src/HOL/Divides.thy
author wenzelm
Thu May 31 18:16:50 2007 +0200 (2007-05-31)
changeset 23162 b9853c187a1e
parent 23017 00c0e4c42396
child 23684 8c508c4dc53b
permissions -rw-r--r--
removed dead code;
paulson@3366
     1
(*  Title:      HOL/Divides.thy
paulson@3366
     2
    ID:         $Id$
paulson@3366
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@6865
     4
    Copyright   1999  University of Cambridge
huffman@18154
     5
*)
paulson@3366
     6
huffman@18154
     7
header {* The division operators div, mod and the divides relation "dvd" *}
paulson@3366
     8
nipkow@15131
     9
theory Divides
haftmann@21408
    10
imports Datatype Power
haftmann@22993
    11
uses "~~/src/Provers/Arith/cancel_div_mod.ML"
nipkow@15131
    12
begin
paulson@3366
    13
wenzelm@8902
    14
(*We use the same class for div and mod;
paulson@6865
    15
  moreover, dvd is defined whenever multiplication is*)
haftmann@22473
    16
class div = type +
haftmann@21408
    17
  fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
haftmann@21408
    18
  fixes mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
haftmann@21408
    19
begin
haftmann@21408
    20
haftmann@21408
    21
notation
haftmann@21408
    22
  div (infixl "\<^loc>div" 70)
haftmann@21408
    23
haftmann@21408
    24
notation
haftmann@21408
    25
  mod (infixl "\<^loc>mod" 70)
haftmann@21408
    26
haftmann@21408
    27
end
paulson@6865
    28
haftmann@21408
    29
notation
haftmann@21408
    30
  div (infixl "div" 70)
haftmann@21408
    31
haftmann@21408
    32
notation
haftmann@21408
    33
  mod (infixl "mod" 70)
haftmann@21408
    34
haftmann@22993
    35
instance nat :: Divides.div
haftmann@22993
    36
  div_def: "m div n == wfrec (pred_nat^+)
haftmann@22993
    37
                          (%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"
berghofe@22261
    38
  mod_def: "m mod n == wfrec (pred_nat^+)
haftmann@22993
    39
                          (%f j. if j<n | n=0 then j else f (j-n)) m" ..
haftmann@21408
    40
haftmann@21408
    41
definition
haftmann@21408
    42
  (*The definition of dvd is polymorphic!*)
haftmann@21408
    43
  dvd  :: "'a::times \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where
haftmann@21408
    44
  dvd_def: "m dvd n \<longleftrightarrow> (\<exists>k. n = m*k)"
paulson@6865
    45
wenzelm@22718
    46
definition
wenzelm@22718
    47
  quorem :: "(nat*nat) * (nat*nat) => bool" where
haftmann@21408
    48
  (*This definition helps prove the harder properties of div and mod.
haftmann@21408
    49
    It is copied from IntDiv.thy; should it be overloaded?*)
wenzelm@22718
    50
  "quorem = (%((a,b), (q,r)).
haftmann@21408
    51
                    a = b*q + r &
haftmann@21408
    52
                    (if 0<b then 0\<le>r & r<b else b<r & r \<le>0))"
paulson@14267
    53
paulson@14267
    54
paulson@14267
    55
paulson@14267
    56
subsection{*Initial Lemmas*}
paulson@14267
    57
wenzelm@22718
    58
lemmas wf_less_trans =
paulson@14267
    59
       def_wfrec [THEN trans, OF eq_reflection wf_pred_nat [THEN wf_trancl],
paulson@14267
    60
                  standard]
paulson@14267
    61
wenzelm@22718
    62
lemma mod_eq: "(%m. m mod n) =
berghofe@22261
    63
              wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))"
paulson@14267
    64
by (simp add: mod_def)
paulson@14267
    65
wenzelm@22718
    66
lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+)
paulson@14267
    67
               (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
paulson@14267
    68
by (simp add: div_def)
paulson@14267
    69
paulson@14267
    70
wenzelm@22718
    71
(** Aribtrary definitions for division by zero.  Useful to simplify
paulson@14267
    72
    certain equations **)
paulson@14267
    73
paulson@14267
    74
lemma DIVISION_BY_ZERO_DIV [simp]: "a div 0 = (0::nat)"
wenzelm@22718
    75
  by (rule div_eq [THEN wf_less_trans], simp)
paulson@14267
    76
paulson@14267
    77
lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a::nat)"
wenzelm@22718
    78
  by (rule mod_eq [THEN wf_less_trans], simp)
paulson@14267
    79
paulson@14267
    80
paulson@14267
    81
subsection{*Remainder*}
paulson@14267
    82
paulson@14267
    83
lemma mod_less [simp]: "m<n ==> m mod n = (m::nat)"
wenzelm@22718
    84
  by (rule mod_eq [THEN wf_less_trans]) simp
paulson@14267
    85
paulson@14267
    86
lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n"
wenzelm@22718
    87
  apply (cases "n=0")
wenzelm@22718
    88
   apply simp
wenzelm@22718
    89
  apply (rule mod_eq [THEN wf_less_trans])
wenzelm@22718
    90
  apply (simp add: cut_apply less_eq)
wenzelm@22718
    91
  done
paulson@14267
    92
paulson@14267
    93
(*Avoids the ugly ~m<n above*)
paulson@14267
    94
lemma le_mod_geq: "(n::nat) \<le> m ==> m mod n = (m-n) mod n"
wenzelm@22718
    95
  by (simp add: mod_geq linorder_not_less)
paulson@14267
    96
paulson@14267
    97
lemma mod_if: "m mod (n::nat) = (if m<n then m else (m-n) mod n)"
wenzelm@22718
    98
  by (simp add: mod_geq)
paulson@14267
    99
paulson@14267
   100
lemma mod_1 [simp]: "m mod Suc 0 = 0"
wenzelm@22718
   101
  by (induct m) (simp_all add: mod_geq)
paulson@14267
   102
paulson@14267
   103
lemma mod_self [simp]: "n mod n = (0::nat)"
wenzelm@22718
   104
  by (cases "n = 0") (simp_all add: mod_geq)
paulson@14267
   105
paulson@14267
   106
lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)"
wenzelm@22718
   107
  apply (subgoal_tac "(n + m) mod n = (n+m-n) mod n")
wenzelm@22718
   108
   apply (simp add: add_commute)
wenzelm@22718
   109
  apply (subst mod_geq [symmetric], simp_all)
wenzelm@22718
   110
  done
paulson@14267
   111
paulson@14267
   112
lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)"
wenzelm@22718
   113
  by (simp add: add_commute mod_add_self2)
paulson@14267
   114
paulson@14267
   115
lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)"
wenzelm@22718
   116
  by (induct k) (simp_all add: add_left_commute [of _ n])
paulson@14267
   117
paulson@14267
   118
lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)"
wenzelm@22718
   119
  by (simp add: mult_commute mod_mult_self1)
paulson@14267
   120
paulson@14267
   121
lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)"
wenzelm@22718
   122
  apply (cases "n = 0", simp)
wenzelm@22718
   123
  apply (cases "k = 0", simp)
wenzelm@22718
   124
  apply (induct m rule: nat_less_induct)
wenzelm@22718
   125
  apply (subst mod_if, simp)
wenzelm@22718
   126
  apply (simp add: mod_geq diff_mult_distrib)
wenzelm@22718
   127
  done
paulson@14267
   128
paulson@14267
   129
lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"
wenzelm@22718
   130
  by (simp add: mult_commute [of k] mod_mult_distrib)
paulson@14267
   131
paulson@14267
   132
lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)"
wenzelm@22718
   133
  apply (cases "n = 0", simp)
wenzelm@22718
   134
  apply (induct m, simp)
wenzelm@22718
   135
  apply (rename_tac k)
wenzelm@22718
   136
  apply (cut_tac m = "k * n" and n = n in mod_add_self2)
wenzelm@22718
   137
  apply (simp add: add_commute)
wenzelm@22718
   138
  done
paulson@14267
   139
paulson@14267
   140
lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)"
wenzelm@22718
   141
  by (simp add: mult_commute mod_mult_self_is_0)
paulson@14267
   142
paulson@14267
   143
paulson@14267
   144
subsection{*Quotient*}
paulson@14267
   145
paulson@14267
   146
lemma div_less [simp]: "m<n ==> m div n = (0::nat)"
wenzelm@22718
   147
  by (rule div_eq [THEN wf_less_trans], simp)
paulson@14267
   148
paulson@14267
   149
lemma div_geq: "[| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)"
wenzelm@22718
   150
  apply (rule div_eq [THEN wf_less_trans])
wenzelm@22718
   151
  apply (simp add: cut_apply less_eq)
wenzelm@22718
   152
  done
paulson@14267
   153
paulson@14267
   154
(*Avoids the ugly ~m<n above*)
paulson@14267
   155
lemma le_div_geq: "[| 0<n;  n\<le>m |] ==> m div n = Suc((m-n) div n)"
wenzelm@22718
   156
  by (simp add: div_geq linorder_not_less)
paulson@14267
   157
paulson@14267
   158
lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"
wenzelm@22718
   159
  by (simp add: div_geq)
paulson@14267
   160
paulson@14267
   161
paulson@14267
   162
(*Main Result about quotient and remainder.*)
paulson@14267
   163
lemma mod_div_equality: "(m div n)*n + m mod n = (m::nat)"
wenzelm@22718
   164
  apply (cases "n = 0", simp)
wenzelm@22718
   165
  apply (induct m rule: nat_less_induct)
wenzelm@22718
   166
  apply (subst mod_if)
wenzelm@22718
   167
  apply (simp_all add: add_assoc div_geq add_diff_inverse)
wenzelm@22718
   168
  done
paulson@14267
   169
paulson@14267
   170
lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"
wenzelm@22718
   171
  apply (cut_tac m = m and n = n in mod_div_equality)
wenzelm@22718
   172
  apply (simp add: mult_commute)
wenzelm@22718
   173
  done
paulson@14267
   174
paulson@14267
   175
subsection{*Simproc for Cancelling Div and Mod*}
paulson@14267
   176
paulson@14267
   177
lemma div_mod_equality: "((m div n)*n + m mod n) + k = (m::nat) + k"
wenzelm@22718
   178
  by (simp add: mod_div_equality)
paulson@14267
   179
paulson@14267
   180
lemma div_mod_equality2: "(n*(m div n) + m mod n) + k = (m::nat) + k"
wenzelm@22718
   181
  by (simp add: mod_div_equality2)
paulson@14267
   182
paulson@14267
   183
ML
paulson@14267
   184
{*
paulson@14267
   185
structure CancelDivModData =
paulson@14267
   186
struct
paulson@14267
   187
wenzelm@22718
   188
val div_name = @{const_name Divides.div};
wenzelm@22718
   189
val mod_name = @{const_name Divides.mod};
paulson@14267
   190
val mk_binop = HOLogic.mk_binop;
paulson@14267
   191
val mk_sum = NatArithUtils.mk_sum;
paulson@14267
   192
val dest_sum = NatArithUtils.dest_sum;
paulson@14267
   193
paulson@14267
   194
(*logic*)
paulson@14267
   195
wenzelm@22718
   196
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]
paulson@14267
   197
paulson@14267
   198
val trans = trans
paulson@14267
   199
paulson@14267
   200
val prove_eq_sums =
wenzelm@22718
   201
  let val simps = @{thm add_0} :: @{thm add_0_right} :: @{thms add_ac}
wenzelm@17609
   202
  in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;
paulson@14267
   203
paulson@14267
   204
end;
paulson@14267
   205
paulson@14267
   206
structure CancelDivMod = CancelDivModFun(CancelDivModData);
paulson@14267
   207
paulson@14267
   208
val cancel_div_mod_proc = NatArithUtils.prep_simproc
wenzelm@20044
   209
      ("cancel_div_mod", ["(m::nat) + n"], K CancelDivMod.proc);
paulson@14267
   210
paulson@14267
   211
Addsimprocs[cancel_div_mod_proc];
paulson@14267
   212
*}
paulson@14267
   213
paulson@14267
   214
paulson@14267
   215
(* a simple rearrangement of mod_div_equality: *)
paulson@14267
   216
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
wenzelm@22718
   217
  by (cut_tac m = m and n = n in mod_div_equality2, arith)
paulson@14267
   218
paulson@14267
   219
lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)"
wenzelm@22718
   220
  apply (induct m rule: nat_less_induct)
wenzelm@22718
   221
  apply (rename_tac m)
wenzelm@22718
   222
  apply (case_tac "m<n", simp)
wenzelm@22718
   223
  txt{*case @{term "n \<le> m"}*}
wenzelm@22718
   224
  apply (simp add: mod_geq)
wenzelm@22718
   225
  done
nipkow@15439
   226
nipkow@15439
   227
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
wenzelm@22718
   228
  apply (drule mod_less_divisor [where m = m])
wenzelm@22718
   229
  apply simp
wenzelm@22718
   230
  done
paulson@14267
   231
paulson@14267
   232
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
wenzelm@22718
   233
  by (cut_tac m = "m*n" and n = n in mod_div_equality, auto)
paulson@14267
   234
paulson@14267
   235
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
wenzelm@22718
   236
  by (simp add: mult_commute div_mult_self_is_m)
paulson@14267
   237
paulson@14267
   238
(*mod_mult_distrib2 above is the counterpart for remainder*)
paulson@14267
   239
paulson@14267
   240
paulson@14267
   241
subsection{*Proving facts about Quotient and Remainder*}
paulson@14267
   242
paulson@14267
   243
lemma unique_quotient_lemma:
wenzelm@22718
   244
     "[| b*q' + r'  \<le> b*q + r;  x < b;  r < b |]
paulson@14267
   245
      ==> q' \<le> (q::nat)"
wenzelm@22718
   246
  apply (rule leI)
wenzelm@22718
   247
  apply (subst less_iff_Suc_add)
wenzelm@22718
   248
  apply (auto simp add: add_mult_distrib2)
wenzelm@22718
   249
  done
paulson@14267
   250
paulson@14267
   251
lemma unique_quotient:
wenzelm@22718
   252
     "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |]
paulson@14267
   253
      ==> q = q'"
wenzelm@22718
   254
  apply (simp add: split_ifs quorem_def)
wenzelm@22718
   255
  apply (blast intro: order_antisym
wenzelm@22718
   256
    dest: order_eq_refl [THEN unique_quotient_lemma] sym)
wenzelm@22718
   257
  done
paulson@14267
   258
paulson@14267
   259
lemma unique_remainder:
wenzelm@22718
   260
     "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |]
paulson@14267
   261
      ==> r = r'"
wenzelm@22718
   262
  apply (subgoal_tac "q = q'")
wenzelm@22718
   263
   prefer 2 apply (blast intro: unique_quotient)
wenzelm@22718
   264
  apply (simp add: quorem_def)
wenzelm@22718
   265
  done
paulson@14267
   266
paulson@14267
   267
lemma quorem_div_mod: "0 < b ==> quorem ((a, b), (a div b, a mod b))"
wenzelm@22718
   268
  unfolding quorem_def by simp
paulson@14267
   269
paulson@14267
   270
lemma quorem_div: "[| quorem((a,b),(q,r));  0 < b |] ==> a div b = q"
wenzelm@22718
   271
  by (simp add: quorem_div_mod [THEN unique_quotient])
paulson@14267
   272
paulson@14267
   273
lemma quorem_mod: "[| quorem((a,b),(q,r));  0 < b |] ==> a mod b = r"
wenzelm@22718
   274
  by (simp add: quorem_div_mod [THEN unique_remainder])
paulson@14267
   275
paulson@14267
   276
(** A dividend of zero **)
paulson@14267
   277
paulson@14267
   278
lemma div_0 [simp]: "0 div m = (0::nat)"
wenzelm@22718
   279
  by (cases "m = 0") simp_all
paulson@14267
   280
paulson@14267
   281
lemma mod_0 [simp]: "0 mod m = (0::nat)"
wenzelm@22718
   282
  by (cases "m = 0") simp_all
paulson@14267
   283
paulson@14267
   284
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
paulson@14267
   285
paulson@14267
   286
lemma quorem_mult1_eq:
wenzelm@22718
   287
     "[| quorem((b,c),(q,r));  0 < c |]
paulson@14267
   288
      ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
wenzelm@22718
   289
  by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
paulson@14267
   290
paulson@14267
   291
lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)"
wenzelm@22718
   292
  apply (cases "c = 0", simp)
wenzelm@22718
   293
  apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div])
wenzelm@22718
   294
  done
paulson@14267
   295
paulson@14267
   296
lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)"
wenzelm@22718
   297
  apply (cases "c = 0", simp)
wenzelm@22718
   298
  apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod])
wenzelm@22718
   299
  done
paulson@14267
   300
paulson@14267
   301
lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c"
wenzelm@22718
   302
  apply (rule trans)
wenzelm@22718
   303
   apply (rule_tac s = "b*a mod c" in trans)
wenzelm@22718
   304
    apply (rule_tac [2] mod_mult1_eq)
wenzelm@22718
   305
   apply (simp_all add: mult_commute)
wenzelm@22718
   306
  done
paulson@14267
   307
paulson@14267
   308
lemma mod_mult_distrib_mod: "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c"
wenzelm@22718
   309
  apply (rule mod_mult1_eq' [THEN trans])
wenzelm@22718
   310
  apply (rule mod_mult1_eq)
wenzelm@22718
   311
  done
paulson@14267
   312
paulson@14267
   313
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
paulson@14267
   314
paulson@14267
   315
lemma quorem_add1_eq:
wenzelm@22718
   316
     "[| quorem((a,c),(aq,ar));  quorem((b,c),(bq,br));  0 < c |]
paulson@14267
   317
      ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
wenzelm@22718
   318
  by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
paulson@14267
   319
paulson@14267
   320
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
paulson@14267
   321
lemma div_add1_eq:
paulson@14267
   322
     "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
wenzelm@22718
   323
  apply (cases "c = 0", simp)
wenzelm@22718
   324
  apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod quorem_div_mod)
wenzelm@22718
   325
  done
paulson@14267
   326
paulson@14267
   327
lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c"
wenzelm@22718
   328
  apply (cases "c = 0", simp)
wenzelm@22718
   329
  apply (blast intro: quorem_div_mod quorem_div_mod quorem_add1_eq [THEN quorem_mod])
wenzelm@22718
   330
  done
paulson@14267
   331
paulson@14267
   332
paulson@14267
   333
subsection{*Proving @{term "a div (b*c) = (a div b) div c"}*}
paulson@14267
   334
paulson@14267
   335
(** first, a lemma to bound the remainder **)
paulson@14267
   336
paulson@14267
   337
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
wenzelm@22718
   338
  apply (cut_tac m = q and n = c in mod_less_divisor)
wenzelm@22718
   339
  apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
wenzelm@22718
   340
  apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
wenzelm@22718
   341
  apply (simp add: add_mult_distrib2)
wenzelm@22718
   342
  done
paulson@10559
   343
wenzelm@22718
   344
lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r));  0 < b;  0 < c |]
paulson@14267
   345
      ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
wenzelm@22718
   346
  by (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma)
paulson@14267
   347
paulson@14267
   348
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
wenzelm@22718
   349
  apply (cases "b = 0", simp)
wenzelm@22718
   350
  apply (cases "c = 0", simp)
wenzelm@22718
   351
  apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div])
wenzelm@22718
   352
  done
paulson@14267
   353
paulson@14267
   354
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
wenzelm@22718
   355
  apply (cases "b = 0", simp)
wenzelm@22718
   356
  apply (cases "c = 0", simp)
wenzelm@22718
   357
  apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod])
wenzelm@22718
   358
  done
paulson@14267
   359
paulson@14267
   360
paulson@14267
   361
subsection{*Cancellation of Common Factors in Division*}
paulson@14267
   362
paulson@14267
   363
lemma div_mult_mult_lemma:
wenzelm@22718
   364
    "[| (0::nat) < b;  0 < c |] ==> (c*a) div (c*b) = a div b"
wenzelm@22718
   365
  by (auto simp add: div_mult2_eq)
paulson@14267
   366
paulson@14267
   367
lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b"
wenzelm@22718
   368
  apply (cases "b = 0")
wenzelm@22718
   369
  apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma)
wenzelm@22718
   370
  done
paulson@14267
   371
paulson@14267
   372
lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b"
wenzelm@22718
   373
  apply (drule div_mult_mult1)
wenzelm@22718
   374
  apply (auto simp add: mult_commute)
wenzelm@22718
   375
  done
paulson@14267
   376
paulson@14267
   377
paulson@14267
   378
subsection{*Further Facts about Quotient and Remainder*}
paulson@14267
   379
paulson@14267
   380
lemma div_1 [simp]: "m div Suc 0 = m"
wenzelm@22718
   381
  by (induct m) (simp_all add: div_geq)
paulson@14267
   382
paulson@14267
   383
lemma div_self [simp]: "0<n ==> n div n = (1::nat)"
wenzelm@22718
   384
  by (simp add: div_geq)
paulson@14267
   385
paulson@14267
   386
lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)"
wenzelm@22718
   387
  apply (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n) ")
wenzelm@22718
   388
   apply (simp add: add_commute)
wenzelm@22718
   389
  apply (subst div_geq [symmetric], simp_all)
wenzelm@22718
   390
  done
paulson@14267
   391
paulson@14267
   392
lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)"
wenzelm@22718
   393
  by (simp add: add_commute div_add_self2)
paulson@14267
   394
paulson@14267
   395
lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"
wenzelm@22718
   396
  apply (subst div_add1_eq)
wenzelm@22718
   397
  apply (subst div_mult1_eq, simp)
wenzelm@22718
   398
  done
paulson@14267
   399
paulson@14267
   400
lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)"
wenzelm@22718
   401
  by (simp add: mult_commute div_mult_self1)
paulson@14267
   402
paulson@14267
   403
paulson@14267
   404
(* Monotonicity of div in first argument *)
paulson@14267
   405
lemma div_le_mono [rule_format (no_asm)]:
wenzelm@22718
   406
    "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
paulson@14267
   407
apply (case_tac "k=0", simp)
paulson@15251
   408
apply (induct "n" rule: nat_less_induct, clarify)
paulson@14267
   409
apply (case_tac "n<k")
paulson@14267
   410
(* 1  case n<k *)
paulson@14267
   411
apply simp
paulson@14267
   412
(* 2  case n >= k *)
paulson@14267
   413
apply (case_tac "m<k")
paulson@14267
   414
(* 2.1  case m<k *)
paulson@14267
   415
apply simp
paulson@14267
   416
(* 2.2  case m>=k *)
nipkow@15439
   417
apply (simp add: div_geq diff_le_mono)
paulson@14267
   418
done
paulson@14267
   419
paulson@14267
   420
(* Antimonotonicity of div in second argument *)
paulson@14267
   421
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
paulson@14267
   422
apply (subgoal_tac "0<n")
wenzelm@22718
   423
 prefer 2 apply simp
paulson@15251
   424
apply (induct_tac k rule: nat_less_induct)
paulson@14267
   425
apply (rename_tac "k")
paulson@14267
   426
apply (case_tac "k<n", simp)
paulson@14267
   427
apply (subgoal_tac "~ (k<m) ")
wenzelm@22718
   428
 prefer 2 apply simp
paulson@14267
   429
apply (simp add: div_geq)
paulson@15251
   430
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
paulson@14267
   431
 prefer 2
paulson@14267
   432
 apply (blast intro: div_le_mono diff_le_mono2)
paulson@14267
   433
apply (rule le_trans, simp)
nipkow@15439
   434
apply (simp)
paulson@14267
   435
done
paulson@14267
   436
paulson@14267
   437
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
paulson@14267
   438
apply (case_tac "n=0", simp)
paulson@14267
   439
apply (subgoal_tac "m div n \<le> m div 1", simp)
paulson@14267
   440
apply (rule div_le_mono2)
paulson@14267
   441
apply (simp_all (no_asm_simp))
paulson@14267
   442
done
paulson@14267
   443
wenzelm@22718
   444
(* Similar for "less than" *)
paulson@17085
   445
lemma div_less_dividend [rule_format]:
paulson@14267
   446
     "!!n::nat. 1<n ==> 0 < m --> m div n < m"
paulson@15251
   447
apply (induct_tac m rule: nat_less_induct)
paulson@14267
   448
apply (rename_tac "m")
paulson@14267
   449
apply (case_tac "m<n", simp)
paulson@14267
   450
apply (subgoal_tac "0<n")
wenzelm@22718
   451
 prefer 2 apply simp
paulson@14267
   452
apply (simp add: div_geq)
paulson@14267
   453
apply (case_tac "n<m")
paulson@15251
   454
 apply (subgoal_tac "(m-n) div n < (m-n) ")
paulson@14267
   455
  apply (rule impI less_trans_Suc)+
paulson@14267
   456
apply assumption
nipkow@15439
   457
  apply (simp_all)
paulson@14267
   458
done
paulson@14267
   459
paulson@17085
   460
declare div_less_dividend [simp]
paulson@17085
   461
paulson@14267
   462
text{*A fact for the mutilated chess board*}
paulson@14267
   463
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
paulson@14267
   464
apply (case_tac "n=0", simp)
paulson@15251
   465
apply (induct "m" rule: nat_less_induct)
paulson@14267
   466
apply (case_tac "Suc (na) <n")
paulson@14267
   467
(* case Suc(na) < n *)
paulson@14267
   468
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
paulson@14267
   469
(* case n \<le> Suc(na) *)
paulson@16796
   470
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
nipkow@15439
   471
apply (auto simp add: Suc_diff_le le_mod_geq)
paulson@14267
   472
done
paulson@14267
   473
paulson@14437
   474
lemma nat_mod_div_trivial [simp]: "m mod n div n = (0 :: nat)"
wenzelm@22718
   475
  by (cases "n = 0") auto
paulson@14437
   476
paulson@14437
   477
lemma nat_mod_mod_trivial [simp]: "m mod n mod n = (m mod n :: nat)"
wenzelm@22718
   478
  by (cases "n = 0") auto
paulson@14437
   479
paulson@14267
   480
paulson@14267
   481
subsection{*The Divides Relation*}
paulson@14267
   482
paulson@14267
   483
lemma dvdI [intro?]: "n = m * k ==> m dvd n"
wenzelm@22718
   484
  unfolding dvd_def by blast
paulson@14267
   485
paulson@14267
   486
lemma dvdE [elim?]: "!!P. [|m dvd n;  !!k. n = m*k ==> P|] ==> P"
wenzelm@22718
   487
  unfolding dvd_def by blast
nipkow@13152
   488
paulson@14267
   489
lemma dvd_0_right [iff]: "m dvd (0::nat)"
wenzelm@22718
   490
  unfolding dvd_def by (blast intro: mult_0_right [symmetric])
paulson@14267
   491
paulson@14267
   492
lemma dvd_0_left: "0 dvd m ==> m = (0::nat)"
wenzelm@22718
   493
  by (force simp add: dvd_def)
paulson@14267
   494
paulson@14267
   495
lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)"
wenzelm@22718
   496
  by (blast intro: dvd_0_left)
paulson@14267
   497
paulson@14267
   498
lemma dvd_1_left [iff]: "Suc 0 dvd k"
wenzelm@22718
   499
  unfolding dvd_def by simp
paulson@14267
   500
paulson@14267
   501
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
wenzelm@22718
   502
  by (simp add: dvd_def)
paulson@14267
   503
paulson@14267
   504
lemma dvd_refl [simp]: "m dvd (m::nat)"
wenzelm@22718
   505
  unfolding dvd_def by (blast intro: mult_1_right [symmetric])
paulson@14267
   506
paulson@14267
   507
lemma dvd_trans [trans]: "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"
wenzelm@22718
   508
  unfolding dvd_def by (blast intro: mult_assoc)
paulson@14267
   509
paulson@14267
   510
lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
wenzelm@22718
   511
  unfolding dvd_def
wenzelm@22718
   512
  by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
paulson@14267
   513
paulson@14267
   514
lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"
wenzelm@22718
   515
  unfolding dvd_def
wenzelm@22718
   516
  by (blast intro: add_mult_distrib2 [symmetric])
paulson@14267
   517
paulson@14267
   518
lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
wenzelm@22718
   519
  unfolding dvd_def
wenzelm@22718
   520
  by (blast intro: diff_mult_distrib2 [symmetric])
paulson@14267
   521
paulson@14267
   522
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
wenzelm@22718
   523
  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
wenzelm@22718
   524
  apply (blast intro: dvd_add)
wenzelm@22718
   525
  done
paulson@14267
   526
paulson@14267
   527
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
wenzelm@22718
   528
  by (drule_tac m = m in dvd_diff, auto)
paulson@14267
   529
paulson@14267
   530
lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)"
wenzelm@22718
   531
  unfolding dvd_def by (blast intro: mult_left_commute)
paulson@14267
   532
paulson@14267
   533
lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)"
wenzelm@22718
   534
  apply (subst mult_commute)
wenzelm@22718
   535
  apply (erule dvd_mult)
wenzelm@22718
   536
  done
paulson@14267
   537
paulson@17084
   538
lemma dvd_triv_right [iff]: "k dvd (m*k :: nat)"
wenzelm@22718
   539
  by (rule dvd_refl [THEN dvd_mult])
paulson@17084
   540
paulson@17084
   541
lemma dvd_triv_left [iff]: "k dvd (k*m :: nat)"
wenzelm@22718
   542
  by (rule dvd_refl [THEN dvd_mult2])
paulson@14267
   543
paulson@14267
   544
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
wenzelm@22718
   545
  apply (rule iffI)
wenzelm@22718
   546
   apply (erule_tac [2] dvd_add)
wenzelm@22718
   547
   apply (rule_tac [2] dvd_refl)
wenzelm@22718
   548
  apply (subgoal_tac "n = (n+k) -k")
wenzelm@22718
   549
   prefer 2 apply simp
wenzelm@22718
   550
  apply (erule ssubst)
wenzelm@22718
   551
  apply (erule dvd_diff)
wenzelm@22718
   552
  apply (rule dvd_refl)
wenzelm@22718
   553
  done
paulson@14267
   554
paulson@14267
   555
lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n"
wenzelm@22718
   556
  unfolding dvd_def
wenzelm@22718
   557
  apply (case_tac "n = 0", auto)
wenzelm@22718
   558
  apply (blast intro: mod_mult_distrib2 [symmetric])
wenzelm@22718
   559
  done
paulson@14267
   560
paulson@14267
   561
lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n;  k dvd n |] ==> k dvd m"
wenzelm@22718
   562
  apply (subgoal_tac "k dvd (m div n) *n + m mod n")
wenzelm@22718
   563
   apply (simp add: mod_div_equality)
wenzelm@22718
   564
  apply (simp only: dvd_add dvd_mult)
wenzelm@22718
   565
  done
paulson@14267
   566
paulson@14267
   567
lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)"
wenzelm@22718
   568
  by (blast intro: dvd_mod_imp_dvd dvd_mod)
paulson@14267
   569
paulson@14267
   570
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
wenzelm@22718
   571
  unfolding dvd_def
wenzelm@22718
   572
  apply (erule exE)
wenzelm@22718
   573
  apply (simp add: mult_ac)
wenzelm@22718
   574
  done
paulson@14267
   575
paulson@14267
   576
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
wenzelm@22718
   577
  apply auto
wenzelm@22718
   578
   apply (subgoal_tac "m*n dvd m*1")
wenzelm@22718
   579
   apply (drule dvd_mult_cancel, auto)
wenzelm@22718
   580
  done
paulson@14267
   581
paulson@14267
   582
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
wenzelm@22718
   583
  apply (subst mult_commute)
wenzelm@22718
   584
  apply (erule dvd_mult_cancel1)
wenzelm@22718
   585
  done
paulson@14267
   586
paulson@14267
   587
lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)"
wenzelm@22718
   588
  apply (unfold dvd_def, clarify)
wenzelm@22718
   589
  apply (rule_tac x = "k*ka" in exI)
wenzelm@22718
   590
  apply (simp add: mult_ac)
wenzelm@22718
   591
  done
paulson@14267
   592
paulson@14267
   593
lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k"
wenzelm@22718
   594
  by (simp add: dvd_def mult_assoc, blast)
paulson@14267
   595
paulson@14267
   596
lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k"
wenzelm@22718
   597
  apply (unfold dvd_def, clarify)
wenzelm@22718
   598
  apply (rule_tac x = "i*k" in exI)
wenzelm@22718
   599
  apply (simp add: mult_ac)
wenzelm@22718
   600
  done
paulson@14267
   601
paulson@14267
   602
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
wenzelm@22718
   603
  apply (unfold dvd_def, clarify)
wenzelm@22718
   604
  apply (simp_all (no_asm_use) add: zero_less_mult_iff)
wenzelm@22718
   605
  apply (erule conjE)
wenzelm@22718
   606
  apply (rule le_trans)
wenzelm@22718
   607
   apply (rule_tac [2] le_refl [THEN mult_le_mono])
wenzelm@22718
   608
   apply (erule_tac [2] Suc_leI, simp)
wenzelm@22718
   609
  done
paulson@14267
   610
paulson@14267
   611
lemma dvd_eq_mod_eq_0: "!!k::nat. (k dvd n) = (n mod k = 0)"
wenzelm@22718
   612
  apply (unfold dvd_def)
wenzelm@22718
   613
  apply (case_tac "k=0", simp, safe)
wenzelm@22718
   614
   apply (simp add: mult_commute)
wenzelm@22718
   615
  apply (rule_tac t = n and n1 = k in mod_div_equality [THEN subst])
wenzelm@22718
   616
  apply (subst mult_commute, simp)
wenzelm@22718
   617
  done
paulson@14267
   618
paulson@14267
   619
lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"
wenzelm@22718
   620
  apply (subgoal_tac "m mod n = 0")
wenzelm@22718
   621
   apply (simp add: mult_div_cancel)
wenzelm@22718
   622
  apply (simp only: dvd_eq_mod_eq_0)
wenzelm@22718
   623
  done
paulson@14267
   624
haftmann@21408
   625
lemma le_imp_power_dvd: "!!i::nat. m \<le> n ==> i^m dvd i^n"
wenzelm@22718
   626
  apply (unfold dvd_def)
wenzelm@22718
   627
  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
wenzelm@22718
   628
  apply (simp add: power_add)
wenzelm@22718
   629
  done
haftmann@21408
   630
haftmann@21408
   631
lemma nat_zero_less_power_iff [simp]: "(0 < x^n) = (x \<noteq> (0::nat) | n=0)"
wenzelm@22718
   632
  by (induct n) auto
haftmann@21408
   633
haftmann@21408
   634
lemma power_le_dvd [rule_format]: "k^j dvd n --> i\<le>j --> k^i dvd (n::nat)"
wenzelm@22718
   635
  apply (induct j)
wenzelm@22718
   636
   apply (simp_all add: le_Suc_eq)
wenzelm@22718
   637
  apply (blast dest!: dvd_mult_right)
wenzelm@22718
   638
  done
haftmann@21408
   639
haftmann@21408
   640
lemma power_dvd_imp_le: "[|i^m dvd i^n;  (1::nat) < i|] ==> m \<le> n"
wenzelm@22718
   641
  apply (rule power_le_imp_le_exp, assumption)
wenzelm@22718
   642
  apply (erule dvd_imp_le, simp)
wenzelm@22718
   643
  done
haftmann@21408
   644
paulson@14267
   645
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
wenzelm@22718
   646
  by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
paulson@17084
   647
wenzelm@22718
   648
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
paulson@14267
   649
paulson@14267
   650
(*Loses information, namely we also have r<d provided d is nonzero*)
paulson@14267
   651
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
wenzelm@22718
   652
  apply (cut_tac m = m in mod_div_equality)
wenzelm@22718
   653
  apply (simp only: add_ac)
wenzelm@22718
   654
  apply (blast intro: sym)
wenzelm@22718
   655
  done
paulson@14267
   656
paulson@14131
   657
nipkow@13152
   658
lemma split_div:
nipkow@13189
   659
 "P(n div k :: nat) =
nipkow@13189
   660
 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
nipkow@13189
   661
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
   662
proof
nipkow@13189
   663
  assume P: ?P
nipkow@13189
   664
  show ?Q
nipkow@13189
   665
  proof (cases)
nipkow@13189
   666
    assume "k = 0"
nipkow@13189
   667
    with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV)
nipkow@13189
   668
  next
nipkow@13189
   669
    assume not0: "k \<noteq> 0"
nipkow@13189
   670
    thus ?Q
nipkow@13189
   671
    proof (simp, intro allI impI)
nipkow@13189
   672
      fix i j
nipkow@13189
   673
      assume n: "n = k*i + j" and j: "j < k"
nipkow@13189
   674
      show "P i"
nipkow@13189
   675
      proof (cases)
wenzelm@22718
   676
        assume "i = 0"
wenzelm@22718
   677
        with n j P show "P i" by simp
nipkow@13189
   678
      next
wenzelm@22718
   679
        assume "i \<noteq> 0"
wenzelm@22718
   680
        with not0 n j P show "P i" by(simp add:add_ac)
nipkow@13189
   681
      qed
nipkow@13189
   682
    qed
nipkow@13189
   683
  qed
nipkow@13189
   684
next
nipkow@13189
   685
  assume Q: ?Q
nipkow@13189
   686
  show ?P
nipkow@13189
   687
  proof (cases)
nipkow@13189
   688
    assume "k = 0"
nipkow@13189
   689
    with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV)
nipkow@13189
   690
  next
nipkow@13189
   691
    assume not0: "k \<noteq> 0"
nipkow@13189
   692
    with Q have R: ?R by simp
nipkow@13189
   693
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
   694
    show ?P by simp
nipkow@13189
   695
  qed
nipkow@13189
   696
qed
nipkow@13189
   697
berghofe@13882
   698
lemma split_div_lemma:
paulson@14267
   699
  "0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))"
berghofe@13882
   700
  apply (rule iffI)
berghofe@13882
   701
  apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient)
nipkow@16733
   702
prefer 3; apply assumption
webertj@20432
   703
  apply (simp_all add: quorem_def) apply arith
berghofe@13882
   704
  apply (rule conjI)
berghofe@13882
   705
  apply (rule_tac P="%x. n * (m div n) \<le> x" in
berghofe@13882
   706
    subst [OF mod_div_equality [of _ n]])
berghofe@13882
   707
  apply (simp only: add: mult_ac)
berghofe@13882
   708
  apply (rule_tac P="%x. x < n + n * (m div n)" in
berghofe@13882
   709
    subst [OF mod_div_equality [of _ n]])
berghofe@13882
   710
  apply (simp only: add: mult_ac add_ac)
paulson@14208
   711
  apply (rule add_less_mono1, simp)
berghofe@13882
   712
  done
berghofe@13882
   713
berghofe@13882
   714
theorem split_div':
berghofe@13882
   715
  "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
paulson@14267
   716
   (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
berghofe@13882
   717
  apply (case_tac "0 < n")
berghofe@13882
   718
  apply (simp only: add: split_div_lemma)
berghofe@13882
   719
  apply (simp_all add: DIVISION_BY_ZERO_DIV)
berghofe@13882
   720
  done
berghofe@13882
   721
nipkow@13189
   722
lemma split_mod:
nipkow@13189
   723
 "P(n mod k :: nat) =
nipkow@13189
   724
 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
nipkow@13189
   725
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
   726
proof
nipkow@13189
   727
  assume P: ?P
nipkow@13189
   728
  show ?Q
nipkow@13189
   729
  proof (cases)
nipkow@13189
   730
    assume "k = 0"
nipkow@13189
   731
    with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD)
nipkow@13189
   732
  next
nipkow@13189
   733
    assume not0: "k \<noteq> 0"
nipkow@13189
   734
    thus ?Q
nipkow@13189
   735
    proof (simp, intro allI impI)
nipkow@13189
   736
      fix i j
nipkow@13189
   737
      assume "n = k*i + j" "j < k"
nipkow@13189
   738
      thus "P j" using not0 P by(simp add:add_ac mult_ac)
nipkow@13189
   739
    qed
nipkow@13189
   740
  qed
nipkow@13189
   741
next
nipkow@13189
   742
  assume Q: ?Q
nipkow@13189
   743
  show ?P
nipkow@13189
   744
  proof (cases)
nipkow@13189
   745
    assume "k = 0"
nipkow@13189
   746
    with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD)
nipkow@13189
   747
  next
nipkow@13189
   748
    assume not0: "k \<noteq> 0"
nipkow@13189
   749
    with Q have R: ?R by simp
nipkow@13189
   750
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
   751
    show ?P by simp
nipkow@13189
   752
  qed
nipkow@13189
   753
qed
nipkow@13189
   754
berghofe@13882
   755
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
berghofe@13882
   756
  apply (rule_tac P="%x. m mod n = x - (m div n) * n" in
berghofe@13882
   757
    subst [OF mod_div_equality [of _ n]])
berghofe@13882
   758
  apply arith
berghofe@13882
   759
  done
berghofe@13882
   760
haftmann@22800
   761
lemma div_mod_equality':
haftmann@22800
   762
  fixes m n :: nat
haftmann@22800
   763
  shows "m div n * n = m - m mod n"
haftmann@22800
   764
proof -
haftmann@22800
   765
  have "m mod n \<le> m mod n" ..
haftmann@22800
   766
  from div_mod_equality have 
haftmann@22800
   767
    "m div n * n + m mod n - m mod n = m - m mod n" by simp
haftmann@22800
   768
  with diff_add_assoc [OF `m mod n \<le> m mod n`, of "m div n * n"] have
haftmann@22800
   769
    "m div n * n + (m mod n - m mod n) = m - m mod n"
haftmann@22800
   770
    by simp
haftmann@22800
   771
  then show ?thesis by simp
haftmann@22800
   772
qed
haftmann@22800
   773
haftmann@22800
   774
paulson@14640
   775
subsection {*An ``induction'' law for modulus arithmetic.*}
paulson@14640
   776
paulson@14640
   777
lemma mod_induct_0:
paulson@14640
   778
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
paulson@14640
   779
  and base: "P i" and i: "i<p"
paulson@14640
   780
  shows "P 0"
paulson@14640
   781
proof (rule ccontr)
paulson@14640
   782
  assume contra: "\<not>(P 0)"
paulson@14640
   783
  from i have p: "0<p" by simp
paulson@14640
   784
  have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
paulson@14640
   785
  proof
paulson@14640
   786
    fix k
paulson@14640
   787
    show "?A k"
paulson@14640
   788
    proof (induct k)
paulson@14640
   789
      show "?A 0" by simp  -- "by contradiction"
paulson@14640
   790
    next
paulson@14640
   791
      fix n
paulson@14640
   792
      assume ih: "?A n"
paulson@14640
   793
      show "?A (Suc n)"
paulson@14640
   794
      proof (clarsimp)
wenzelm@22718
   795
        assume y: "P (p - Suc n)"
wenzelm@22718
   796
        have n: "Suc n < p"
wenzelm@22718
   797
        proof (rule ccontr)
wenzelm@22718
   798
          assume "\<not>(Suc n < p)"
wenzelm@22718
   799
          hence "p - Suc n = 0"
wenzelm@22718
   800
            by simp
wenzelm@22718
   801
          with y contra show "False"
wenzelm@22718
   802
            by simp
wenzelm@22718
   803
        qed
wenzelm@22718
   804
        hence n2: "Suc (p - Suc n) = p-n" by arith
wenzelm@22718
   805
        from p have "p - Suc n < p" by arith
wenzelm@22718
   806
        with y step have z: "P ((Suc (p - Suc n)) mod p)"
wenzelm@22718
   807
          by blast
wenzelm@22718
   808
        show "False"
wenzelm@22718
   809
        proof (cases "n=0")
wenzelm@22718
   810
          case True
wenzelm@22718
   811
          with z n2 contra show ?thesis by simp
wenzelm@22718
   812
        next
wenzelm@22718
   813
          case False
wenzelm@22718
   814
          with p have "p-n < p" by arith
wenzelm@22718
   815
          with z n2 False ih show ?thesis by simp
wenzelm@22718
   816
        qed
paulson@14640
   817
      qed
paulson@14640
   818
    qed
paulson@14640
   819
  qed
paulson@14640
   820
  moreover
paulson@14640
   821
  from i obtain k where "0<k \<and> i+k=p"
paulson@14640
   822
    by (blast dest: less_imp_add_positive)
paulson@14640
   823
  hence "0<k \<and> i=p-k" by auto
paulson@14640
   824
  moreover
paulson@14640
   825
  note base
paulson@14640
   826
  ultimately
paulson@14640
   827
  show "False" by blast
paulson@14640
   828
qed
paulson@14640
   829
paulson@14640
   830
lemma mod_induct:
paulson@14640
   831
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
paulson@14640
   832
  and base: "P i" and i: "i<p" and j: "j<p"
paulson@14640
   833
  shows "P j"
paulson@14640
   834
proof -
paulson@14640
   835
  have "\<forall>j<p. P j"
paulson@14640
   836
  proof
paulson@14640
   837
    fix j
paulson@14640
   838
    show "j<p \<longrightarrow> P j" (is "?A j")
paulson@14640
   839
    proof (induct j)
paulson@14640
   840
      from step base i show "?A 0"
wenzelm@22718
   841
        by (auto elim: mod_induct_0)
paulson@14640
   842
    next
paulson@14640
   843
      fix k
paulson@14640
   844
      assume ih: "?A k"
paulson@14640
   845
      show "?A (Suc k)"
paulson@14640
   846
      proof
wenzelm@22718
   847
        assume suc: "Suc k < p"
wenzelm@22718
   848
        hence k: "k<p" by simp
wenzelm@22718
   849
        with ih have "P k" ..
wenzelm@22718
   850
        with step k have "P (Suc k mod p)"
wenzelm@22718
   851
          by blast
wenzelm@22718
   852
        moreover
wenzelm@22718
   853
        from suc have "Suc k mod p = Suc k"
wenzelm@22718
   854
          by simp
wenzelm@22718
   855
        ultimately
wenzelm@22718
   856
        show "P (Suc k)" by simp
paulson@14640
   857
      qed
paulson@14640
   858
    qed
paulson@14640
   859
  qed
paulson@14640
   860
  with j show ?thesis by blast
paulson@14640
   861
qed
paulson@14640
   862
paulson@14640
   863
chaieb@18202
   864
lemma mod_add_left_eq: "((a::nat) + b) mod c = (a mod c + b) mod c"
chaieb@18202
   865
  apply (rule trans [symmetric])
wenzelm@22718
   866
   apply (rule mod_add1_eq, simp)
chaieb@18202
   867
  apply (rule mod_add1_eq [symmetric])
chaieb@18202
   868
  done
chaieb@18202
   869
chaieb@18202
   870
lemma mod_add_right_eq: "(a+b) mod (c::nat) = (a + (b mod c)) mod c"
wenzelm@22718
   871
  apply (rule trans [symmetric])
wenzelm@22718
   872
   apply (rule mod_add1_eq, simp)
wenzelm@22718
   873
  apply (rule mod_add1_eq [symmetric])
wenzelm@22718
   874
  done
chaieb@18202
   875
haftmann@22800
   876
lemma mod_div_decomp:
haftmann@22800
   877
  fixes n k :: nat
haftmann@22800
   878
  obtains m q where "m = n div k" and "q = n mod k"
haftmann@22800
   879
    and "n = m * k + q"
haftmann@22800
   880
proof -
haftmann@22800
   881
  from mod_div_equality have "n = n div k * k + n mod k" by auto
haftmann@22800
   882
  moreover have "n div k = n div k" ..
haftmann@22800
   883
  moreover have "n mod k = n mod k" ..
haftmann@22800
   884
  note that ultimately show thesis by blast
haftmann@22800
   885
qed
haftmann@22800
   886
haftmann@20589
   887
haftmann@22744
   888
subsection {* Code generation for div, mod and dvd on nat *}
haftmann@20589
   889
haftmann@22845
   890
definition [code func del]:
haftmann@20589
   891
  "divmod (m\<Colon>nat) n = (m div n, m mod n)"
haftmann@20589
   892
wenzelm@22718
   893
lemma divmod_zero [code]: "divmod m 0 = (0, m)"
haftmann@20589
   894
  unfolding divmod_def by simp
haftmann@20589
   895
haftmann@20589
   896
lemma divmod_succ [code]:
haftmann@20589
   897
  "divmod m (Suc k) = (if m < Suc k then (0, m) else
haftmann@20589
   898
    let
haftmann@20589
   899
      (p, q) = divmod (m - Suc k) (Suc k)
wenzelm@22718
   900
    in (Suc p, q))"
haftmann@20589
   901
  unfolding divmod_def Let_def split_def
haftmann@20589
   902
  by (auto intro: div_geq mod_geq)
haftmann@20589
   903
wenzelm@22718
   904
lemma div_divmod [code]: "m div n = fst (divmod m n)"
haftmann@20589
   905
  unfolding divmod_def by simp
haftmann@20589
   906
wenzelm@22718
   907
lemma mod_divmod [code]: "m mod n = snd (divmod m n)"
haftmann@20589
   908
  unfolding divmod_def by simp
haftmann@20589
   909
haftmann@22744
   910
definition
haftmann@22744
   911
  dvd_nat :: "nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@22744
   912
where
haftmann@22744
   913
  "dvd_nat m n \<longleftrightarrow> n mod m = (0 \<Colon> nat)"
haftmann@22744
   914
haftmann@22744
   915
lemma [code inline]:
haftmann@22744
   916
  "op dvd = dvd_nat"
haftmann@22744
   917
  by (auto simp add: dvd_nat_def dvd_eq_mod_eq_0 expand_fun_eq)
haftmann@22744
   918
haftmann@21191
   919
code_modulename SML
haftmann@23017
   920
  Divides Nat
haftmann@20640
   921
haftmann@21911
   922
code_modulename OCaml
haftmann@23017
   923
  Divides Nat
haftmann@23017
   924
haftmann@23017
   925
code_modulename Haskell
haftmann@23017
   926
  Divides Nat
haftmann@21911
   927
haftmann@22744
   928
hide (open) const divmod dvd_nat
haftmann@20589
   929
haftmann@20589
   930
subsection {* Legacy bindings *}
haftmann@20589
   931
paulson@14267
   932
ML
paulson@14267
   933
{*
paulson@14267
   934
val div_def = thm "div_def"
paulson@14267
   935
val mod_def = thm "mod_def"
paulson@14267
   936
val dvd_def = thm "dvd_def"
paulson@14267
   937
val quorem_def = thm "quorem_def"
paulson@14267
   938
paulson@14267
   939
val wf_less_trans = thm "wf_less_trans";
paulson@14267
   940
val mod_eq = thm "mod_eq";
paulson@14267
   941
val div_eq = thm "div_eq";
paulson@14267
   942
val DIVISION_BY_ZERO_DIV = thm "DIVISION_BY_ZERO_DIV";
paulson@14267
   943
val DIVISION_BY_ZERO_MOD = thm "DIVISION_BY_ZERO_MOD";
paulson@14267
   944
val mod_less = thm "mod_less";
paulson@14267
   945
val mod_geq = thm "mod_geq";
paulson@14267
   946
val le_mod_geq = thm "le_mod_geq";
paulson@14267
   947
val mod_if = thm "mod_if";
paulson@14267
   948
val mod_1 = thm "mod_1";
paulson@14267
   949
val mod_self = thm "mod_self";
paulson@14267
   950
val mod_add_self2 = thm "mod_add_self2";
paulson@14267
   951
val mod_add_self1 = thm "mod_add_self1";
paulson@14267
   952
val mod_mult_self1 = thm "mod_mult_self1";
paulson@14267
   953
val mod_mult_self2 = thm "mod_mult_self2";
paulson@14267
   954
val mod_mult_distrib = thm "mod_mult_distrib";
paulson@14267
   955
val mod_mult_distrib2 = thm "mod_mult_distrib2";
paulson@14267
   956
val mod_mult_self_is_0 = thm "mod_mult_self_is_0";
paulson@14267
   957
val mod_mult_self1_is_0 = thm "mod_mult_self1_is_0";
paulson@14267
   958
val div_less = thm "div_less";
paulson@14267
   959
val div_geq = thm "div_geq";
paulson@14267
   960
val le_div_geq = thm "le_div_geq";
paulson@14267
   961
val div_if = thm "div_if";
paulson@14267
   962
val mod_div_equality = thm "mod_div_equality";
paulson@14267
   963
val mod_div_equality2 = thm "mod_div_equality2";
paulson@14267
   964
val div_mod_equality = thm "div_mod_equality";
paulson@14267
   965
val div_mod_equality2 = thm "div_mod_equality2";
paulson@14267
   966
val mult_div_cancel = thm "mult_div_cancel";
paulson@14267
   967
val mod_less_divisor = thm "mod_less_divisor";
paulson@14267
   968
val div_mult_self_is_m = thm "div_mult_self_is_m";
paulson@14267
   969
val div_mult_self1_is_m = thm "div_mult_self1_is_m";
paulson@14267
   970
val unique_quotient_lemma = thm "unique_quotient_lemma";
paulson@14267
   971
val unique_quotient = thm "unique_quotient";
paulson@14267
   972
val unique_remainder = thm "unique_remainder";
paulson@14267
   973
val div_0 = thm "div_0";
paulson@14267
   974
val mod_0 = thm "mod_0";
paulson@14267
   975
val div_mult1_eq = thm "div_mult1_eq";
paulson@14267
   976
val mod_mult1_eq = thm "mod_mult1_eq";
paulson@14267
   977
val mod_mult1_eq' = thm "mod_mult1_eq'";
paulson@14267
   978
val mod_mult_distrib_mod = thm "mod_mult_distrib_mod";
paulson@14267
   979
val div_add1_eq = thm "div_add1_eq";
paulson@14267
   980
val mod_add1_eq = thm "mod_add1_eq";
chaieb@18202
   981
val mod_add_left_eq = thm "mod_add_left_eq";
chaieb@18202
   982
 val mod_add_right_eq = thm "mod_add_right_eq";
paulson@14267
   983
val mod_lemma = thm "mod_lemma";
paulson@14267
   984
val div_mult2_eq = thm "div_mult2_eq";
paulson@14267
   985
val mod_mult2_eq = thm "mod_mult2_eq";
paulson@14267
   986
val div_mult_mult_lemma = thm "div_mult_mult_lemma";
paulson@14267
   987
val div_mult_mult1 = thm "div_mult_mult1";
paulson@14267
   988
val div_mult_mult2 = thm "div_mult_mult2";
paulson@14267
   989
val div_1 = thm "div_1";
paulson@14267
   990
val div_self = thm "div_self";
paulson@14267
   991
val div_add_self2 = thm "div_add_self2";
paulson@14267
   992
val div_add_self1 = thm "div_add_self1";
paulson@14267
   993
val div_mult_self1 = thm "div_mult_self1";
paulson@14267
   994
val div_mult_self2 = thm "div_mult_self2";
paulson@14267
   995
val div_le_mono = thm "div_le_mono";
paulson@14267
   996
val div_le_mono2 = thm "div_le_mono2";
paulson@14267
   997
val div_le_dividend = thm "div_le_dividend";
paulson@14267
   998
val div_less_dividend = thm "div_less_dividend";
paulson@14267
   999
val mod_Suc = thm "mod_Suc";
paulson@14267
  1000
val dvdI = thm "dvdI";
paulson@14267
  1001
val dvdE = thm "dvdE";
paulson@14267
  1002
val dvd_0_right = thm "dvd_0_right";
paulson@14267
  1003
val dvd_0_left = thm "dvd_0_left";
paulson@14267
  1004
val dvd_0_left_iff = thm "dvd_0_left_iff";
paulson@14267
  1005
val dvd_1_left = thm "dvd_1_left";
paulson@14267
  1006
val dvd_1_iff_1 = thm "dvd_1_iff_1";
paulson@14267
  1007
val dvd_refl = thm "dvd_refl";
paulson@14267
  1008
val dvd_trans = thm "dvd_trans";
paulson@14267
  1009
val dvd_anti_sym = thm "dvd_anti_sym";
paulson@14267
  1010
val dvd_add = thm "dvd_add";
paulson@14267
  1011
val dvd_diff = thm "dvd_diff";
paulson@14267
  1012
val dvd_diffD = thm "dvd_diffD";
paulson@14267
  1013
val dvd_diffD1 = thm "dvd_diffD1";
paulson@14267
  1014
val dvd_mult = thm "dvd_mult";
paulson@14267
  1015
val dvd_mult2 = thm "dvd_mult2";
paulson@14267
  1016
val dvd_reduce = thm "dvd_reduce";
paulson@14267
  1017
val dvd_mod = thm "dvd_mod";
paulson@14267
  1018
val dvd_mod_imp_dvd = thm "dvd_mod_imp_dvd";
paulson@14267
  1019
val dvd_mod_iff = thm "dvd_mod_iff";
paulson@14267
  1020
val dvd_mult_cancel = thm "dvd_mult_cancel";
paulson@14267
  1021
val dvd_mult_cancel1 = thm "dvd_mult_cancel1";
paulson@14267
  1022
val dvd_mult_cancel2 = thm "dvd_mult_cancel2";
paulson@14267
  1023
val mult_dvd_mono = thm "mult_dvd_mono";
paulson@14267
  1024
val dvd_mult_left = thm "dvd_mult_left";
paulson@14267
  1025
val dvd_mult_right = thm "dvd_mult_right";
paulson@14267
  1026
val dvd_imp_le = thm "dvd_imp_le";
paulson@14267
  1027
val dvd_eq_mod_eq_0 = thm "dvd_eq_mod_eq_0";
paulson@14267
  1028
val dvd_mult_div_cancel = thm "dvd_mult_div_cancel";
paulson@14267
  1029
val mod_eq_0_iff = thm "mod_eq_0_iff";
paulson@14267
  1030
val mod_eqD = thm "mod_eqD";
paulson@14267
  1031
*}
paulson@14267
  1032
nipkow@13189
  1033
(*
nipkow@13189
  1034
lemma split_div:
nipkow@13152
  1035
assumes m: "m \<noteq> 0"
nipkow@13152
  1036
shows "P(n div m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P i)"
nipkow@13152
  1037
       (is "?P = ?Q")
nipkow@13152
  1038
proof
nipkow@13152
  1039
  assume P: ?P
nipkow@13152
  1040
  show ?Q
nipkow@13152
  1041
  proof (intro allI impI)
nipkow@13152
  1042
    fix i j
nipkow@13152
  1043
    assume n: "n = m*i + j" and j: "j < m"
nipkow@13152
  1044
    show "P i"
nipkow@13152
  1045
    proof (cases)
nipkow@13152
  1046
      assume "i = 0"
nipkow@13152
  1047
      with n j P show "P i" by simp
nipkow@13152
  1048
    next
nipkow@13152
  1049
      assume "i \<noteq> 0"
nipkow@13152
  1050
      with n j P show "P i" by (simp add:add_ac div_mult_self1)
nipkow@13152
  1051
    qed
nipkow@13152
  1052
  qed
nipkow@13152
  1053
next
nipkow@13152
  1054
  assume Q: ?Q
nipkow@13152
  1055
  from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
nipkow@13517
  1056
  show ?P by simp
nipkow@13152
  1057
qed
nipkow@13152
  1058
nipkow@13152
  1059
lemma split_mod:
nipkow@13152
  1060
assumes m: "m \<noteq> 0"
nipkow@13152
  1061
shows "P(n mod m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P j)"
nipkow@13152
  1062
       (is "?P = ?Q")
nipkow@13152
  1063
proof
nipkow@13152
  1064
  assume P: ?P
nipkow@13152
  1065
  show ?Q
nipkow@13152
  1066
  proof (intro allI impI)
nipkow@13152
  1067
    fix i j
nipkow@13152
  1068
    assume "n = m*i + j" "j < m"
nipkow@13152
  1069
    thus "P j" using m P by(simp add:add_ac mult_ac)
nipkow@13152
  1070
  qed
nipkow@13152
  1071
next
nipkow@13152
  1072
  assume Q: ?Q
nipkow@13152
  1073
  from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
nipkow@13517
  1074
  show ?P by simp
nipkow@13152
  1075
qed
nipkow@13189
  1076
*)
paulson@3366
  1077
end