author | huffman |
Mon May 11 08:28:09 2009 -0700 (2009-05-11) | |
changeset 31095 | b79d140f6d0b |
parent 31076 | 99fe356cbbc2 |
child 35900 | aa5dfb03eb1e |
permissions | -rw-r--r-- |
nipkow@2841 | 1 |
(* Title: HOLCF/Discrete.thy |
nipkow@2841 | 2 |
Author: Tobias Nipkow |
nipkow@2841 | 3 |
*) |
nipkow@2841 | 4 |
|
huffman@15578 | 5 |
header {* Discrete cpo types *} |
huffman@15578 | 6 |
|
huffman@15555 | 7 |
theory Discrete |
huffman@19105 | 8 |
imports Cont |
huffman@15555 | 9 |
begin |
huffman@15555 | 10 |
|
huffman@15555 | 11 |
datatype 'a discr = Discr "'a :: type" |
huffman@15555 | 12 |
|
huffman@26025 | 13 |
subsection {* Type @{typ "'a discr"} is a discrete cpo *} |
huffman@15590 | 14 |
|
huffman@31076 | 15 |
instantiation discr :: (type) below |
huffman@25902 | 16 |
begin |
huffman@15555 | 17 |
|
huffman@25902 | 18 |
definition |
huffman@31076 | 19 |
below_discr_def: |
huffman@25902 | 20 |
"(op \<sqsubseteq> :: 'a discr \<Rightarrow> 'a discr \<Rightarrow> bool) = (op =)" |
huffman@15555 | 21 |
|
huffman@26025 | 22 |
instance .. |
huffman@26025 | 23 |
end |
nipkow@2841 | 24 |
|
huffman@26025 | 25 |
instance discr :: (type) discrete_cpo |
huffman@31076 | 26 |
by intro_classes (simp add: below_discr_def) |
huffman@25902 | 27 |
|
huffman@31076 | 28 |
lemma discr_below_eq [iff]: "((x::('a::type)discr) << y) = (x = y)" |
huffman@31076 | 29 |
by simp (* FIXME: same discrete_cpo - remove? is [iff] important? *) |
huffman@25902 | 30 |
|
huffman@15590 | 31 |
subsection {* Type @{typ "'a discr"} is a cpo *} |
huffman@15590 | 32 |
|
huffman@15555 | 33 |
lemma discr_chain0: |
huffman@15555 | 34 |
"!!S::nat=>('a::type)discr. chain S ==> S i = S 0" |
huffman@15555 | 35 |
apply (unfold chain_def) |
huffman@15555 | 36 |
apply (induct_tac "i") |
huffman@15555 | 37 |
apply (rule refl) |
huffman@15555 | 38 |
apply (erule subst) |
huffman@15555 | 39 |
apply (rule sym) |
huffman@15555 | 40 |
apply fast |
huffman@15555 | 41 |
done |
huffman@15555 | 42 |
|
huffman@15639 | 43 |
lemma discr_chain_range0 [simp]: |
huffman@15555 | 44 |
"!!S::nat=>('a::type)discr. chain(S) ==> range(S) = {S 0}" |
huffman@15639 | 45 |
by (fast elim: discr_chain0) |
huffman@15555 | 46 |
|
huffman@25827 | 47 |
instance discr :: (finite) finite_po |
huffman@25827 | 48 |
proof |
huffman@25827 | 49 |
have "finite (Discr ` (UNIV :: 'a set))" |
huffman@25827 | 50 |
by (rule finite_imageI [OF finite]) |
huffman@25827 | 51 |
also have "(Discr ` (UNIV :: 'a set)) = UNIV" |
huffman@25827 | 52 |
by (auto, case_tac x, auto) |
huffman@25827 | 53 |
finally show "finite (UNIV :: 'a discr set)" . |
huffman@25827 | 54 |
qed |
huffman@25827 | 55 |
|
huffman@25827 | 56 |
instance discr :: (type) chfin |
huffman@25921 | 57 |
apply intro_classes |
huffman@25827 | 58 |
apply (rule_tac x=0 in exI) |
huffman@25827 | 59 |
apply (unfold max_in_chain_def) |
huffman@25827 | 60 |
apply (clarify, erule discr_chain0 [symmetric]) |
huffman@25827 | 61 |
done |
huffman@25827 | 62 |
|
huffman@15590 | 63 |
subsection {* @{term undiscr} *} |
nipkow@2841 | 64 |
|
wenzelm@25131 | 65 |
definition |
wenzelm@25131 | 66 |
undiscr :: "('a::type)discr => 'a" where |
wenzelm@25131 | 67 |
"undiscr x = (case x of Discr y => y)" |
nipkow@2841 | 68 |
|
huffman@26025 | 69 |
lemma undiscr_Discr [simp]: "undiscr (Discr x) = x" |
huffman@15590 | 70 |
by (simp add: undiscr_def) |
huffman@15555 | 71 |
|
huffman@26025 | 72 |
lemma Discr_undiscr [simp]: "Discr (undiscr y) = y" |
huffman@26025 | 73 |
by (induct y) simp |
huffman@26025 | 74 |
|
huffman@15555 | 75 |
lemma discr_chain_f_range0: |
huffman@15555 | 76 |
"!!S::nat=>('a::type)discr. chain(S) ==> range(%i. f(S i)) = {f(S 0)}" |
huffman@15590 | 77 |
by (fast dest: discr_chain0 elim: arg_cong) |
huffman@15555 | 78 |
|
huffman@25827 | 79 |
lemma cont_discr [iff]: "cont (%x::('a::type)discr. f x)" |
huffman@26025 | 80 |
by (rule cont_discrete_cpo) |
huffman@15555 | 81 |
|
nipkow@2841 | 82 |
end |