src/HOL/Analysis/Measurable.thy
author hoelzl
Thu Oct 20 18:41:59 2016 +0200 (2016-10-20)
changeset 64320 ba194424b895
parent 64283 979cdfdf7a79
child 66453 cc19f7ca2ed6
permissions -rw-r--r--
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl@63627
     1
(*  Title:      HOL/Analysis/Measurable.thy
hoelzl@50387
     2
    Author:     Johannes Hölzl <hoelzl@in.tum.de>
hoelzl@50387
     3
*)
hoelzl@50387
     4
theory Measurable
hoelzl@56021
     5
  imports
hoelzl@56021
     6
    Sigma_Algebra
hoelzl@56021
     7
    "~~/src/HOL/Library/Order_Continuity"
hoelzl@50387
     8
begin
hoelzl@50387
     9
wenzelm@61808
    10
subsection \<open>Measurability prover\<close>
hoelzl@50387
    11
hoelzl@50387
    12
lemma (in algebra) sets_Collect_finite_All:
hoelzl@50387
    13
  assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S"
hoelzl@50387
    14
  shows "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} \<in> M"
hoelzl@50387
    15
proof -
hoelzl@50387
    16
  have "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} = (if S = {} then \<Omega> else \<Inter>i\<in>S. {x\<in>\<Omega>. P i x})"
hoelzl@50387
    17
    by auto
hoelzl@50387
    18
  with assms show ?thesis by (auto intro!: sets_Collect_finite_All')
hoelzl@50387
    19
qed
hoelzl@50387
    20
hoelzl@50387
    21
abbreviation "pred M P \<equiv> P \<in> measurable M (count_space (UNIV::bool set))"
hoelzl@50387
    22
hoelzl@50387
    23
lemma pred_def: "pred M P \<longleftrightarrow> {x\<in>space M. P x} \<in> sets M"
hoelzl@50387
    24
proof
hoelzl@50387
    25
  assume "pred M P"
hoelzl@50387
    26
  then have "P -` {True} \<inter> space M \<in> sets M"
hoelzl@50387
    27
    by (auto simp: measurable_count_space_eq2)
hoelzl@50387
    28
  also have "P -` {True} \<inter> space M = {x\<in>space M. P x}" by auto
hoelzl@50387
    29
  finally show "{x\<in>space M. P x} \<in> sets M" .
hoelzl@50387
    30
next
hoelzl@50387
    31
  assume P: "{x\<in>space M. P x} \<in> sets M"
hoelzl@50387
    32
  moreover
hoelzl@50387
    33
  { fix X
hoelzl@50387
    34
    have "X \<in> Pow (UNIV :: bool set)" by simp
hoelzl@50387
    35
    then have "P -` X \<inter> space M = {x\<in>space M. ((X = {True} \<longrightarrow> P x) \<and> (X = {False} \<longrightarrow> \<not> P x) \<and> X \<noteq> {})}"
hoelzl@50387
    36
      unfolding UNIV_bool Pow_insert Pow_empty by auto
hoelzl@50387
    37
    then have "P -` X \<inter> space M \<in> sets M"
hoelzl@50387
    38
      by (auto intro!: sets.sets_Collect_neg sets.sets_Collect_imp sets.sets_Collect_conj sets.sets_Collect_const P) }
hoelzl@50387
    39
  then show "pred M P"
hoelzl@50387
    40
    by (auto simp: measurable_def)
hoelzl@50387
    41
qed
hoelzl@50387
    42
hoelzl@50387
    43
lemma pred_sets1: "{x\<in>space M. P x} \<in> sets M \<Longrightarrow> f \<in> measurable N M \<Longrightarrow> pred N (\<lambda>x. P (f x))"
hoelzl@50387
    44
  by (rule measurable_compose[where f=f and N=M]) (auto simp: pred_def)
hoelzl@50387
    45
hoelzl@50387
    46
lemma pred_sets2: "A \<in> sets N \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> pred M (\<lambda>x. f x \<in> A)"
hoelzl@50387
    47
  by (rule measurable_compose[where f=f and N=N]) (auto simp: pred_def Int_def[symmetric])
hoelzl@50387
    48
hoelzl@50387
    49
ML_file "measurable.ML"
hoelzl@50387
    50
wenzelm@61808
    51
attribute_setup measurable = \<open>
hoelzl@59047
    52
  Scan.lift (
hoelzl@59047
    53
    (Args.add >> K true || Args.del >> K false || Scan.succeed true) --
hoelzl@59047
    54
    Scan.optional (Args.parens (
hoelzl@59047
    55
      Scan.optional (Args.$$$ "raw" >> K true) false --
Andreas@58965
    56
      Scan.optional (Args.$$$ "generic" >> K Measurable.Generic) Measurable.Concrete))
hoelzl@59047
    57
    (false, Measurable.Concrete) >>
hoelzl@59047
    58
    Measurable.measurable_thm_attr)
wenzelm@61808
    59
\<close> "declaration of measurability theorems"
wenzelm@53043
    60
hoelzl@59047
    61
attribute_setup measurable_dest = Measurable.dest_thm_attr
hoelzl@59048
    62
  "add dest rule to measurability prover"
wenzelm@53043
    63
hoelzl@59048
    64
attribute_setup measurable_cong = Measurable.cong_thm_attr
hoelzl@59048
    65
  "add congurence rules to measurability prover"
wenzelm@53043
    66
hoelzl@59047
    67
method_setup measurable = \<open> Scan.lift (Scan.succeed (METHOD o Measurable.measurable_tac)) \<close>
hoelzl@59047
    68
  "measurability prover"
wenzelm@53043
    69
wenzelm@61808
    70
simproc_setup measurable ("A \<in> sets M" | "f \<in> measurable M N") = \<open>K Measurable.simproc\<close>
hoelzl@50387
    71
wenzelm@61808
    72
setup \<open>
hoelzl@59048
    73
  Global_Theory.add_thms_dynamic (@{binding measurable}, Measurable.get_all)
wenzelm@61808
    74
\<close>
hoelzl@62975
    75
hoelzl@50387
    76
declare
hoelzl@50387
    77
  pred_sets1[measurable_dest]
hoelzl@50387
    78
  pred_sets2[measurable_dest]
hoelzl@50387
    79
  sets.sets_into_space[measurable_dest]
hoelzl@50387
    80
hoelzl@50387
    81
declare
hoelzl@50387
    82
  sets.top[measurable]
hoelzl@50387
    83
  sets.empty_sets[measurable (raw)]
hoelzl@50387
    84
  sets.Un[measurable (raw)]
hoelzl@50387
    85
  sets.Diff[measurable (raw)]
hoelzl@50387
    86
hoelzl@50387
    87
declare
hoelzl@50387
    88
  measurable_count_space[measurable (raw)]
hoelzl@50387
    89
  measurable_ident[measurable (raw)]
hoelzl@59048
    90
  measurable_id[measurable (raw)]
hoelzl@50387
    91
  measurable_const[measurable (raw)]
hoelzl@50387
    92
  measurable_If[measurable (raw)]
hoelzl@50387
    93
  measurable_comp[measurable (raw)]
hoelzl@50387
    94
  measurable_sets[measurable (raw)]
hoelzl@50387
    95
hoelzl@59048
    96
declare measurable_cong_sets[measurable_cong]
hoelzl@59048
    97
declare sets_restrict_space_cong[measurable_cong]
hoelzl@59361
    98
declare sets_restrict_UNIV[measurable_cong]
hoelzl@59048
    99
hoelzl@62975
   100
lemma predE[measurable (raw)]:
hoelzl@50387
   101
  "pred M P \<Longrightarrow> {x\<in>space M. P x} \<in> sets M"
hoelzl@50387
   102
  unfolding pred_def .
hoelzl@50387
   103
hoelzl@50387
   104
lemma pred_intros_imp'[measurable (raw)]:
hoelzl@50387
   105
  "(K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. K \<longrightarrow> P x)"
hoelzl@50387
   106
  by (cases K) auto
hoelzl@50387
   107
hoelzl@50387
   108
lemma pred_intros_conj1'[measurable (raw)]:
hoelzl@50387
   109
  "(K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. K \<and> P x)"
hoelzl@50387
   110
  by (cases K) auto
hoelzl@50387
   111
hoelzl@50387
   112
lemma pred_intros_conj2'[measurable (raw)]:
hoelzl@50387
   113
  "(K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. P x \<and> K)"
hoelzl@50387
   114
  by (cases K) auto
hoelzl@50387
   115
hoelzl@50387
   116
lemma pred_intros_disj1'[measurable (raw)]:
hoelzl@50387
   117
  "(\<not> K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. K \<or> P x)"
hoelzl@50387
   118
  by (cases K) auto
hoelzl@50387
   119
hoelzl@50387
   120
lemma pred_intros_disj2'[measurable (raw)]:
hoelzl@50387
   121
  "(\<not> K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. P x \<or> K)"
hoelzl@50387
   122
  by (cases K) auto
hoelzl@50387
   123
hoelzl@50387
   124
lemma pred_intros_logic[measurable (raw)]:
hoelzl@50387
   125
  "pred M (\<lambda>x. x \<in> space M)"
hoelzl@50387
   126
  "pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. \<not> P x)"
hoelzl@50387
   127
  "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x \<and> P x)"
hoelzl@50387
   128
  "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x \<longrightarrow> P x)"
hoelzl@50387
   129
  "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x \<or> P x)"
hoelzl@50387
   130
  "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x = P x)"
hoelzl@50387
   131
  "pred M (\<lambda>x. f x \<in> UNIV)"
hoelzl@50387
   132
  "pred M (\<lambda>x. f x \<in> {})"
hoelzl@50387
   133
  "pred M (\<lambda>x. P' (f x) x) \<Longrightarrow> pred M (\<lambda>x. f x \<in> {y. P' y x})"
hoelzl@50387
   134
  "pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> - (B x))"
hoelzl@50387
   135
  "pred M (\<lambda>x. f x \<in> (A x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (A x) - (B x))"
hoelzl@50387
   136
  "pred M (\<lambda>x. f x \<in> (A x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (A x) \<inter> (B x))"
hoelzl@50387
   137
  "pred M (\<lambda>x. f x \<in> (A x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (A x) \<union> (B x))"
hoelzl@50387
   138
  "pred M (\<lambda>x. g x (f x) \<in> (X x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (g x) -` (X x))"
hoelzl@50387
   139
  by (auto simp: iff_conv_conj_imp pred_def)
hoelzl@50387
   140
hoelzl@50387
   141
lemma pred_intros_countable[measurable (raw)]:
hoelzl@50387
   142
  fixes P :: "'a \<Rightarrow> 'i :: countable \<Rightarrow> bool"
hoelzl@62975
   143
  shows
hoelzl@50387
   144
    "(\<And>i. pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<forall>i. P x i)"
hoelzl@50387
   145
    "(\<And>i. pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<exists>i. P x i)"
hoelzl@50387
   146
  by (auto intro!: sets.sets_Collect_countable_All sets.sets_Collect_countable_Ex simp: pred_def)
hoelzl@50387
   147
hoelzl@50387
   148
lemma pred_intros_countable_bounded[measurable (raw)]:
hoelzl@50387
   149
  fixes X :: "'i :: countable set"
hoelzl@62975
   150
  shows
hoelzl@50387
   151
    "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Inter>i\<in>X. N x i))"
hoelzl@50387
   152
    "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Union>i\<in>X. N x i))"
hoelzl@50387
   153
    "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<forall>i\<in>X. P x i)"
hoelzl@50387
   154
    "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<exists>i\<in>X. P x i)"
haftmann@62343
   155
  by simp_all (auto simp: Bex_def Ball_def)
hoelzl@50387
   156
hoelzl@50387
   157
lemma pred_intros_finite[measurable (raw)]:
hoelzl@50387
   158
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Inter>i\<in>I. N x i))"
hoelzl@50387
   159
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Union>i\<in>I. N x i))"
hoelzl@50387
   160
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<forall>i\<in>I. P x i)"
hoelzl@50387
   161
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<exists>i\<in>I. P x i)"
hoelzl@50387
   162
  by (auto intro!: sets.sets_Collect_finite_Ex sets.sets_Collect_finite_All simp: iff_conv_conj_imp pred_def)
hoelzl@50387
   163
hoelzl@50387
   164
lemma countable_Un_Int[measurable (raw)]:
hoelzl@50387
   165
  "(\<And>i :: 'i :: countable. i \<in> I \<Longrightarrow> N i \<in> sets M) \<Longrightarrow> (\<Union>i\<in>I. N i) \<in> sets M"
hoelzl@50387
   166
  "I \<noteq> {} \<Longrightarrow> (\<And>i :: 'i :: countable. i \<in> I \<Longrightarrow> N i \<in> sets M) \<Longrightarrow> (\<Inter>i\<in>I. N i) \<in> sets M"
hoelzl@50387
   167
  by auto
hoelzl@50387
   168
hoelzl@50387
   169
declare
hoelzl@50387
   170
  finite_UN[measurable (raw)]
hoelzl@50387
   171
  finite_INT[measurable (raw)]
hoelzl@50387
   172
hoelzl@50387
   173
lemma sets_Int_pred[measurable (raw)]:
hoelzl@50387
   174
  assumes space: "A \<inter> B \<subseteq> space M" and [measurable]: "pred M (\<lambda>x. x \<in> A)" "pred M (\<lambda>x. x \<in> B)"
hoelzl@50387
   175
  shows "A \<inter> B \<in> sets M"
hoelzl@50387
   176
proof -
hoelzl@50387
   177
  have "{x\<in>space M. x \<in> A \<inter> B} \<in> sets M" by auto
hoelzl@50387
   178
  also have "{x\<in>space M. x \<in> A \<inter> B} = A \<inter> B"
hoelzl@50387
   179
    using space by auto
hoelzl@50387
   180
  finally show ?thesis .
hoelzl@50387
   181
qed
hoelzl@50387
   182
hoelzl@50387
   183
lemma [measurable (raw generic)]:
hoelzl@50387
   184
  assumes f: "f \<in> measurable M N" and c: "c \<in> space N \<Longrightarrow> {c} \<in> sets N"
hoelzl@50387
   185
  shows pred_eq_const1: "pred M (\<lambda>x. f x = c)"
hoelzl@50387
   186
    and pred_eq_const2: "pred M (\<lambda>x. c = f x)"
hoelzl@50387
   187
proof -
hoelzl@50387
   188
  show "pred M (\<lambda>x. f x = c)"
hoelzl@50387
   189
  proof cases
hoelzl@50387
   190
    assume "c \<in> space N"
hoelzl@50387
   191
    with measurable_sets[OF f c] show ?thesis
hoelzl@50387
   192
      by (auto simp: Int_def conj_commute pred_def)
hoelzl@50387
   193
  next
hoelzl@50387
   194
    assume "c \<notin> space N"
hoelzl@50387
   195
    with f[THEN measurable_space] have "{x \<in> space M. f x = c} = {}" by auto
hoelzl@50387
   196
    then show ?thesis by (auto simp: pred_def cong: conj_cong)
hoelzl@50387
   197
  qed
hoelzl@50387
   198
  then show "pred M (\<lambda>x. c = f x)"
hoelzl@50387
   199
    by (simp add: eq_commute)
hoelzl@50387
   200
qed
hoelzl@50387
   201
hoelzl@59000
   202
lemma pred_count_space_const1[measurable (raw)]:
hoelzl@59000
   203
  "f \<in> measurable M (count_space UNIV) \<Longrightarrow> Measurable.pred M (\<lambda>x. f x = c)"
hoelzl@59000
   204
  by (intro pred_eq_const1[where N="count_space UNIV"]) (auto )
hoelzl@59000
   205
hoelzl@59000
   206
lemma pred_count_space_const2[measurable (raw)]:
hoelzl@59000
   207
  "f \<in> measurable M (count_space UNIV) \<Longrightarrow> Measurable.pred M (\<lambda>x. c = f x)"
hoelzl@59000
   208
  by (intro pred_eq_const2[where N="count_space UNIV"]) (auto )
hoelzl@59000
   209
hoelzl@50387
   210
lemma pred_le_const[measurable (raw generic)]:
hoelzl@50387
   211
  assumes f: "f \<in> measurable M N" and c: "{.. c} \<in> sets N" shows "pred M (\<lambda>x. f x \<le> c)"
hoelzl@50387
   212
  using measurable_sets[OF f c]
hoelzl@50387
   213
  by (auto simp: Int_def conj_commute eq_commute pred_def)
hoelzl@50387
   214
hoelzl@50387
   215
lemma pred_const_le[measurable (raw generic)]:
hoelzl@50387
   216
  assumes f: "f \<in> measurable M N" and c: "{c ..} \<in> sets N" shows "pred M (\<lambda>x. c \<le> f x)"
hoelzl@50387
   217
  using measurable_sets[OF f c]
hoelzl@50387
   218
  by (auto simp: Int_def conj_commute eq_commute pred_def)
hoelzl@50387
   219
hoelzl@50387
   220
lemma pred_less_const[measurable (raw generic)]:
hoelzl@50387
   221
  assumes f: "f \<in> measurable M N" and c: "{..< c} \<in> sets N" shows "pred M (\<lambda>x. f x < c)"
hoelzl@50387
   222
  using measurable_sets[OF f c]
hoelzl@50387
   223
  by (auto simp: Int_def conj_commute eq_commute pred_def)
hoelzl@50387
   224
hoelzl@50387
   225
lemma pred_const_less[measurable (raw generic)]:
hoelzl@50387
   226
  assumes f: "f \<in> measurable M N" and c: "{c <..} \<in> sets N" shows "pred M (\<lambda>x. c < f x)"
hoelzl@50387
   227
  using measurable_sets[OF f c]
hoelzl@50387
   228
  by (auto simp: Int_def conj_commute eq_commute pred_def)
hoelzl@50387
   229
hoelzl@50387
   230
declare
hoelzl@50387
   231
  sets.Int[measurable (raw)]
hoelzl@50387
   232
hoelzl@50387
   233
lemma pred_in_If[measurable (raw)]:
hoelzl@50387
   234
  "(P \<Longrightarrow> pred M (\<lambda>x. x \<in> A x)) \<Longrightarrow> (\<not> P \<Longrightarrow> pred M (\<lambda>x. x \<in> B x)) \<Longrightarrow>
hoelzl@50387
   235
    pred M (\<lambda>x. x \<in> (if P then A x else B x))"
hoelzl@50387
   236
  by auto
hoelzl@50387
   237
hoelzl@50387
   238
lemma sets_range[measurable_dest]:
hoelzl@50387
   239
  "A ` I \<subseteq> sets M \<Longrightarrow> i \<in> I \<Longrightarrow> A i \<in> sets M"
hoelzl@50387
   240
  by auto
hoelzl@50387
   241
hoelzl@50387
   242
lemma pred_sets_range[measurable_dest]:
hoelzl@50387
   243
  "A ` I \<subseteq> sets N \<Longrightarrow> i \<in> I \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> pred M (\<lambda>x. f x \<in> A i)"
hoelzl@50387
   244
  using pred_sets2[OF sets_range] by auto
hoelzl@50387
   245
hoelzl@50387
   246
lemma sets_All[measurable_dest]:
hoelzl@50387
   247
  "\<forall>i. A i \<in> sets (M i) \<Longrightarrow> A i \<in> sets (M i)"
hoelzl@50387
   248
  by auto
hoelzl@50387
   249
hoelzl@50387
   250
lemma pred_sets_All[measurable_dest]:
hoelzl@50387
   251
  "\<forall>i. A i \<in> sets (N i) \<Longrightarrow> f \<in> measurable M (N i) \<Longrightarrow> pred M (\<lambda>x. f x \<in> A i)"
hoelzl@50387
   252
  using pred_sets2[OF sets_All, of A N f] by auto
hoelzl@50387
   253
hoelzl@50387
   254
lemma sets_Ball[measurable_dest]:
hoelzl@50387
   255
  "\<forall>i\<in>I. A i \<in> sets (M i) \<Longrightarrow> i\<in>I \<Longrightarrow> A i \<in> sets (M i)"
hoelzl@50387
   256
  by auto
hoelzl@50387
   257
hoelzl@50387
   258
lemma pred_sets_Ball[measurable_dest]:
hoelzl@50387
   259
  "\<forall>i\<in>I. A i \<in> sets (N i) \<Longrightarrow> i\<in>I \<Longrightarrow> f \<in> measurable M (N i) \<Longrightarrow> pred M (\<lambda>x. f x \<in> A i)"
hoelzl@50387
   260
  using pred_sets2[OF sets_Ball, of _ _ _ f] by auto
hoelzl@50387
   261
hoelzl@50387
   262
lemma measurable_finite[measurable (raw)]:
hoelzl@50387
   263
  fixes S :: "'a \<Rightarrow> nat set"
hoelzl@50387
   264
  assumes [measurable]: "\<And>i. {x\<in>space M. i \<in> S x} \<in> sets M"
hoelzl@50387
   265
  shows "pred M (\<lambda>x. finite (S x))"
hoelzl@50387
   266
  unfolding finite_nat_set_iff_bounded by (simp add: Ball_def)
hoelzl@50387
   267
hoelzl@50387
   268
lemma measurable_Least[measurable]:
hoelzl@63333
   269
  assumes [measurable]: "(\<And>i::nat. (\<lambda>x. P i x) \<in> measurable M (count_space UNIV))"
hoelzl@50387
   270
  shows "(\<lambda>x. LEAST i. P i x) \<in> measurable M (count_space UNIV)"
hoelzl@50387
   271
  unfolding measurable_def by (safe intro!: sets_Least) simp_all
hoelzl@50387
   272
hoelzl@62975
   273
lemma measurable_Max_nat[measurable (raw)]:
hoelzl@56993
   274
  fixes P :: "nat \<Rightarrow> 'a \<Rightarrow> bool"
hoelzl@56993
   275
  assumes [measurable]: "\<And>i. Measurable.pred M (P i)"
hoelzl@56993
   276
  shows "(\<lambda>x. Max {i. P i x}) \<in> measurable M (count_space UNIV)"
hoelzl@56993
   277
  unfolding measurable_count_space_eq2_countable
hoelzl@56993
   278
proof safe
hoelzl@56993
   279
  fix n
hoelzl@56993
   280
hoelzl@56993
   281
  { fix x assume "\<forall>i. \<exists>n\<ge>i. P n x"
hoelzl@56993
   282
    then have "infinite {i. P i x}"
hoelzl@56993
   283
      unfolding infinite_nat_iff_unbounded_le by auto
hoelzl@56993
   284
    then have "Max {i. P i x} = the None"
hoelzl@56993
   285
      by (rule Max.infinite) }
hoelzl@56993
   286
  note 1 = this
hoelzl@56993
   287
hoelzl@56993
   288
  { fix x i j assume "P i x" "\<forall>n\<ge>j. \<not> P n x"
hoelzl@56993
   289
    then have "finite {i. P i x}"
hoelzl@56993
   290
      by (auto simp: subset_eq not_le[symmetric] finite_nat_iff_bounded)
wenzelm@61808
   291
    with \<open>P i x\<close> have "P (Max {i. P i x}) x" "i \<le> Max {i. P i x}" "finite {i. P i x}"
hoelzl@56993
   292
      using Max_in[of "{i. P i x}"] by auto }
hoelzl@56993
   293
  note 2 = this
hoelzl@56993
   294
hoelzl@56993
   295
  have "(\<lambda>x. Max {i. P i x}) -` {n} \<inter> space M = {x\<in>space M. Max {i. P i x} = n}"
hoelzl@56993
   296
    by auto
hoelzl@62975
   297
  also have "\<dots> =
hoelzl@62975
   298
    {x\<in>space M. if (\<forall>i. \<exists>n\<ge>i. P n x) then the None = n else
hoelzl@56993
   299
      if (\<exists>i. P i x) then P n x \<and> (\<forall>i>n. \<not> P i x)
hoelzl@56993
   300
      else Max {} = n}"
hoelzl@56993
   301
    by (intro arg_cong[where f=Collect] ext conj_cong)
hoelzl@56993
   302
       (auto simp add: 1 2 not_le[symmetric] intro!: Max_eqI)
hoelzl@56993
   303
  also have "\<dots> \<in> sets M"
hoelzl@56993
   304
    by measurable
hoelzl@56993
   305
  finally show "(\<lambda>x. Max {i. P i x}) -` {n} \<inter> space M \<in> sets M" .
hoelzl@56993
   306
qed simp
hoelzl@56993
   307
hoelzl@62975
   308
lemma measurable_Min_nat[measurable (raw)]:
hoelzl@56993
   309
  fixes P :: "nat \<Rightarrow> 'a \<Rightarrow> bool"
hoelzl@56993
   310
  assumes [measurable]: "\<And>i. Measurable.pred M (P i)"
hoelzl@56993
   311
  shows "(\<lambda>x. Min {i. P i x}) \<in> measurable M (count_space UNIV)"
hoelzl@56993
   312
  unfolding measurable_count_space_eq2_countable
hoelzl@56993
   313
proof safe
hoelzl@56993
   314
  fix n
hoelzl@56993
   315
hoelzl@56993
   316
  { fix x assume "\<forall>i. \<exists>n\<ge>i. P n x"
hoelzl@56993
   317
    then have "infinite {i. P i x}"
hoelzl@56993
   318
      unfolding infinite_nat_iff_unbounded_le by auto
hoelzl@56993
   319
    then have "Min {i. P i x} = the None"
hoelzl@56993
   320
      by (rule Min.infinite) }
hoelzl@56993
   321
  note 1 = this
hoelzl@56993
   322
hoelzl@56993
   323
  { fix x i j assume "P i x" "\<forall>n\<ge>j. \<not> P n x"
hoelzl@56993
   324
    then have "finite {i. P i x}"
hoelzl@56993
   325
      by (auto simp: subset_eq not_le[symmetric] finite_nat_iff_bounded)
wenzelm@61808
   326
    with \<open>P i x\<close> have "P (Min {i. P i x}) x" "Min {i. P i x} \<le> i" "finite {i. P i x}"
hoelzl@56993
   327
      using Min_in[of "{i. P i x}"] by auto }
hoelzl@56993
   328
  note 2 = this
hoelzl@56993
   329
hoelzl@56993
   330
  have "(\<lambda>x. Min {i. P i x}) -` {n} \<inter> space M = {x\<in>space M. Min {i. P i x} = n}"
hoelzl@56993
   331
    by auto
hoelzl@62975
   332
  also have "\<dots> =
hoelzl@62975
   333
    {x\<in>space M. if (\<forall>i. \<exists>n\<ge>i. P n x) then the None = n else
hoelzl@56993
   334
      if (\<exists>i. P i x) then P n x \<and> (\<forall>i<n. \<not> P i x)
hoelzl@56993
   335
      else Min {} = n}"
hoelzl@56993
   336
    by (intro arg_cong[where f=Collect] ext conj_cong)
hoelzl@56993
   337
       (auto simp add: 1 2 not_le[symmetric] intro!: Min_eqI)
hoelzl@56993
   338
  also have "\<dots> \<in> sets M"
hoelzl@56993
   339
    by measurable
hoelzl@56993
   340
  finally show "(\<lambda>x. Min {i. P i x}) -` {n} \<inter> space M \<in> sets M" .
hoelzl@56993
   341
qed simp
hoelzl@56993
   342
hoelzl@50387
   343
lemma measurable_count_space_insert[measurable (raw)]:
hoelzl@50387
   344
  "s \<in> S \<Longrightarrow> A \<in> sets (count_space S) \<Longrightarrow> insert s A \<in> sets (count_space S)"
hoelzl@50387
   345
  by simp
hoelzl@50387
   346
hoelzl@59000
   347
lemma sets_UNIV [measurable (raw)]: "A \<in> sets (count_space UNIV)"
hoelzl@59000
   348
  by simp
hoelzl@59000
   349
hoelzl@57025
   350
lemma measurable_card[measurable]:
hoelzl@57025
   351
  fixes S :: "'a \<Rightarrow> nat set"
hoelzl@57025
   352
  assumes [measurable]: "\<And>i. {x\<in>space M. i \<in> S x} \<in> sets M"
hoelzl@57025
   353
  shows "(\<lambda>x. card (S x)) \<in> measurable M (count_space UNIV)"
hoelzl@57025
   354
  unfolding measurable_count_space_eq2_countable
hoelzl@57025
   355
proof safe
hoelzl@57025
   356
  fix n show "(\<lambda>x. card (S x)) -` {n} \<inter> space M \<in> sets M"
hoelzl@57025
   357
  proof (cases n)
hoelzl@57025
   358
    case 0
hoelzl@57025
   359
    then have "(\<lambda>x. card (S x)) -` {n} \<inter> space M = {x\<in>space M. infinite (S x) \<or> (\<forall>i. i \<notin> S x)}"
hoelzl@57025
   360
      by auto
hoelzl@57025
   361
    also have "\<dots> \<in> sets M"
hoelzl@57025
   362
      by measurable
hoelzl@57025
   363
    finally show ?thesis .
hoelzl@57025
   364
  next
hoelzl@57025
   365
    case (Suc i)
hoelzl@57025
   366
    then have "(\<lambda>x. card (S x)) -` {n} \<inter> space M =
hoelzl@57025
   367
      (\<Union>F\<in>{A\<in>{A. finite A}. card A = n}. {x\<in>space M. (\<forall>i. i \<in> S x \<longleftrightarrow> i \<in> F)})"
hoelzl@57025
   368
      unfolding set_eq_iff[symmetric] Collect_bex_eq[symmetric] by (auto intro: card_ge_0_finite)
hoelzl@57025
   369
    also have "\<dots> \<in> sets M"
hoelzl@57025
   370
      by (intro sets.countable_UN' countable_Collect countable_Collect_finite) auto
hoelzl@57025
   371
    finally show ?thesis .
hoelzl@57025
   372
  qed
hoelzl@57025
   373
qed rule
hoelzl@57025
   374
hoelzl@59088
   375
lemma measurable_pred_countable[measurable (raw)]:
hoelzl@59088
   376
  assumes "countable X"
hoelzl@62975
   377
  shows
hoelzl@59088
   378
    "(\<And>i. i \<in> X \<Longrightarrow> Measurable.pred M (\<lambda>x. P x i)) \<Longrightarrow> Measurable.pred M (\<lambda>x. \<forall>i\<in>X. P x i)"
hoelzl@59088
   379
    "(\<And>i. i \<in> X \<Longrightarrow> Measurable.pred M (\<lambda>x. P x i)) \<Longrightarrow> Measurable.pred M (\<lambda>x. \<exists>i\<in>X. P x i)"
hoelzl@59088
   380
  unfolding pred_def
hoelzl@59088
   381
  by (auto intro!: sets.sets_Collect_countable_All' sets.sets_Collect_countable_Ex' assms)
hoelzl@59088
   382
wenzelm@61808
   383
subsection \<open>Measurability for (co)inductive predicates\<close>
hoelzl@56021
   384
hoelzl@59088
   385
lemma measurable_bot[measurable]: "bot \<in> measurable M (count_space UNIV)"
hoelzl@59088
   386
  by (simp add: bot_fun_def)
hoelzl@59088
   387
hoelzl@59088
   388
lemma measurable_top[measurable]: "top \<in> measurable M (count_space UNIV)"
hoelzl@59088
   389
  by (simp add: top_fun_def)
hoelzl@59088
   390
hoelzl@59088
   391
lemma measurable_SUP[measurable]:
hoelzl@59088
   392
  fixes F :: "'i \<Rightarrow> 'a \<Rightarrow> 'b::{complete_lattice, countable}"
hoelzl@59088
   393
  assumes [simp]: "countable I"
hoelzl@59088
   394
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> measurable M (count_space UNIV)"
hoelzl@59088
   395
  shows "(\<lambda>x. SUP i:I. F i x) \<in> measurable M (count_space UNIV)"
hoelzl@59088
   396
  unfolding measurable_count_space_eq2_countable
hoelzl@59088
   397
proof (safe intro!: UNIV_I)
hoelzl@62975
   398
  fix a
hoelzl@59088
   399
  have "(\<lambda>x. SUP i:I. F i x) -` {a} \<inter> space M =
hoelzl@59088
   400
    {x\<in>space M. (\<forall>i\<in>I. F i x \<le> a) \<and> (\<forall>b. (\<forall>i\<in>I. F i x \<le> b) \<longrightarrow> a \<le> b)}"
hoelzl@59088
   401
    unfolding SUP_le_iff[symmetric] by auto
hoelzl@59088
   402
  also have "\<dots> \<in> sets M"
hoelzl@59088
   403
    by measurable
hoelzl@59088
   404
  finally show "(\<lambda>x. SUP i:I. F i x) -` {a} \<inter> space M \<in> sets M" .
hoelzl@59088
   405
qed
hoelzl@59088
   406
hoelzl@59088
   407
lemma measurable_INF[measurable]:
hoelzl@59088
   408
  fixes F :: "'i \<Rightarrow> 'a \<Rightarrow> 'b::{complete_lattice, countable}"
hoelzl@59088
   409
  assumes [simp]: "countable I"
hoelzl@59088
   410
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> measurable M (count_space UNIV)"
hoelzl@59088
   411
  shows "(\<lambda>x. INF i:I. F i x) \<in> measurable M (count_space UNIV)"
hoelzl@59088
   412
  unfolding measurable_count_space_eq2_countable
hoelzl@59088
   413
proof (safe intro!: UNIV_I)
hoelzl@62975
   414
  fix a
hoelzl@59088
   415
  have "(\<lambda>x. INF i:I. F i x) -` {a} \<inter> space M =
hoelzl@59088
   416
    {x\<in>space M. (\<forall>i\<in>I. a \<le> F i x) \<and> (\<forall>b. (\<forall>i\<in>I. b \<le> F i x) \<longrightarrow> b \<le> a)}"
hoelzl@59088
   417
    unfolding le_INF_iff[symmetric] by auto
hoelzl@59088
   418
  also have "\<dots> \<in> sets M"
hoelzl@59088
   419
    by measurable
hoelzl@59088
   420
  finally show "(\<lambda>x. INF i:I. F i x) -` {a} \<inter> space M \<in> sets M" .
hoelzl@59088
   421
qed
hoelzl@59088
   422
hoelzl@59088
   423
lemma measurable_lfp_coinduct[consumes 1, case_names continuity step]:
hoelzl@59088
   424
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_lattice, countable})"
hoelzl@59088
   425
  assumes "P M"
hoelzl@60172
   426
  assumes F: "sup_continuous F"
hoelzl@59088
   427
  assumes *: "\<And>M A. P M \<Longrightarrow> (\<And>N. P N \<Longrightarrow> A \<in> measurable N (count_space UNIV)) \<Longrightarrow> F A \<in> measurable M (count_space UNIV)"
hoelzl@59088
   428
  shows "lfp F \<in> measurable M (count_space UNIV)"
hoelzl@59088
   429
proof -
wenzelm@61808
   430
  { fix i from \<open>P M\<close> have "((F ^^ i) bot) \<in> measurable M (count_space UNIV)"
hoelzl@59088
   431
      by (induct i arbitrary: M) (auto intro!: *) }
hoelzl@59088
   432
  then have "(\<lambda>x. SUP i. (F ^^ i) bot x) \<in> measurable M (count_space UNIV)"
hoelzl@59088
   433
    by measurable
hoelzl@59088
   434
  also have "(\<lambda>x. SUP i. (F ^^ i) bot x) = lfp F"
hoelzl@60172
   435
    by (subst sup_continuous_lfp) (auto intro: F)
hoelzl@59088
   436
  finally show ?thesis .
hoelzl@59088
   437
qed
hoelzl@59088
   438
hoelzl@56021
   439
lemma measurable_lfp:
hoelzl@59088
   440
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_lattice, countable})"
hoelzl@60172
   441
  assumes F: "sup_continuous F"
hoelzl@59088
   442
  assumes *: "\<And>A. A \<in> measurable M (count_space UNIV) \<Longrightarrow> F A \<in> measurable M (count_space UNIV)"
hoelzl@59088
   443
  shows "lfp F \<in> measurable M (count_space UNIV)"
hoelzl@59088
   444
  by (coinduction rule: measurable_lfp_coinduct[OF _ F]) (blast intro: *)
hoelzl@59088
   445
hoelzl@59088
   446
lemma measurable_gfp_coinduct[consumes 1, case_names continuity step]:
hoelzl@59088
   447
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_lattice, countable})"
hoelzl@59088
   448
  assumes "P M"
hoelzl@60172
   449
  assumes F: "inf_continuous F"
hoelzl@59088
   450
  assumes *: "\<And>M A. P M \<Longrightarrow> (\<And>N. P N \<Longrightarrow> A \<in> measurable N (count_space UNIV)) \<Longrightarrow> F A \<in> measurable M (count_space UNIV)"
hoelzl@59088
   451
  shows "gfp F \<in> measurable M (count_space UNIV)"
hoelzl@56021
   452
proof -
wenzelm@61808
   453
  { fix i from \<open>P M\<close> have "((F ^^ i) top) \<in> measurable M (count_space UNIV)"
hoelzl@59088
   454
      by (induct i arbitrary: M) (auto intro!: *) }
hoelzl@59088
   455
  then have "(\<lambda>x. INF i. (F ^^ i) top x) \<in> measurable M (count_space UNIV)"
hoelzl@56021
   456
    by measurable
hoelzl@59088
   457
  also have "(\<lambda>x. INF i. (F ^^ i) top x) = gfp F"
hoelzl@60172
   458
    by (subst inf_continuous_gfp) (auto intro: F)
hoelzl@56021
   459
  finally show ?thesis .
hoelzl@56021
   460
qed
hoelzl@56021
   461
hoelzl@56021
   462
lemma measurable_gfp:
hoelzl@59088
   463
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_lattice, countable})"
hoelzl@60172
   464
  assumes F: "inf_continuous F"
hoelzl@59088
   465
  assumes *: "\<And>A. A \<in> measurable M (count_space UNIV) \<Longrightarrow> F A \<in> measurable M (count_space UNIV)"
hoelzl@59088
   466
  shows "gfp F \<in> measurable M (count_space UNIV)"
hoelzl@59088
   467
  by (coinduction rule: measurable_gfp_coinduct[OF _ F]) (blast intro: *)
hoelzl@59000
   468
hoelzl@59000
   469
lemma measurable_lfp2_coinduct[consumes 1, case_names continuity step]:
hoelzl@59088
   470
  fixes F :: "('a \<Rightarrow> 'c \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c \<Rightarrow> 'b::{complete_lattice, countable})"
hoelzl@59000
   471
  assumes "P M s"
hoelzl@60172
   472
  assumes F: "sup_continuous F"
hoelzl@59088
   473
  assumes *: "\<And>M A s. P M s \<Longrightarrow> (\<And>N t. P N t \<Longrightarrow> A t \<in> measurable N (count_space UNIV)) \<Longrightarrow> F A s \<in> measurable M (count_space UNIV)"
hoelzl@59088
   474
  shows "lfp F s \<in> measurable M (count_space UNIV)"
hoelzl@59000
   475
proof -
wenzelm@61808
   476
  { fix i from \<open>P M s\<close> have "(\<lambda>x. (F ^^ i) bot s x) \<in> measurable M (count_space UNIV)"
hoelzl@59000
   477
      by (induct i arbitrary: M s) (auto intro!: *) }
hoelzl@59088
   478
  then have "(\<lambda>x. SUP i. (F ^^ i) bot s x) \<in> measurable M (count_space UNIV)"
hoelzl@59000
   479
    by measurable
hoelzl@59088
   480
  also have "(\<lambda>x. SUP i. (F ^^ i) bot s x) = lfp F s"
hoelzl@60172
   481
    by (subst sup_continuous_lfp) (auto simp: F)
hoelzl@59000
   482
  finally show ?thesis .
hoelzl@59000
   483
qed
hoelzl@59000
   484
hoelzl@59000
   485
lemma measurable_gfp2_coinduct[consumes 1, case_names continuity step]:
hoelzl@59088
   486
  fixes F :: "('a \<Rightarrow> 'c \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c \<Rightarrow> 'b::{complete_lattice, countable})"
hoelzl@59000
   487
  assumes "P M s"
hoelzl@60172
   488
  assumes F: "inf_continuous F"
hoelzl@59088
   489
  assumes *: "\<And>M A s. P M s \<Longrightarrow> (\<And>N t. P N t \<Longrightarrow> A t \<in> measurable N (count_space UNIV)) \<Longrightarrow> F A s \<in> measurable M (count_space UNIV)"
hoelzl@59088
   490
  shows "gfp F s \<in> measurable M (count_space UNIV)"
hoelzl@59000
   491
proof -
wenzelm@61808
   492
  { fix i from \<open>P M s\<close> have "(\<lambda>x. (F ^^ i) top s x) \<in> measurable M (count_space UNIV)"
hoelzl@59000
   493
      by (induct i arbitrary: M s) (auto intro!: *) }
hoelzl@59088
   494
  then have "(\<lambda>x. INF i. (F ^^ i) top s x) \<in> measurable M (count_space UNIV)"
hoelzl@59000
   495
    by measurable
hoelzl@59088
   496
  also have "(\<lambda>x. INF i. (F ^^ i) top s x) = gfp F s"
hoelzl@60172
   497
    by (subst inf_continuous_gfp) (auto simp: F)
hoelzl@59000
   498
  finally show ?thesis .
hoelzl@59000
   499
qed
hoelzl@59000
   500
hoelzl@59000
   501
lemma measurable_enat_coinduct:
hoelzl@59000
   502
  fixes f :: "'a \<Rightarrow> enat"
hoelzl@59000
   503
  assumes "R f"
hoelzl@62975
   504
  assumes *: "\<And>f. R f \<Longrightarrow> \<exists>g h i P. R g \<and> f = (\<lambda>x. if P x then h x else eSuc (g (i x))) \<and>
hoelzl@59000
   505
    Measurable.pred M P \<and>
hoelzl@59000
   506
    i \<in> measurable M M \<and>
hoelzl@59000
   507
    h \<in> measurable M (count_space UNIV)"
hoelzl@59000
   508
  shows "f \<in> measurable M (count_space UNIV)"
hoelzl@59000
   509
proof (simp add: measurable_count_space_eq2_countable, rule )
hoelzl@59000
   510
  fix a :: enat
hoelzl@59000
   511
  have "f -` {a} \<inter> space M = {x\<in>space M. f x = a}"
hoelzl@59000
   512
    by auto
hoelzl@59000
   513
  { fix i :: nat
wenzelm@61808
   514
    from \<open>R f\<close> have "Measurable.pred M (\<lambda>x. f x = enat i)"
hoelzl@59000
   515
    proof (induction i arbitrary: f)
hoelzl@59000
   516
      case 0
hoelzl@59000
   517
      from *[OF this] obtain g h i P
hoelzl@59000
   518
        where f: "f = (\<lambda>x. if P x then h x else eSuc (g (i x)))" and
hoelzl@59000
   519
          [measurable]: "Measurable.pred M P" "i \<in> measurable M M" "h \<in> measurable M (count_space UNIV)"
hoelzl@59000
   520
        by auto
hoelzl@59000
   521
      have "Measurable.pred M (\<lambda>x. P x \<and> h x = 0)"
hoelzl@59000
   522
        by measurable
hoelzl@59000
   523
      also have "(\<lambda>x. P x \<and> h x = 0) = (\<lambda>x. f x = enat 0)"
hoelzl@59000
   524
        by (auto simp: f zero_enat_def[symmetric])
hoelzl@59000
   525
      finally show ?case .
hoelzl@59000
   526
    next
hoelzl@59000
   527
      case (Suc n)
hoelzl@59000
   528
      from *[OF Suc.prems] obtain g h i P
hoelzl@59000
   529
        where f: "f = (\<lambda>x. if P x then h x else eSuc (g (i x)))" and "R g" and
hoelzl@59000
   530
          M[measurable]: "Measurable.pred M P" "i \<in> measurable M M" "h \<in> measurable M (count_space UNIV)"
hoelzl@59000
   531
        by auto
hoelzl@59000
   532
      have "(\<lambda>x. f x = enat (Suc n)) =
hoelzl@59000
   533
        (\<lambda>x. (P x \<longrightarrow> h x = enat (Suc n)) \<and> (\<not> P x \<longrightarrow> g (i x) = enat n))"
hoelzl@59000
   534
        by (auto simp: f zero_enat_def[symmetric] eSuc_enat[symmetric])
hoelzl@59000
   535
      also have "Measurable.pred M \<dots>"
wenzelm@61808
   536
        by (intro pred_intros_logic measurable_compose[OF M(2)] Suc \<open>R g\<close>) measurable
hoelzl@59000
   537
      finally show ?case .
hoelzl@59000
   538
    qed
hoelzl@59000
   539
    then have "f -` {enat i} \<inter> space M \<in> sets M"
hoelzl@59000
   540
      by (simp add: pred_def Int_def conj_commute) }
hoelzl@59000
   541
  note fin = this
hoelzl@59000
   542
  show "f -` {a} \<inter> space M \<in> sets M"
hoelzl@59000
   543
  proof (cases a)
hoelzl@59000
   544
    case infinity
hoelzl@59000
   545
    then have "f -` {a} \<inter> space M = space M - (\<Union>n. f -` {enat n} \<inter> space M)"
hoelzl@59000
   546
      by auto
hoelzl@59000
   547
    also have "\<dots> \<in> sets M"
hoelzl@59000
   548
      by (intro sets.Diff sets.top sets.Un sets.countable_UN) (auto intro!: fin)
hoelzl@59000
   549
    finally show ?thesis .
hoelzl@59000
   550
  qed (simp add: fin)
hoelzl@59000
   551
qed
hoelzl@59000
   552
hoelzl@59000
   553
lemma measurable_THE:
hoelzl@59000
   554
  fixes P :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
hoelzl@59000
   555
  assumes [measurable]: "\<And>i. Measurable.pred M (P i)"
hoelzl@59000
   556
  assumes I[simp]: "countable I" "\<And>i x. x \<in> space M \<Longrightarrow> P i x \<Longrightarrow> i \<in> I"
hoelzl@59000
   557
  assumes unique: "\<And>x i j. x \<in> space M \<Longrightarrow> P i x \<Longrightarrow> P j x \<Longrightarrow> i = j"
hoelzl@59000
   558
  shows "(\<lambda>x. THE i. P i x) \<in> measurable M (count_space UNIV)"
hoelzl@59000
   559
  unfolding measurable_def
hoelzl@59000
   560
proof safe
hoelzl@59000
   561
  fix X
wenzelm@63040
   562
  define f where "f x = (THE i. P i x)" for x
wenzelm@63040
   563
  define undef where "undef = (THE i::'a. False)"
hoelzl@59000
   564
  { fix i x assume "x \<in> space M" "P i x" then have "f x = i"
hoelzl@59000
   565
      unfolding f_def using unique by auto }
hoelzl@59000
   566
  note f_eq = this
hoelzl@59000
   567
  { fix x assume "x \<in> space M" "\<forall>i\<in>I. \<not> P i x"
hoelzl@59000
   568
    then have "\<And>i. \<not> P i x"
hoelzl@59000
   569
      using I(2)[of x] by auto
hoelzl@59000
   570
    then have "f x = undef"
hoelzl@59000
   571
      by (auto simp: undef_def f_def) }
hoelzl@59000
   572
  then have "f -` X \<inter> space M = (\<Union>i\<in>I \<inter> X. {x\<in>space M. P i x}) \<union>
hoelzl@59000
   573
     (if undef \<in> X then space M - (\<Union>i\<in>I. {x\<in>space M. P i x}) else {})"
hoelzl@59000
   574
    by (auto dest: f_eq)
hoelzl@59000
   575
  also have "\<dots> \<in> sets M"
hoelzl@59000
   576
    by (auto intro!: sets.Diff sets.countable_UN')
hoelzl@59000
   577
  finally show "f -` X \<inter> space M \<in> sets M" .
hoelzl@59000
   578
qed simp
hoelzl@59000
   579
hoelzl@59000
   580
lemma measurable_Ex1[measurable (raw)]:
hoelzl@59000
   581
  assumes [simp]: "countable I" and [measurable]: "\<And>i. i \<in> I \<Longrightarrow> Measurable.pred M (P i)"
hoelzl@59000
   582
  shows "Measurable.pred M (\<lambda>x. \<exists>!i\<in>I. P i x)"
hoelzl@59000
   583
  unfolding bex1_def by measurable
hoelzl@59000
   584
hoelzl@62975
   585
lemma measurable_Sup_nat[measurable (raw)]:
hoelzl@62975
   586
  fixes F :: "'a \<Rightarrow> nat set"
hoelzl@62975
   587
  assumes [measurable]: "\<And>i. Measurable.pred M (\<lambda>x. i \<in> F x)"
hoelzl@62975
   588
  shows "(\<lambda>x. Sup (F x)) \<in> M \<rightarrow>\<^sub>M count_space UNIV"
hoelzl@62975
   589
proof (clarsimp simp add: measurable_count_space_eq2_countable)
hoelzl@62975
   590
  fix a
hoelzl@62975
   591
  have F_empty_iff: "F x = {} \<longleftrightarrow> (\<forall>i. i \<notin> F x)" for x
hoelzl@62975
   592
    by auto
hoelzl@62975
   593
  have "Measurable.pred M (\<lambda>x. if finite (F x) then if F x = {} then a = Max {}
hoelzl@62975
   594
    else a \<in> F x \<and> (\<forall>j. j \<in> F x \<longrightarrow> j \<le> a) else a = the None)"
hoelzl@62975
   595
    unfolding finite_nat_set_iff_bounded Ball_def F_empty_iff by measurable
hoelzl@62975
   596
  moreover have "(\<lambda>x. Sup (F x)) -` {a} \<inter> space M =
hoelzl@62975
   597
    {x\<in>space M. if finite (F x) then if F x = {} then a = Max {}
hoelzl@62975
   598
      else a \<in> F x \<and> (\<forall>j. j \<in> F x \<longrightarrow> j \<le> a) else a = the None}"
hoelzl@62975
   599
    by (intro set_eqI)
hoelzl@62975
   600
       (auto simp: Sup_nat_def Max.infinite intro!: Max_in Max_eqI)
hoelzl@62975
   601
  ultimately show "(\<lambda>x. Sup (F x)) -` {a} \<inter> space M \<in> sets M"
hoelzl@62975
   602
    by auto
hoelzl@62975
   603
qed
hoelzl@62975
   604
nipkow@62390
   605
lemma measurable_if_split[measurable (raw)]:
hoelzl@59000
   606
  "(c \<Longrightarrow> Measurable.pred M f) \<Longrightarrow> (\<not> c \<Longrightarrow> Measurable.pred M g) \<Longrightarrow>
hoelzl@59000
   607
   Measurable.pred M (if c then f else g)"
hoelzl@59000
   608
  by simp
hoelzl@59000
   609
hoelzl@59000
   610
lemma pred_restrict_space:
hoelzl@59000
   611
  assumes "S \<in> sets M"
hoelzl@59000
   612
  shows "Measurable.pred (restrict_space M S) P \<longleftrightarrow> Measurable.pred M (\<lambda>x. x \<in> S \<and> P x)"
hoelzl@59000
   613
  unfolding pred_def sets_Collect_restrict_space_iff[OF assms] ..
hoelzl@59000
   614
hoelzl@59000
   615
lemma measurable_predpow[measurable]:
hoelzl@59000
   616
  assumes "Measurable.pred M T"
hoelzl@59000
   617
  assumes "\<And>Q. Measurable.pred M Q \<Longrightarrow> Measurable.pred M (R Q)"
hoelzl@59000
   618
  shows "Measurable.pred M ((R ^^ n) T)"
hoelzl@59000
   619
  by (induct n) (auto intro: assms)
hoelzl@59000
   620
hoelzl@64008
   621
lemma measurable_compose_countable_restrict:
hoelzl@64008
   622
  assumes P: "countable {i. P i}"
hoelzl@64008
   623
    and f: "f \<in> M \<rightarrow>\<^sub>M count_space UNIV"
hoelzl@64008
   624
    and Q: "\<And>i. P i \<Longrightarrow> pred M (Q i)"
hoelzl@64008
   625
  shows "pred M (\<lambda>x. P (f x) \<and> Q (f x) x)"
hoelzl@64008
   626
proof -
hoelzl@64008
   627
  have P_f: "{x \<in> space M. P (f x)} \<in> sets M"
hoelzl@64008
   628
    unfolding pred_def[symmetric] by (rule measurable_compose[OF f]) simp
hoelzl@64008
   629
  have "pred (restrict_space M {x\<in>space M. P (f x)}) (\<lambda>x. Q (f x) x)"
hoelzl@64008
   630
  proof (rule measurable_compose_countable'[where g=f, OF _ _ P])
hoelzl@64008
   631
    show "f \<in> restrict_space M {x\<in>space M. P (f x)} \<rightarrow>\<^sub>M count_space {i. P i}"
hoelzl@64008
   632
      by (rule measurable_count_space_extend[OF subset_UNIV])
hoelzl@64008
   633
         (auto simp: space_restrict_space intro!: measurable_restrict_space1 f)
hoelzl@64008
   634
  qed (auto intro!: measurable_restrict_space1 Q)
hoelzl@64008
   635
  then show ?thesis
hoelzl@64008
   636
    unfolding pred_restrict_space[OF P_f] by (simp cong: measurable_cong)
hoelzl@64008
   637
qed
hoelzl@64008
   638
hoelzl@64283
   639
lemma measurable_limsup [measurable (raw)]:
hoelzl@64283
   640
  assumes [measurable]: "\<And>n. A n \<in> sets M"
hoelzl@64283
   641
  shows "limsup A \<in> sets M"
hoelzl@64283
   642
by (subst limsup_INF_SUP, auto)
hoelzl@64283
   643
hoelzl@64283
   644
lemma measurable_liminf [measurable (raw)]:
hoelzl@64283
   645
  assumes [measurable]: "\<And>n. A n \<in> sets M"
hoelzl@64283
   646
  shows "liminf A \<in> sets M"
hoelzl@64283
   647
by (subst liminf_SUP_INF, auto)
hoelzl@64283
   648
hoelzl@64320
   649
lemma measurable_case_enat[measurable (raw)]:
hoelzl@64320
   650
  assumes f: "f \<in> M \<rightarrow>\<^sub>M count_space UNIV" and g: "\<And>i. g i \<in> M \<rightarrow>\<^sub>M N" and h: "h \<in> M \<rightarrow>\<^sub>M N"
hoelzl@64320
   651
  shows "(\<lambda>x. case f x of enat i \<Rightarrow> g i x | \<infinity> \<Rightarrow> h x) \<in> M \<rightarrow>\<^sub>M N"
hoelzl@64320
   652
  apply (rule measurable_compose_countable[OF _ f])
hoelzl@64320
   653
  subgoal for i
hoelzl@64320
   654
    by (cases i) (auto intro: g h)
hoelzl@64320
   655
  done
hoelzl@64320
   656
hoelzl@50387
   657
hide_const (open) pred
hoelzl@50387
   658
hoelzl@50387
   659
end
hoelzl@59048
   660