|
203 |
|
huffman@45334
|
204 |
lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"
|
huffman@45334
|
205 |
by (induct t, simp_all)
|
huffman@45334
|
206 |
|
huffman@45334
|
207 |
lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"
|
huffman@45334
|
208 |
by (auto elim!: bal_imp_full full_imp_bal)
|
huffman@45334
|
209 |
|
huffman@45325
|
210 |
text {* The @{term "add0"} function either preserves the height of the
|
huffman@45325
|
211 |
tree, or increases it by one. The constructor returned by the @{term
|
huffman@45325
|
212 |
"add"} function determines which: A return value of the form @{term
|
huffman@45325
|
213 |
"Stay t"} indicates that the height will be the same. A value of the
|
huffman@45325
|
214 |
form @{term "Sprout l p r"} indicates an increase in height. *}
|
huffman@45325
|
215 |
|
huffman@45334
|
216 |
primrec gfull :: "nat \<Rightarrow> 'a growth \<Rightarrow> bool" where
|
huffman@45334
|
217 |
"gfull n (Stay t) \<longleftrightarrow> full n t" |
|
huffman@45334
|
218 |
"gfull n (Sprout l p r) \<longleftrightarrow> full n l \<and> full n r"
|
huffman@45325
|
219 |
|
huffman@45334
|
220 |
lemma gfull_add: "full n t \<Longrightarrow> gfull n (add k y t)"
|
huffman@45336
|
221 |
by (induct set: full, auto split: ord.split growth.split)
|
huffman@45325
|
222 |
|
huffman@45334
|
223 |
text {* The @{term "add0"} operation preserves balance. *}
|
huffman@45325
|
224 |
|
huffman@45334
|
225 |
lemma bal_add0: "bal t \<Longrightarrow> bal (add0 k y t)"
|
huffman@45334
|
226 |
unfolding bal_iff_full add0_def
|
huffman@45334
|
227 |
apply (erule exE)
|
huffman@45334
|
228 |
apply (drule gfull_add [of _ _ k y])
|
huffman@45334
|
229 |
apply (cases "add k y t")
|
huffman@45334
|
230 |
apply (auto intro: full.intros)
|
huffman@45334
|
231 |
done
|
huffman@45334
|
232 |
|
huffman@45334
|
233 |
text {* The @{term "add0"} operation preserves order. *}
|
huffman@45334
|
234 |
|
huffman@45334
|
235 |
lemma ord_cases:
|
huffman@45334
|
236 |
fixes a b :: int obtains
|
huffman@45334
|
237 |
"ord a b = LESS" and "a < b" |
|
huffman@45334
|
238 |
"ord a b = EQUAL" and "a = b" |
|
huffman@45334
|
239 |
"ord a b = GREATER" and "a > b"
|
huffman@45334
|
240 |
unfolding ord_def by (rule linorder_cases [of a b]) auto
|
huffman@45325
|
241 |
|
huffman@45325
|
242 |
definition gtree :: "'a growth \<Rightarrow> 'a tree23" where
|
huffman@45325
|
243 |
"gtree g = (case g of Stay t \<Rightarrow> t | Sprout l p r \<Rightarrow> Branch2 l p r)"
|
huffman@45325
|
244 |
|
huffman@45325
|
245 |
lemma gtree_simps [simp]:
|
huffman@45325
|
246 |
"gtree (Stay t) = t"
|
huffman@45325
|
247 |
"gtree (Sprout l p r) = Branch2 l p r"
|
huffman@45325
|
248 |
unfolding gtree_def by simp_all
|
huffman@45325
|
249 |
|
huffman@45325
|
250 |
lemma add0: "add0 k y t = gtree (add k y t)"
|
huffman@45325
|
251 |
unfolding add0_def by (simp split: growth.split)
|
huffman@45325
|
252 |
|
huffman@45325
|
253 |
lemma ord'_add0:
|
huffman@45325
|
254 |
"\<lbrakk>ord' k1 t k2; opt_less k1 (Some k); opt_less (Some k) k2\<rbrakk> \<Longrightarrow> ord' k1 (add0 k y t) k2"
|
huffman@45325
|
255 |
unfolding add0
|
huffman@45325
|
256 |
apply (induct t arbitrary: k1 k2)
|
huffman@45325
|
257 |
apply simp
|
huffman@45325
|
258 |
apply clarsimp
|
huffman@45325
|
259 |
apply (rule_tac a=k and b=a in ord_cases)
|
huffman@45325
|
260 |
apply simp
|
huffman@45325
|
261 |
apply (case_tac "add k y t1", simp, simp)
|
huffman@45325
|
262 |
apply simp
|
huffman@45325
|
263 |
apply simp
|
huffman@45325
|
264 |
apply (case_tac "add k y t2", simp, simp)
|
huffman@45325
|
265 |
apply clarsimp
|
huffman@45325
|
266 |
apply (rule_tac a=k and b=a in ord_cases)
|
huffman@45325
|
267 |
apply simp
|
huffman@45325
|
268 |
apply (case_tac "add k y t1", simp, simp)
|
huffman@45325
|
269 |
apply simp
|
huffman@45325
|
270 |
apply simp
|
huffman@45325
|
271 |
apply (rule_tac a=k and b=aa in ord_cases)
|
huffman@45325
|
272 |
apply simp
|
huffman@45325
|
273 |
apply (case_tac "add k y t2", simp, simp)
|
huffman@45325
|
274 |
apply simp
|
huffman@45325
|
275 |
apply simp
|
huffman@45325
|
276 |
apply (case_tac "add k y t3", simp, simp)
|
huffman@45325
|
277 |
done
|
huffman@45325
|
278 |
|
huffman@45325
|
279 |
lemma ord0_add0: "ord0 t \<Longrightarrow> ord0 (add0 k y t)"
|
huffman@45333
|
280 |
by (simp add: ord0_def ord'_add0)
|
huffman@45325
|
281 |
|
huffman@45332
|
282 |
text {* The @{term "del"} function preserves balance. *}
|
huffman@45332
|
283 |
|
huffman@45332
|
284 |
lemma del_extra_simps:
|
huffman@45332
|
285 |
"l \<noteq> Empty \<or> r \<noteq> Empty \<Longrightarrow>
|
huffman@45332
|
286 |
del k (Branch2 l p r) = (case compare k p of
|
huffman@45332
|
287 |
LESS => (case del k l of None \<Rightarrow> None |
|
huffman@45332
|
288 |
Some(p', (False, l')) => Some(p', (False, Branch2 l' p r))
|
huffman@45332
|
289 |
| Some(p', (True, l')) => Some(p', case r of
|
huffman@45332
|
290 |
Branch2 rl rp rr => (True, Branch3 l' p rl rp rr)
|
huffman@45332
|
291 |
| Branch3 rl rp rm rq rr => (False, Branch2
|
huffman@45332
|
292 |
(Branch2 l' p rl) rp (Branch2 rm rq rr))))
|
huffman@45332
|
293 |
| or => (case del (if_eq or None k) r of None \<Rightarrow> None |
|
huffman@45332
|
294 |
Some(p', (False, r')) => Some(p', (False, Branch2 l (if_eq or p' p) r'))
|
huffman@45332
|
295 |
| Some(p', (True, r')) => Some(p', case l of
|
huffman@45332
|
296 |
Branch2 ll lp lr => (True, Branch3 ll lp lr (if_eq or p' p) r')
|
huffman@45332
|
297 |
| Branch3 ll lp lm lq lr => (False, Branch2
|
huffman@45332
|
298 |
(Branch2 ll lp lm) lq (Branch2 lr (if_eq or p' p) r')))))"
|
huffman@45332
|
299 |
"l \<noteq> Empty \<or> m \<noteq> Empty \<or> r \<noteq> Empty \<Longrightarrow>
|
huffman@45332
|
300 |
del k (Branch3 l p m q r) = (case compare k q of
|
huffman@45332
|
301 |
LESS => (case compare k p of
|
huffman@45332
|
302 |
LESS => (case del k l of None \<Rightarrow> None |
|
huffman@45332
|
303 |
Some(p', (False, l')) => Some(p', (False, Branch3 l' p m q r))
|
huffman@45332
|
304 |
| Some(p', (True, l')) => Some(p', (False, case (m, r) of
|
huffman@45332
|
305 |
(Branch2 ml mp mr, Branch2 _ _ _) => Branch2 (Branch3 l' p ml mp mr) q r
|
huffman@45332
|
306 |
| (Branch3 ml mp mm mq mr, _) => Branch3 (Branch2 l' p ml) mp (Branch2 mm mq mr) q r
|
huffman@45332
|
307 |
| (Branch2 ml mp mr, Branch3 rl rp rm rq rr) =>
|
huffman@45332
|
308 |
Branch3 (Branch2 l' p ml) mp (Branch2 mr q rl) rp (Branch2 rm rq rr))))
|
huffman@45332
|
309 |
| or => (case del (if_eq or None k) m of None \<Rightarrow> None |
|
huffman@45332
|
310 |
Some(p', (False, m')) => Some(p', (False, Branch3 l (if_eq or p' p) m' q r))
|
huffman@45332
|
311 |
| Some(p', (True, m')) => Some(p', (False, case (l, r) of
|
huffman@45332
|
312 |
(Branch2 ll lp lr, Branch2 _ _ _) => Branch2 (Branch3 ll lp lr (if_eq or p' p) m') q r
|
huffman@45332
|
313 |
| (Branch3 ll lp lm lq lr, _) => Branch3 (Branch2 ll lp lm) lq (Branch2 lr (if_eq or p' p) m') q r
|
huffman@45332
|
314 |
| (_, Branch3 rl rp rm rq rr) => Branch3 l (if_eq or p' p) (Branch2 m' q rl) rp (Branch2 rm rq rr)))))
|
huffman@45332
|
315 |
| or => (case del (if_eq or None k) r of None \<Rightarrow> None |
|
huffman@45332
|
316 |
Some(q', (False, r')) => Some(q', (False, Branch3 l p m (if_eq or q' q) r'))
|
huffman@45332
|
317 |
| Some(q', (True, r')) => Some(q', (False, case (l, m) of
|
huffman@45332
|
318 |
(Branch2 _ _ _, Branch2 ml mp mr) => Branch2 l p (Branch3 ml mp mr (if_eq or q' q) r')
|
huffman@45332
|
319 |
| (_, Branch3 ml mp mm mq mr) => Branch3 l p (Branch2 ml mp mm) mq (Branch2 mr (if_eq or q' q) r')
|
huffman@45332
|
320 |
| (Branch3 ll lp lm lq lr, Branch2 ml mp mr) =>
|
huffman@45332
|
321 |
Branch3 (Branch2 ll lp lm) lq (Branch2 lr p ml) mp (Branch2 mr (if_eq or q' q) r')))))"
|
huffman@45332
|
322 |
apply -
|
huffman@45332
|
323 |
apply (cases l, cases r, simp_all only: del.simps, simp)
|
huffman@45332
|
324 |
apply (cases l, cases m, cases r, simp_all only: del.simps, simp)
|
huffman@45332
|
325 |
done
|
huffman@45332
|
326 |
|
huffman@45335
|
327 |
fun dfull where
|
huffman@45335
|
328 |
"dfull n None \<longleftrightarrow> True" |
|
huffman@45335
|
329 |
"dfull n (Some (p, (True, t'))) \<longleftrightarrow> full n t'" |
|
huffman@45335
|
330 |
"dfull n (Some (p, (False, t'))) \<longleftrightarrow> full (Suc n) t'"
|
huffman@45332
|
331 |
|
huffman@45335
|
332 |
lemmas dfull_case_intros =
|
blanchet@55417
|
333 |
ord.exhaust [of y "dfull a (case_ord b c d y)"]
|
blanchet@55413
|
334 |
option.exhaust [of y "dfull a (case_option b c y)"]
|
blanchet@55414
|
335 |
prod.exhaust [of y "dfull a (case_prod b y)"]
|
blanchet@55414
|
336 |
bool.exhaust [of y "dfull a (case_bool b c y)"]
|
blanchet@55417
|
337 |
tree23.exhaust [of y "dfull a (Some (b, case_tree23 c d e y))"]
|
blanchet@55417
|
338 |
tree23.exhaust [of y "full a (case_tree23 b c d y)"]
|
wenzelm@45605
|
339 |
for a b c d e y
|
huffman@45332
|
340 |
|
huffman@45335
|
341 |
lemma dfull_del: "full (Suc n) t \<Longrightarrow> dfull n (del k t)"
|
huffman@45332
|
342 |
proof -
|
huffman@45332
|
343 |
{ fix n :: "nat" and p :: "key \<times> 'a" and l r :: "'a tree23" and k
|
huffman@45335
|
344 |
assume "\<And>n. \<lbrakk>compare k p = LESS; full (Suc n) l\<rbrakk> \<Longrightarrow> dfull n (del k l)"
|
huffman@45335
|
345 |
and "\<And>n. \<lbrakk>compare k p = EQUAL; full (Suc n) r\<rbrakk> \<Longrightarrow> dfull n (del (if_eq EQUAL None k) r)"
|
huffman@45335
|
346 |
and "\<And>n. \<lbrakk>compare k p = GREATER; full (Suc n) r\<rbrakk> \<Longrightarrow> dfull n (del (if_eq GREATER None k) r)"
|
huffman@45332
|
347 |
and "full (Suc n) (Branch2 l p r)"
|
huffman@45335
|
348 |
hence "dfull n (del k (Branch2 l p r))"
|
huffman@45332
|
349 |
apply clarsimp
|
huffman@45332
|
350 |
apply (cases n)
|
huffman@45332
|
351 |
apply (cases k)
|
huffman@45335
|
352 |
apply simp
|
huffman@45335
|
353 |
apply (simp split: ord.split)
|
huffman@45335
|
354 |
apply simp
|
huffman@45332
|
355 |
apply (subst del_extra_simps, force)
|
huffman@45336
|
356 |
(* This should work, but it is way too slow!
|
huffman@45336
|
357 |
apply (force split: ord.split option.split bool.split tree23.split) *)
|
huffman@45335
|
358 |
apply (simp | rule dfull_case_intros)+
|
huffman@45332
|
359 |
done
|
huffman@45332
|
360 |
} note A = this
|
huffman@45332
|
361 |
{ fix n :: "nat" and p q :: "key \<times> 'a" and l m r :: "'a tree23" and k
|
huffman@45335
|
362 |
assume "\<And>n. \<lbrakk>compare k q = LESS; compare k p = LESS; full (Suc n) l\<rbrakk> \<Longrightarrow> dfull n (del k l)"
|
huffman@45335
|
363 |
and "\<And>n. \<lbrakk>compare k q = LESS; compare k p = EQUAL; full (Suc n) m\<rbrakk> \<Longrightarrow> dfull n (del (if_eq EQUAL None k) m)"
|
huffman@45335
|
364 |
and "\<And>n. \<lbrakk>compare k q = LESS; compare k p = GREATER; full (Suc n) m\<rbrakk> \<Longrightarrow> dfull n (del (if_eq GREATER None k) m)"
|
huffman@45335
|
365 |
and "\<And>n. \<lbrakk>compare k q = EQUAL; full (Suc n) r\<rbrakk> \<Longrightarrow> dfull n (del (if_eq EQUAL None k) r)"
|
huffman@45335
|
366 |
and "\<And>n. \<lbrakk>compare k q = GREATER; full (Suc n) r\<rbrakk> \<Longrightarrow> dfull n (del (if_eq GREATER None k) r)"
|
huffman@45332
|
367 |
and "full (Suc n) (Branch3 l p m q r)"
|
huffman@45335
|
368 |
hence "dfull n (del k (Branch3 l p m q r))"
|
huffman@45332
|
369 |
apply clarsimp
|
huffman@45332
|
370 |
apply (cases n)
|
huffman@45332
|
371 |
apply (cases k)
|
huffman@45335
|
372 |
apply simp
|
huffman@45335
|
373 |
apply (simp split: ord.split)
|
huffman@45335
|
374 |
apply simp
|
huffman@45332
|
375 |
apply (subst del_extra_simps, force)
|
huffman@45335
|
376 |
apply (simp | rule dfull_case_intros)+
|
huffman@45332
|
377 |
done
|
huffman@45332
|
378 |
} note B = this
|
huffman@45335
|
379 |
show "full (Suc n) t \<Longrightarrow> dfull n (del k t)"
|
wenzelm@60580
|
380 |
proof (induct k t arbitrary: n rule: del.induct, goals)
|
wenzelm@60580
|
381 |
case (1 k n)
|
wenzelm@60580
|
382 |
thus "dfull n (del (Some k) Empty)" by simp
|
wenzelm@60580
|
383 |
next
|
wenzelm@60580
|
384 |
case (2 p n)
|
wenzelm@60580
|
385 |
thus "dfull n (del None (Branch2 Empty p Empty))" by simp
|
wenzelm@60580
|
386 |
next
|
wenzelm@60580
|
387 |
case (3 p q n)
|
wenzelm@60580
|
388 |
thus "dfull n (del None (Branch3 Empty p Empty q Empty))" by simp
|
wenzelm@60580
|
389 |
next
|
wenzelm@60580
|
390 |
case (4 v p n)
|
wenzelm@60580
|
391 |
thus "dfull n (del (Some v) (Branch2 Empty p Empty))"
|
wenzelm@60580
|
392 |
by (simp split: ord.split)
|
wenzelm@60580
|
393 |
next
|
wenzelm@60580
|
394 |
case (5 v p q n)
|
wenzelm@60580
|
395 |
thus "dfull n (del (Some v) (Branch3 Empty p Empty q Empty))"
|
wenzelm@60580
|
396 |
by (simp split: ord.split)
|
wenzelm@60580
|
397 |
next
|
wenzelm@60580
|
398 |
case (26 n)
|
wenzelm@60580
|
399 |
thus ?case by simp
|
huffman@45332
|
400 |
qed (fact A | fact B)+
|
huffman@45332
|
401 |
qed
|
huffman@45332
|
402 |
|
huffman@45332
|
403 |
lemma bal_del0: "bal t \<Longrightarrow> bal (del0 k t)"
|
huffman@45335
|
404 |
unfolding bal_iff_full del0_def
|
huffman@45335
|
405 |
apply (erule exE)
|
huffman@45335
|
406 |
apply (case_tac n, simp, simp)
|
huffman@45335
|
407 |
apply (frule dfull_del [where k="Some k"])
|
huffman@45335
|
408 |
apply (cases "del (Some k) t", force)
|
blanchet@55417
|
409 |
apply (rename_tac a, case_tac "a", rename_tac b t', case_tac "b", auto)
|
huffman@45335
|
410 |
done
|
huffman@45332
|
411 |
|
nipkow@33436
|
412 |
text{* This is a little test harness and should be commented out once the
|
nipkow@33436
|
413 |
above functions have been proved correct. *}
|
nipkow@33436
|
414 |
|
blanchet@58310
|
415 |
datatype 'a act = Add int 'a | Del int
|
nipkow@33436
|
416 |
|
nipkow@33436
|
417 |
fun exec where
|
nipkow@33436
|
418 |
"exec [] t = t" |
|
nipkow@33436
|
419 |
"exec (Add k x # as) t = exec as (add0 k x t)" |
|
nipkow@33436
|
420 |
"exec (Del k # as) t = exec as (del0 k t)"
|
nipkow@33436
|
421 |
|
nipkow@33436
|
422 |
text{* Some quick checks: *}
|
nipkow@33436
|
423 |
|
huffman@45332
|
424 |
lemma bal_exec: "bal t \<Longrightarrow> bal (exec as t)"
|
huffman@45332
|
425 |
by (induct as t arbitrary: t rule: exec.induct,
|
huffman@45332
|
426 |
simp_all add: bal_add0 bal_del0)
|
huffman@45332
|
427 |
|
huffman@45332
|
428 |
lemma "bal(exec as Empty)"
|
huffman@45332
|
429 |
by (simp add: bal_exec)
|
huffman@45332
|
430 |
|
nipkow@33436
|
431 |
lemma "ord0(exec as Empty)"
|
nipkow@33436
|
432 |
quickcheck
|
nipkow@33436
|
433 |
oops
|
nipkow@33436
|
434 |
|
huffman@45332
|
435 |
end
|