author | huffman |
Mon May 11 08:28:09 2009 -0700 (2009-05-11) | |
changeset 31095 | b79d140f6d0b |
parent 31076 | 99fe356cbbc2 |
child 31230 | 50deb3badfba |
permissions | -rw-r--r-- |
huffman@15741 | 1 |
(* Title: HOLCF/Domain.thy |
huffman@15741 | 2 |
Author: Brian Huffman |
huffman@15741 | 3 |
*) |
huffman@15741 | 4 |
|
huffman@15741 | 5 |
header {* Domain package *} |
huffman@15741 | 6 |
|
huffman@15741 | 7 |
theory Domain |
huffman@16230 | 8 |
imports Ssum Sprod Up One Tr Fixrec |
huffman@30910 | 9 |
uses |
huffman@30910 | 10 |
("Tools/cont_consts.ML") |
huffman@30910 | 11 |
("Tools/cont_proc.ML") |
huffman@30910 | 12 |
("Tools/domain/domain_library.ML") |
huffman@30910 | 13 |
("Tools/domain/domain_syntax.ML") |
huffman@30910 | 14 |
("Tools/domain/domain_axioms.ML") |
huffman@30910 | 15 |
("Tools/domain/domain_theorems.ML") |
huffman@30910 | 16 |
("Tools/domain/domain_extender.ML") |
huffman@15741 | 17 |
begin |
huffman@15741 | 18 |
|
huffman@15741 | 19 |
defaultsort pcpo |
huffman@15741 | 20 |
|
wenzelm@23376 | 21 |
|
huffman@15741 | 22 |
subsection {* Continuous isomorphisms *} |
huffman@15741 | 23 |
|
huffman@15741 | 24 |
text {* A locale for continuous isomorphisms *} |
huffman@15741 | 25 |
|
huffman@15741 | 26 |
locale iso = |
huffman@15741 | 27 |
fixes abs :: "'a \<rightarrow> 'b" |
huffman@15741 | 28 |
fixes rep :: "'b \<rightarrow> 'a" |
huffman@15741 | 29 |
assumes abs_iso [simp]: "rep\<cdot>(abs\<cdot>x) = x" |
huffman@15741 | 30 |
assumes rep_iso [simp]: "abs\<cdot>(rep\<cdot>y) = y" |
wenzelm@23376 | 31 |
begin |
huffman@15741 | 32 |
|
wenzelm@23376 | 33 |
lemma swap: "iso rep abs" |
wenzelm@23376 | 34 |
by (rule iso.intro [OF rep_iso abs_iso]) |
huffman@15741 | 35 |
|
huffman@31076 | 36 |
lemma abs_below: "(abs\<cdot>x \<sqsubseteq> abs\<cdot>y) = (x \<sqsubseteq> y)" |
huffman@17835 | 37 |
proof |
huffman@17835 | 38 |
assume "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" |
wenzelm@23376 | 39 |
then have "rep\<cdot>(abs\<cdot>x) \<sqsubseteq> rep\<cdot>(abs\<cdot>y)" by (rule monofun_cfun_arg) |
wenzelm@23376 | 40 |
then show "x \<sqsubseteq> y" by simp |
huffman@17835 | 41 |
next |
huffman@17835 | 42 |
assume "x \<sqsubseteq> y" |
wenzelm@23376 | 43 |
then show "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" by (rule monofun_cfun_arg) |
huffman@17835 | 44 |
qed |
huffman@17835 | 45 |
|
huffman@31076 | 46 |
lemma rep_below: "(rep\<cdot>x \<sqsubseteq> rep\<cdot>y) = (x \<sqsubseteq> y)" |
huffman@31076 | 47 |
by (rule iso.abs_below [OF swap]) |
huffman@17835 | 48 |
|
wenzelm@23376 | 49 |
lemma abs_eq: "(abs\<cdot>x = abs\<cdot>y) = (x = y)" |
huffman@31076 | 50 |
by (simp add: po_eq_conv abs_below) |
huffman@17835 | 51 |
|
wenzelm@23376 | 52 |
lemma rep_eq: "(rep\<cdot>x = rep\<cdot>y) = (x = y)" |
wenzelm@23376 | 53 |
by (rule iso.abs_eq [OF swap]) |
huffman@17835 | 54 |
|
wenzelm@23376 | 55 |
lemma abs_strict: "abs\<cdot>\<bottom> = \<bottom>" |
huffman@15741 | 56 |
proof - |
huffman@15741 | 57 |
have "\<bottom> \<sqsubseteq> rep\<cdot>\<bottom>" .. |
wenzelm@23376 | 58 |
then have "abs\<cdot>\<bottom> \<sqsubseteq> abs\<cdot>(rep\<cdot>\<bottom>)" by (rule monofun_cfun_arg) |
wenzelm@23376 | 59 |
then have "abs\<cdot>\<bottom> \<sqsubseteq> \<bottom>" by simp |
wenzelm@23376 | 60 |
then show ?thesis by (rule UU_I) |
huffman@15741 | 61 |
qed |
huffman@15741 | 62 |
|
wenzelm@23376 | 63 |
lemma rep_strict: "rep\<cdot>\<bottom> = \<bottom>" |
wenzelm@23376 | 64 |
by (rule iso.abs_strict [OF swap]) |
huffman@15741 | 65 |
|
wenzelm@23376 | 66 |
lemma abs_defin': "abs\<cdot>x = \<bottom> \<Longrightarrow> x = \<bottom>" |
huffman@15741 | 67 |
proof - |
huffman@17835 | 68 |
have "x = rep\<cdot>(abs\<cdot>x)" by simp |
huffman@17835 | 69 |
also assume "abs\<cdot>x = \<bottom>" |
huffman@15741 | 70 |
also note rep_strict |
huffman@17835 | 71 |
finally show "x = \<bottom>" . |
huffman@15741 | 72 |
qed |
huffman@15741 | 73 |
|
wenzelm@23376 | 74 |
lemma rep_defin': "rep\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>" |
wenzelm@23376 | 75 |
by (rule iso.abs_defin' [OF swap]) |
huffman@15741 | 76 |
|
wenzelm@23376 | 77 |
lemma abs_defined: "z \<noteq> \<bottom> \<Longrightarrow> abs\<cdot>z \<noteq> \<bottom>" |
wenzelm@23376 | 78 |
by (erule contrapos_nn, erule abs_defin') |
huffman@15741 | 79 |
|
wenzelm@23376 | 80 |
lemma rep_defined: "z \<noteq> \<bottom> \<Longrightarrow> rep\<cdot>z \<noteq> \<bottom>" |
wenzelm@23376 | 81 |
by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms) |
huffman@17835 | 82 |
|
wenzelm@23376 | 83 |
lemma abs_defined_iff: "(abs\<cdot>x = \<bottom>) = (x = \<bottom>)" |
wenzelm@23376 | 84 |
by (auto elim: abs_defin' intro: abs_strict) |
huffman@17835 | 85 |
|
wenzelm@23376 | 86 |
lemma rep_defined_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)" |
wenzelm@23376 | 87 |
by (rule iso.abs_defined_iff [OF iso.swap]) (rule iso_axioms) |
huffman@15741 | 88 |
|
huffman@17836 | 89 |
lemma (in iso) compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x" |
huffman@17836 | 90 |
proof (unfold compact_def) |
huffman@17836 | 91 |
assume "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> y)" |
huffman@17836 | 92 |
with cont_Rep_CFun2 |
huffman@17836 | 93 |
have "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> abs\<cdot>y)" by (rule adm_subst) |
huffman@31076 | 94 |
then show "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" using abs_below by simp |
huffman@17836 | 95 |
qed |
huffman@17836 | 96 |
|
wenzelm@23376 | 97 |
lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x" |
wenzelm@23376 | 98 |
by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms) |
huffman@17836 | 99 |
|
wenzelm@23376 | 100 |
lemma compact_abs: "compact x \<Longrightarrow> compact (abs\<cdot>x)" |
wenzelm@23376 | 101 |
by (rule compact_rep_rev) simp |
huffman@17836 | 102 |
|
wenzelm@23376 | 103 |
lemma compact_rep: "compact x \<Longrightarrow> compact (rep\<cdot>x)" |
wenzelm@23376 | 104 |
by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms) |
huffman@17836 | 105 |
|
wenzelm@23376 | 106 |
lemma iso_swap: "(x = abs\<cdot>y) = (rep\<cdot>x = y)" |
huffman@15741 | 107 |
proof |
huffman@15741 | 108 |
assume "x = abs\<cdot>y" |
wenzelm@23376 | 109 |
then have "rep\<cdot>x = rep\<cdot>(abs\<cdot>y)" by simp |
wenzelm@23376 | 110 |
then show "rep\<cdot>x = y" by simp |
huffman@15741 | 111 |
next |
huffman@15741 | 112 |
assume "rep\<cdot>x = y" |
wenzelm@23376 | 113 |
then have "abs\<cdot>(rep\<cdot>x) = abs\<cdot>y" by simp |
wenzelm@23376 | 114 |
then show "x = abs\<cdot>y" by simp |
huffman@15741 | 115 |
qed |
huffman@15741 | 116 |
|
wenzelm@23376 | 117 |
end |
wenzelm@23376 | 118 |
|
wenzelm@23376 | 119 |
|
huffman@15741 | 120 |
subsection {* Casedist *} |
huffman@15741 | 121 |
|
huffman@15741 | 122 |
lemma ex_one_defined_iff: |
huffman@15741 | 123 |
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = P ONE" |
huffman@15741 | 124 |
apply safe |
huffman@15741 | 125 |
apply (rule_tac p=x in oneE) |
huffman@15741 | 126 |
apply simp |
huffman@15741 | 127 |
apply simp |
huffman@15741 | 128 |
apply force |
wenzelm@23376 | 129 |
done |
huffman@15741 | 130 |
|
huffman@15741 | 131 |
lemma ex_up_defined_iff: |
huffman@15741 | 132 |
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = (\<exists>x. P (up\<cdot>x))" |
huffman@15741 | 133 |
apply safe |
huffman@16754 | 134 |
apply (rule_tac p=x in upE) |
huffman@15741 | 135 |
apply simp |
huffman@15741 | 136 |
apply fast |
huffman@16320 | 137 |
apply (force intro!: up_defined) |
wenzelm@23376 | 138 |
done |
huffman@15741 | 139 |
|
huffman@15741 | 140 |
lemma ex_sprod_defined_iff: |
huffman@15741 | 141 |
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) = |
huffman@15741 | 142 |
(\<exists>x y. (P (:x, y:) \<and> x \<noteq> \<bottom>) \<and> y \<noteq> \<bottom>)" |
huffman@15741 | 143 |
apply safe |
huffman@15741 | 144 |
apply (rule_tac p=y in sprodE) |
huffman@15741 | 145 |
apply simp |
huffman@15741 | 146 |
apply fast |
huffman@16217 | 147 |
apply (force intro!: spair_defined) |
wenzelm@23376 | 148 |
done |
huffman@15741 | 149 |
|
huffman@15741 | 150 |
lemma ex_sprod_up_defined_iff: |
huffman@15741 | 151 |
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) = |
huffman@15741 | 152 |
(\<exists>x y. P (:up\<cdot>x, y:) \<and> y \<noteq> \<bottom>)" |
huffman@15741 | 153 |
apply safe |
huffman@15741 | 154 |
apply (rule_tac p=y in sprodE) |
huffman@15741 | 155 |
apply simp |
huffman@16754 | 156 |
apply (rule_tac p=x in upE) |
huffman@15741 | 157 |
apply simp |
huffman@15741 | 158 |
apply fast |
huffman@16217 | 159 |
apply (force intro!: spair_defined) |
wenzelm@23376 | 160 |
done |
huffman@15741 | 161 |
|
huffman@15741 | 162 |
lemma ex_ssum_defined_iff: |
huffman@15741 | 163 |
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = |
huffman@15741 | 164 |
((\<exists>x. P (sinl\<cdot>x) \<and> x \<noteq> \<bottom>) \<or> |
huffman@15741 | 165 |
(\<exists>x. P (sinr\<cdot>x) \<and> x \<noteq> \<bottom>))" |
huffman@15741 | 166 |
apply (rule iffI) |
huffman@15741 | 167 |
apply (erule exE) |
huffman@15741 | 168 |
apply (erule conjE) |
huffman@15741 | 169 |
apply (rule_tac p=x in ssumE) |
huffman@15741 | 170 |
apply simp |
huffman@15741 | 171 |
apply (rule disjI1, fast) |
huffman@15741 | 172 |
apply (rule disjI2, fast) |
huffman@15741 | 173 |
apply (erule disjE) |
huffman@17835 | 174 |
apply force |
huffman@17835 | 175 |
apply force |
wenzelm@23376 | 176 |
done |
huffman@15741 | 177 |
|
huffman@15741 | 178 |
lemma exh_start: "p = \<bottom> \<or> (\<exists>x. p = x \<and> x \<noteq> \<bottom>)" |
wenzelm@23376 | 179 |
by auto |
huffman@15741 | 180 |
|
huffman@15741 | 181 |
lemmas ex_defined_iffs = |
huffman@15741 | 182 |
ex_ssum_defined_iff |
huffman@15741 | 183 |
ex_sprod_up_defined_iff |
huffman@15741 | 184 |
ex_sprod_defined_iff |
huffman@15741 | 185 |
ex_up_defined_iff |
huffman@15741 | 186 |
ex_one_defined_iff |
huffman@15741 | 187 |
|
huffman@15741 | 188 |
text {* Rules for turning exh into casedist *} |
huffman@15741 | 189 |
|
huffman@15741 | 190 |
lemma exh_casedist0: "\<lbrakk>R; R \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" (* like make_elim *) |
wenzelm@23376 | 191 |
by auto |
huffman@15741 | 192 |
|
huffman@15741 | 193 |
lemma exh_casedist1: "((P \<or> Q \<Longrightarrow> R) \<Longrightarrow> S) \<equiv> (\<lbrakk>P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> S)" |
wenzelm@23376 | 194 |
by rule auto |
huffman@15741 | 195 |
|
huffman@15741 | 196 |
lemma exh_casedist2: "(\<exists>x. P x \<Longrightarrow> Q) \<equiv> (\<And>x. P x \<Longrightarrow> Q)" |
wenzelm@23376 | 197 |
by rule auto |
huffman@15741 | 198 |
|
huffman@15741 | 199 |
lemma exh_casedist3: "(P \<and> Q \<Longrightarrow> R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> R)" |
wenzelm@23376 | 200 |
by rule auto |
huffman@15741 | 201 |
|
huffman@15741 | 202 |
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3 |
huffman@15741 | 203 |
|
huffman@30910 | 204 |
|
huffman@30910 | 205 |
subsection {* Installing the domain package *} |
huffman@30910 | 206 |
|
huffman@30911 | 207 |
lemmas con_strict_rules = |
huffman@30911 | 208 |
sinl_strict sinr_strict spair_strict1 spair_strict2 |
huffman@30911 | 209 |
|
huffman@30911 | 210 |
lemmas con_defin_rules = |
huffman@30911 | 211 |
sinl_defined sinr_defined spair_defined up_defined ONE_defined |
huffman@30911 | 212 |
|
huffman@30911 | 213 |
lemmas con_defined_iff_rules = |
huffman@30911 | 214 |
sinl_defined_iff sinr_defined_iff spair_strict_iff up_defined ONE_defined |
huffman@30911 | 215 |
|
huffman@30910 | 216 |
use "Tools/cont_consts.ML" |
huffman@30910 | 217 |
use "Tools/cont_proc.ML" |
huffman@30910 | 218 |
use "Tools/domain/domain_library.ML" |
huffman@30910 | 219 |
use "Tools/domain/domain_syntax.ML" |
huffman@30910 | 220 |
use "Tools/domain/domain_axioms.ML" |
huffman@30910 | 221 |
use "Tools/domain/domain_theorems.ML" |
huffman@30910 | 222 |
use "Tools/domain/domain_extender.ML" |
huffman@30910 | 223 |
|
huffman@15741 | 224 |
end |