author  paulson 
Tue, 19 Oct 2004 18:18:45 +0200  
changeset 15251  bb6f072c8d10 
parent 15140  322485b816ac 
child 15281  bd4611956c7b 
permissions  rwrr 
923  1 
(* Title: HOL/Nat.thy 
2 
ID: $Id$ 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

3 
Author: Tobias Nipkow and Lawrence C Paulson 
923  4 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

5 
Type "nat" is a linear order, and a datatype; arithmetic operators +  
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

6 
and * (for div, mod and dvd, see theory Divides). 
923  7 
*) 
8 

13449  9 
header {* Natural numbers *} 
10 

15131  11 
theory Nat 
15140  12 
imports Wellfounded_Recursion Ring_and_Field 
15131  13 
begin 
13449  14 

15 
subsection {* Type @{text ind} *} 

16 

17 
typedecl ind 

18 

19 
consts 

20 
Zero_Rep :: ind 

21 
Suc_Rep :: "ind => ind" 

22 

23 
axioms 

24 
 {* the axiom of infinity in 2 parts *} 

25 
inj_Suc_Rep: "inj Suc_Rep" 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

26 
Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" 
13449  27 

28 

29 
subsection {* Type nat *} 

30 

31 
text {* Type definition *} 

32 

33 
consts 

34 
Nat :: "ind set" 

35 

36 
inductive Nat 

37 
intros 

38 
Zero_RepI: "Zero_Rep : Nat" 

39 
Suc_RepI: "i : Nat ==> Suc_Rep i : Nat" 

40 

41 
global 

42 

43 
typedef (open Nat) 

14208  44 
nat = Nat by (rule exI, rule Nat.Zero_RepI) 
13449  45 

14691  46 
instance nat :: "{ord, zero, one}" .. 
13449  47 

48 

49 
text {* Abstract constants and syntax *} 

50 

51 
consts 

52 
Suc :: "nat => nat" 

53 
pred_nat :: "(nat * nat) set" 

54 

55 
local 

56 

57 
defs 

58 
Zero_nat_def: "0 == Abs_Nat Zero_Rep" 

59 
Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))" 

60 
One_nat_def [simp]: "1 == Suc 0" 

61 

62 
 {* nat operations *} 

63 
pred_nat_def: "pred_nat == {(m, n). n = Suc m}" 

64 

65 
less_def: "m < n == (m, n) : trancl pred_nat" 

66 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

67 
le_def: "m \<le> (n::nat) == ~ (n < m)" 
13449  68 

69 

70 
text {* Induction *} 

923  71 

13449  72 
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n" 
73 
apply (unfold Zero_nat_def Suc_def) 

74 
apply (rule Rep_Nat_inverse [THEN subst])  {* types force good instantiation *} 

75 
apply (erule Rep_Nat [THEN Nat.induct]) 

76 
apply (rules elim: Abs_Nat_inverse [THEN subst]) 

77 
done 

78 

79 

80 
text {* Isomorphisms: @{text Abs_Nat} and @{text Rep_Nat} *} 

81 

82 
lemma inj_Rep_Nat: "inj Rep_Nat" 

13585  83 
apply (rule inj_on_inverseI) 
13449  84 
apply (rule Rep_Nat_inverse) 
85 
done 

86 

87 
lemma inj_on_Abs_Nat: "inj_on Abs_Nat Nat" 

88 
apply (rule inj_on_inverseI) 

89 
apply (erule Abs_Nat_inverse) 

90 
done 

91 

92 
text {* Distinctness of constructors *} 

93 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

94 
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0" 
13449  95 
apply (unfold Zero_nat_def Suc_def) 
96 
apply (rule inj_on_Abs_Nat [THEN inj_on_contraD]) 

97 
apply (rule Suc_Rep_not_Zero_Rep) 

98 
apply (rule Rep_Nat Nat.Suc_RepI Nat.Zero_RepI)+ 

99 
done 

100 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

101 
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m" 
13449  102 
by (rule not_sym, rule Suc_not_Zero not_sym) 
103 

104 
lemma Suc_neq_Zero: "Suc m = 0 ==> R" 

105 
by (rule notE, rule Suc_not_Zero) 

106 

107 
lemma Zero_neq_Suc: "0 = Suc m ==> R" 

108 
by (rule Suc_neq_Zero, erule sym) 

109 

110 
text {* Injectiveness of @{term Suc} *} 

111 

112 
lemma inj_Suc: "inj Suc" 

113 
apply (unfold Suc_def) 

13585  114 
apply (rule inj_onI) 
13449  115 
apply (drule inj_on_Abs_Nat [THEN inj_onD]) 
116 
apply (rule Rep_Nat Nat.Suc_RepI)+ 

117 
apply (drule inj_Suc_Rep [THEN injD]) 

118 
apply (erule inj_Rep_Nat [THEN injD]) 

119 
done 

120 

121 
lemma Suc_inject: "Suc x = Suc y ==> x = y" 

122 
by (rule inj_Suc [THEN injD]) 

123 

124 
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)" 

125 
apply (rule iffI) 

126 
apply (erule Suc_inject) 

127 
apply (erule arg_cong) 

128 
done 

129 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

130 
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False" 
13449  131 
by auto 
132 

133 
text {* @{typ nat} is a datatype *} 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

134 

5188
633ec5f6c155
Declaration of type 'nat' as a datatype (this allows usage of
berghofe
parents:
4640
diff
changeset

135 
rep_datatype nat 
13449  136 
distinct Suc_not_Zero Zero_not_Suc 
137 
inject Suc_Suc_eq 

138 
induction nat_induct 

139 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

140 
lemma n_not_Suc_n: "n \<noteq> Suc n" 
13449  141 
by (induct n) simp_all 
142 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

143 
lemma Suc_n_not_n: "Suc t \<noteq> t" 
13449  144 
by (rule not_sym, rule n_not_Suc_n) 
145 

146 
text {* A special form of induction for reasoning 

147 
about @{term "m < n"} and @{term "m  n"} *} 

148 

149 
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> 

150 
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" 

14208  151 
apply (rule_tac x = m in spec) 
15251  152 
apply (induct n) 
13449  153 
prefer 2 
154 
apply (rule allI) 

14208  155 
apply (induct_tac x, rules+) 
13449  156 
done 
157 

158 
subsection {* Basic properties of "less than" *} 

159 

160 
lemma wf_pred_nat: "wf pred_nat" 

14208  161 
apply (unfold wf_def pred_nat_def, clarify) 
162 
apply (induct_tac x, blast+) 

13449  163 
done 
164 

165 
lemma wf_less: "wf {(x, y::nat). x < y}" 

166 
apply (unfold less_def) 

14208  167 
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast) 
13449  168 
done 
169 

170 
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)" 

171 
apply (unfold less_def) 

172 
apply (rule refl) 

173 
done 

174 

175 
subsubsection {* Introduction properties *} 

176 

177 
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)" 

178 
apply (unfold less_def) 

14208  179 
apply (rule trans_trancl [THEN transD], assumption+) 
13449  180 
done 
181 

182 
lemma lessI [iff]: "n < Suc n" 

183 
apply (unfold less_def pred_nat_def) 

184 
apply (simp add: r_into_trancl) 

185 
done 

186 

187 
lemma less_SucI: "i < j ==> i < Suc j" 

14208  188 
apply (rule less_trans, assumption) 
13449  189 
apply (rule lessI) 
190 
done 

191 

192 
lemma zero_less_Suc [iff]: "0 < Suc n" 

193 
apply (induct n) 

194 
apply (rule lessI) 

195 
apply (erule less_trans) 

196 
apply (rule lessI) 

197 
done 

198 

199 
subsubsection {* Elimination properties *} 

200 

201 
lemma less_not_sym: "n < m ==> ~ m < (n::nat)" 

202 
apply (unfold less_def) 

203 
apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym]) 

204 
done 

205 

206 
lemma less_asym: 

207 
assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P 

208 
apply (rule contrapos_np) 

209 
apply (rule less_not_sym) 

210 
apply (rule h1) 

211 
apply (erule h2) 

212 
done 

213 

214 
lemma less_not_refl: "~ n < (n::nat)" 

215 
apply (unfold less_def) 

216 
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl]) 

217 
done 

218 

219 
lemma less_irrefl [elim!]: "(n::nat) < n ==> R" 

220 
by (rule notE, rule less_not_refl) 

221 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

222 
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast 
13449  223 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

224 
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" 
13449  225 
by (rule not_sym, rule less_not_refl2) 
226 

227 
lemma lessE: 

228 
assumes major: "i < k" 

229 
and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" 

230 
shows P 

14208  231 
apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all) 
13449  232 
apply (erule p1) 
233 
apply (rule p2) 

14208  234 
apply (simp add: less_def pred_nat_def, assumption) 
13449  235 
done 
236 

237 
lemma not_less0 [iff]: "~ n < (0::nat)" 

238 
by (blast elim: lessE) 

239 

240 
lemma less_zeroE: "(n::nat) < 0 ==> R" 

241 
by (rule notE, rule not_less0) 

242 

243 
lemma less_SucE: assumes major: "m < Suc n" 

244 
and less: "m < n ==> P" and eq: "m = n ==> P" shows P 

245 
apply (rule major [THEN lessE]) 

14208  246 
apply (rule eq, blast) 
247 
apply (rule less, blast) 

13449  248 
done 
249 

250 
lemma less_Suc_eq: "(m < Suc n) = (m < n  m = n)" 

251 
by (blast elim!: less_SucE intro: less_trans) 

252 

253 
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)" 

254 
by (simp add: less_Suc_eq) 

255 

256 
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" 

257 
by (simp add: less_Suc_eq) 

258 

259 
lemma Suc_mono: "m < n ==> Suc m < Suc n" 

260 
by (induct n) (fast elim: less_trans lessE)+ 

261 

262 
text {* "Less than" is a linear ordering *} 

263 
lemma less_linear: "m < n  m = n  n < (m::nat)" 

15251  264 
apply (induct m) 
265 
apply (induct n) 

13449  266 
apply (rule refl [THEN disjI1, THEN disjI2]) 
267 
apply (rule zero_less_Suc [THEN disjI1]) 

268 
apply (blast intro: Suc_mono less_SucI elim: lessE) 

269 
done 

270 

14302  271 
text {* "Less than" is antisymmetric, sort of *} 
272 
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" 

273 
apply(simp only:less_Suc_eq) 

274 
apply blast 

275 
done 

276 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

277 
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n  n < m)" 
13449  278 
using less_linear by blast 
279 

280 
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" 

281 
and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" 

282 
shows "P n m" 

283 
apply (rule less_linear [THEN disjE]) 

284 
apply (erule_tac [2] disjE) 

285 
apply (erule lessCase) 

286 
apply (erule sym [THEN eqCase]) 

287 
apply (erule major) 

288 
done 

289 

290 

291 
subsubsection {* Inductive (?) properties *} 

292 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

293 
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" 
13449  294 
apply (simp add: nat_neq_iff) 
295 
apply (blast elim!: less_irrefl less_SucE elim: less_asym) 

296 
done 

297 

298 
lemma Suc_lessD: "Suc m < n ==> m < n" 

299 
apply (induct n) 

300 
apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+ 

301 
done 

302 

303 
lemma Suc_lessE: assumes major: "Suc i < k" 

304 
and minor: "!!j. i < j ==> k = Suc j ==> P" shows P 

305 
apply (rule major [THEN lessE]) 

306 
apply (erule lessI [THEN minor]) 

14208  307 
apply (erule Suc_lessD [THEN minor], assumption) 
13449  308 
done 
309 

310 
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" 

311 
by (blast elim: lessE dest: Suc_lessD) 

4104  312 

13449  313 
lemma Suc_less_eq [iff]: "(Suc m < Suc n) = (m < n)" 
314 
apply (rule iffI) 

315 
apply (erule Suc_less_SucD) 

316 
apply (erule Suc_mono) 

317 
done 

318 

319 
lemma less_trans_Suc: 

320 
assumes le: "i < j" shows "j < k ==> Suc i < k" 

14208  321 
apply (induct k, simp_all) 
13449  322 
apply (insert le) 
323 
apply (simp add: less_Suc_eq) 

324 
apply (blast dest: Suc_lessD) 

325 
done 

326 

327 
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m  n < m"} *} 

328 
lemma not_less_eq: "(~ m < n) = (n < Suc m)" 

14208  329 
by (rule_tac m = m and n = n in diff_induct, simp_all) 
13449  330 

331 
text {* Complete induction, aka courseofvalues induction *} 

332 
lemma nat_less_induct: 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

333 
assumes prem: "!!n. \<forall>m::nat. m < n > P m ==> P n" shows "P n" 
13449  334 
apply (rule_tac a=n in wf_induct) 
335 
apply (rule wf_pred_nat [THEN wf_trancl]) 

336 
apply (rule prem) 

14208  337 
apply (unfold less_def, assumption) 
13449  338 
done 
339 

14131  340 
lemmas less_induct = nat_less_induct [rule_format, case_names less] 
341 

342 
subsection {* Properties of "less than or equal" *} 

13449  343 

344 
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

345 
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)" 
13449  346 
by (unfold le_def, rule not_less_eq [symmetric]) 
347 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

348 
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" 
13449  349 
by (rule less_Suc_eq_le [THEN iffD2]) 
350 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

351 
lemma le0 [iff]: "(0::nat) \<le> n" 
13449  352 
by (unfold le_def, rule not_less0) 
353 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

354 
lemma Suc_n_not_le_n: "~ Suc n \<le> n" 
13449  355 
by (simp add: le_def) 
356 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

357 
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)" 
13449  358 
by (induct i) (simp_all add: le_def) 
359 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

360 
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n  m = Suc n)" 
13449  361 
by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq) 
362 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

363 
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" 
13449  364 
by (drule le_Suc_eq [THEN iffD1], rules+) 
365 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

366 
lemma leI: "~ n < m ==> m \<le> (n::nat)" by (simp add: le_def) 
13449  367 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

368 
lemma leD: "m \<le> n ==> ~ n < (m::nat)" 
13449  369 
by (simp add: le_def) 
370 

371 
lemmas leE = leD [elim_format] 

372 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

373 
lemma not_less_iff_le: "(~ n < m) = (m \<le> (n::nat))" 
13449  374 
by (blast intro: leI elim: leE) 
375 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

376 
lemma not_leE: "~ m \<le> n ==> n<(m::nat)" 
13449  377 
by (simp add: le_def) 
378 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

379 
lemma not_le_iff_less: "(~ n \<le> m) = (m < (n::nat))" 
13449  380 
by (simp add: le_def) 
381 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

382 
lemma Suc_leI: "m < n ==> Suc(m) \<le> n" 
13449  383 
apply (simp add: le_def less_Suc_eq) 
384 
apply (blast elim!: less_irrefl less_asym) 

385 
done  {* formerly called lessD *} 

386 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

387 
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n" 
13449  388 
by (simp add: le_def less_Suc_eq) 
389 

390 
text {* Stronger version of @{text Suc_leD} *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

391 
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" 
13449  392 
apply (simp add: le_def less_Suc_eq) 
393 
using less_linear 

394 
apply blast 

395 
done 

396 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

397 
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)" 
13449  398 
by (blast intro: Suc_leI Suc_le_lessD) 
399 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

400 
lemma le_SucI: "m \<le> n ==> m \<le> Suc n" 
13449  401 
by (unfold le_def) (blast dest: Suc_lessD) 
402 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

403 
lemma less_imp_le: "m < n ==> m \<le> (n::nat)" 
13449  404 
by (unfold le_def) (blast elim: less_asym) 
405 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

406 
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *} 
13449  407 
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq 
408 

409 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

410 
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n  m = n"} *} 
13449  411 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

412 
lemma le_imp_less_or_eq: "m \<le> n ==> m < n  m = (n::nat)" 
13449  413 
apply (unfold le_def) 
414 
using less_linear 

415 
apply (blast elim: less_irrefl less_asym) 

416 
done 

417 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

418 
lemma less_or_eq_imp_le: "m < n  m = n ==> m \<le> (n::nat)" 
13449  419 
apply (unfold le_def) 
420 
using less_linear 

421 
apply (blast elim!: less_irrefl elim: less_asym) 

422 
done 

423 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

424 
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n  m=n)" 
13449  425 
by (rules intro: less_or_eq_imp_le le_imp_less_or_eq) 
426 

427 
text {* Useful with @{text Blast}. *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

428 
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" 
13449  429 
by (rule less_or_eq_imp_le, rule disjI2) 
430 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

431 
lemma le_refl: "n \<le> (n::nat)" 
13449  432 
by (simp add: le_eq_less_or_eq) 
433 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

434 
lemma le_less_trans: "[ i \<le> j; j < k ] ==> i < (k::nat)" 
13449  435 
by (blast dest!: le_imp_less_or_eq intro: less_trans) 
436 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

437 
lemma less_le_trans: "[ i < j; j \<le> k ] ==> i < (k::nat)" 
13449  438 
by (blast dest!: le_imp_less_or_eq intro: less_trans) 
439 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

440 
lemma le_trans: "[ i \<le> j; j \<le> k ] ==> i \<le> (k::nat)" 
13449  441 
by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans) 
442 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

443 
lemma le_anti_sym: "[ m \<le> n; n \<le> m ] ==> m = (n::nat)" 
13449  444 
by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym) 
445 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

446 
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)" 
13449  447 
by (simp add: le_simps) 
448 

449 
text {* Axiom @{text order_less_le} of class @{text order}: *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

450 
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" 
13449  451 
by (simp add: le_def nat_neq_iff) (blast elim!: less_asym) 
452 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

453 
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" 
13449  454 
by (rule iffD2, rule nat_less_le, rule conjI) 
455 

456 
text {* Axiom @{text linorder_linear} of class @{text linorder}: *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

457 
lemma nat_le_linear: "(m::nat) \<le> n  n \<le> m" 
13449  458 
apply (simp add: le_eq_less_or_eq) 
459 
using less_linear 

460 
apply blast 

461 
done 

462 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

463 
text {* Type {@typ nat} is a wellfounded linear order *} 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

464 

14691  465 
instance nat :: "{order, linorder, wellorder}" 
466 
by intro_classes 

467 
(assumption  

468 
rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+ 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

469 

13449  470 
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" 
471 
by (blast elim!: less_SucE) 

472 

473 
text {* 

474 
Rewrite @{term "n < Suc m"} to @{term "n = m"} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

475 
if @{term "~ n < m"} or @{term "m \<le> n"} hold. 
13449  476 
Not suitable as default simprules because they often lead to looping 
477 
*} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

478 
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" 
13449  479 
by (rule not_less_less_Suc_eq, rule leD) 
480 

481 
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq 

482 

483 

484 
text {* 

485 
Reorientation of the equations @{text "0 = x"} and @{text "1 = x"}. 

486 
No longer added as simprules (they loop) 

487 
but via @{text reorient_simproc} in Bin 

488 
*} 

489 

490 
text {* Polymorphic, not just for @{typ nat} *} 

491 
lemma zero_reorient: "(0 = x) = (x = 0)" 

492 
by auto 

493 

494 
lemma one_reorient: "(1 = x) = (x = 1)" 

495 
by auto 

496 

497 
subsection {* Arithmetic operators *} 

1660  498 

12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11451
diff
changeset

499 
axclass power < type 
10435  500 

3370
5c5fdce3a4e4
Overloading of "^" requires new type class "power", with types "nat" and
paulson
parents:
2608
diff
changeset

501 
consts 
13449  502 
power :: "('a::power) => nat => 'a" (infixr "^" 80) 
3370
5c5fdce3a4e4
Overloading of "^" requires new type class "power", with types "nat" and
paulson
parents:
2608
diff
changeset

503 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

504 

13449  505 
text {* arithmetic operators @{text "+ "} and @{text "*"} *} 
506 

14691  507 
instance nat :: "{plus, minus, times, power}" .. 
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

508 

13449  509 
text {* size of a datatype value; overloaded *} 
510 
consts size :: "'a => nat" 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

511 

13449  512 
primrec 
513 
add_0: "0 + n = n" 

514 
add_Suc: "Suc m + n = Suc (m + n)" 

515 

516 
primrec 

517 
diff_0: "m  0 = m" 

518 
diff_Suc: "m  Suc n = (case m  n of 0 => 0  Suc k => k)" 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

519 

62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

520 
primrec 
13449  521 
mult_0: "0 * n = 0" 
522 
mult_Suc: "Suc m * n = n + (m * n)" 

523 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

524 
text {* These two rules ease the use of primitive recursion. 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

525 
NOTE USE OF @{text "=="} *} 
13449  526 
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" 
527 
by simp 

528 

529 
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" 

530 
by simp 

531 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

532 
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" 
13449  533 
by (case_tac n) simp_all 
534 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

535 
lemma gr_implies_not0: "!!n::nat. m<n ==> n \<noteq> 0" 
13449  536 
by (case_tac n) simp_all 
537 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

538 
lemma neq0_conv [iff]: "!!n::nat. (n \<noteq> 0) = (0 < n)" 
13449  539 
by (case_tac n) simp_all 
540 

541 
text {* This theorem is useful with @{text blast} *} 

542 
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" 

543 
by (rule iffD1, rule neq0_conv, rules) 

544 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

545 
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" 
13449  546 
by (fast intro: not0_implies_Suc) 
547 

548 
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)" 

549 
apply (rule iffI) 

14208  550 
apply (rule ccontr, simp_all) 
13449  551 
done 
552 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

553 
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" 
13449  554 
by (induct m') simp_all 
555 

556 
text {* Useful in certain inductive arguments *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

557 
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0  (\<exists>j. m = Suc j & j < n))" 
13449  558 
by (case_tac m) simp_all 
559 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

560 
lemma nat_induct2: "[P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))] ==> P n" 
13449  561 
apply (rule nat_less_induct) 
562 
apply (case_tac n) 

563 
apply (case_tac [2] nat) 

564 
apply (blast intro: less_trans)+ 

565 
done 

566 

567 
subsection {* @{text LEAST} theorems for type @{typ nat} by specialization *} 

568 

569 
lemmas LeastI = wellorder_LeastI 

570 
lemmas Least_le = wellorder_Least_le 

571 
lemmas not_less_Least = wellorder_not_less_Least 

572 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

573 
lemma Least_Suc: 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

574 
"[ P n; ~ P 0 ] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" 
14208  575 
apply (case_tac "n", auto) 
13449  576 
apply (frule LeastI) 
577 
apply (drule_tac P = "%x. P (Suc x) " in LeastI) 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

578 
apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") 
13449  579 
apply (erule_tac [2] Least_le) 
14208  580 
apply (case_tac "LEAST x. P x", auto) 
13449  581 
apply (drule_tac P = "%x. P (Suc x) " in Least_le) 
582 
apply (blast intro: order_antisym) 

583 
done 

584 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

585 
lemma Least_Suc2: 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

586 
"[P n; Q m; ~P 0; !k. P (Suc k) = Q k] ==> Least P = Suc (Least Q)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

587 
by (erule (1) Least_Suc [THEN ssubst], simp) 
13449  588 

589 

14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
14208
diff
changeset

590 

13449  591 
subsection {* @{term min} and @{term max} *} 
592 

593 
lemma min_0L [simp]: "min 0 n = (0::nat)" 

594 
by (rule min_leastL) simp 

595 

596 
lemma min_0R [simp]: "min n 0 = (0::nat)" 

597 
by (rule min_leastR) simp 

598 

599 
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" 

600 
by (simp add: min_of_mono) 

601 

602 
lemma max_0L [simp]: "max 0 n = (n::nat)" 

603 
by (rule max_leastL) simp 

604 

605 
lemma max_0R [simp]: "max n 0 = (n::nat)" 

606 
by (rule max_leastR) simp 

607 

608 
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" 

609 
by (simp add: max_of_mono) 

610 

611 

612 
subsection {* Basic rewrite rules for the arithmetic operators *} 

613 

614 
text {* Difference *} 

615 

14193
30e41f63712e
Improved efficiency of code generated for + and 
berghofe
parents:
14131
diff
changeset

616 
lemma diff_0_eq_0 [simp, code]: "0  n = (0::nat)" 
15251  617 
by (induct n) simp_all 
13449  618 

14193
30e41f63712e
Improved efficiency of code generated for + and 
berghofe
parents:
14131
diff
changeset

619 
lemma diff_Suc_Suc [simp, code]: "Suc(m)  Suc(n) = m  n" 
15251  620 
by (induct n) simp_all 
13449  621 

622 

623 
text {* 

624 
Could be (and is, below) generalized in various ways 

625 
However, none of the generalizations are currently in the simpset, 

626 
and I dread to think what happens if I put them in 

627 
*} 

628 
lemma Suc_pred [simp]: "0 < n ==> Suc (n  Suc 0) = n" 

629 
by (simp split add: nat.split) 

630 

14193
30e41f63712e
Improved efficiency of code generated for + and 
berghofe
parents:
14131
diff
changeset

631 
declare diff_Suc [simp del, code del] 
13449  632 

633 

634 
subsection {* Addition *} 

635 

636 
lemma add_0_right [simp]: "m + 0 = (m::nat)" 

637 
by (induct m) simp_all 

638 

639 
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" 

640 
by (induct m) simp_all 

641 

14193
30e41f63712e
Improved efficiency of code generated for + and 
berghofe
parents:
14131
diff
changeset

642 
lemma [code]: "Suc m + n = m + Suc n" by simp 
30e41f63712e
Improved efficiency of code generated for + and 
berghofe
parents:
14131
diff
changeset

643 

13449  644 

645 
text {* Associative law for addition *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

646 
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)" 
13449  647 
by (induct m) simp_all 
648 

649 
text {* Commutative law for addition *} 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

650 
lemma nat_add_commute: "m + n = n + (m::nat)" 
13449  651 
by (induct m) simp_all 
652 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

653 
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)" 
13449  654 
apply (rule mk_left_commute [of "op +"]) 
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

655 
apply (rule nat_add_assoc) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

656 
apply (rule nat_add_commute) 
13449  657 
done 
658 

14331  659 
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" 
13449  660 
by (induct k) simp_all 
661 

14331  662 
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" 
13449  663 
by (induct k) simp_all 
664 

14331  665 
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" 
13449  666 
by (induct k) simp_all 
667 

14331  668 
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" 
13449  669 
by (induct k) simp_all 
670 

671 
text {* Reasoning about @{text "m + 0 = 0"}, etc. *} 

672 

673 
lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)" 

674 
by (case_tac m) simp_all 

675 

676 
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0  m=0 & n= Suc 0)" 

677 
by (case_tac m) simp_all 

678 

679 
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0  m = 0 & n = Suc 0)" 

680 
by (rule trans, rule eq_commute, rule add_is_1) 

681 

682 
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m  0 < n)" 

683 
by (simp del: neq0_conv add: neq0_conv [symmetric]) 

684 

685 
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0" 

686 
apply (drule add_0_right [THEN ssubst]) 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

687 
apply (simp add: nat_add_assoc del: add_0_right) 
13449  688 
done 
689 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

690 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

691 
subsection {* Multiplication *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

692 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

693 
text {* right annihilation in product *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

694 
lemma mult_0_right [simp]: "(m::nat) * 0 = 0" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

695 
by (induct m) simp_all 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

696 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

697 
text {* right successor law for multiplication *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

698 
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

699 
by (induct m) (simp_all add: nat_add_left_commute) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

700 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

701 
text {* Commutative law for multiplication *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

702 
lemma nat_mult_commute: "m * n = n * (m::nat)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

703 
by (induct m) simp_all 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

704 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

705 
text {* addition distributes over multiplication *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

706 
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

707 
by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

708 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

709 
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

710 
by (induct m) (simp_all add: nat_add_assoc) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

711 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

712 
text {* Associative law for multiplication *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

713 
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

714 
by (induct m) (simp_all add: add_mult_distrib) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

715 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

716 

14740  717 
text{*The naturals form a @{text comm_semiring_1_cancel}*} 
14738  718 
instance nat :: comm_semiring_1_cancel 
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

719 
proof 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

720 
fix i j k :: nat 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

721 
show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

722 
show "i + j = j + i" by (rule nat_add_commute) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

723 
show "0 + i = i" by simp 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

724 
show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

725 
show "i * j = j * i" by (rule nat_mult_commute) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

726 
show "1 * i = i" by simp 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

727 
show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

728 
show "0 \<noteq> (1::nat)" by simp 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

729 
assume "k+i = k+j" thus "i=j" by simp 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

730 
qed 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

731 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

732 
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0  n=0)" 
15251  733 
apply (induct m) 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

734 
apply (induct_tac [2] n, simp_all) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

735 
done 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

736 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

737 
subsection {* Monotonicity of Addition *} 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

738 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

739 
text {* strict, in 1st argument *} 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

740 
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

741 
by (induct k) simp_all 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

742 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

743 
text {* strict, in both arguments *} 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

744 
lemma add_less_mono: "[i < j; k < l] ==> i + k < j + (l::nat)" 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

745 
apply (rule add_less_mono1 [THEN less_trans], assumption+) 
15251  746 
apply (induct j, simp_all) 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

747 
done 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

748 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

749 
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *} 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

750 
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

751 
apply (induct n) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

752 
apply (simp_all add: order_le_less) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

753 
apply (blast elim!: less_SucE 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

754 
intro!: add_0_right [symmetric] add_Suc_right [symmetric]) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

755 
done 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

756 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

757 
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *} 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

758 
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j" 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

759 
apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

760 
apply (induct_tac x) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

761 
apply (simp_all add: add_less_mono) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

762 
done 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

763 

a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

764 

14740  765 
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*} 
14738  766 
instance nat :: ordered_semidom 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

767 
proof 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

768 
fix i j k :: nat 
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset

769 
show "0 < (1::nat)" by simp 
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

770 
show "i \<le> j ==> k + i \<le> k + j" by simp 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

771 
show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

772 
qed 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

773 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

774 
lemma nat_mult_1: "(1::nat) * n = n" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

775 
by simp 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

776 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

777 
lemma nat_mult_1_right: "n * (1::nat) = n" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

778 
by simp 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

779 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

780 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

781 
subsection {* Additional theorems about "less than" *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

782 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

783 
text {* A [clumsy] way of lifting @{text "<"} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

784 
monotonicity to @{text "\<le>"} monotonicity *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

785 
lemma less_mono_imp_le_mono: 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

786 
assumes lt_mono: "!!i j::nat. i < j ==> f i < f j" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

787 
and le: "i \<le> j" shows "f i \<le> ((f j)::nat)" using le 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

788 
apply (simp add: order_le_less) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

789 
apply (blast intro!: lt_mono) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

790 
done 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

791 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

792 
text {* nonstrict, in 1st argument *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

793 
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

794 
by (rule add_right_mono) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

795 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

796 
text {* nonstrict, in both arguments *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

797 
lemma add_le_mono: "[ i \<le> j; k \<le> l ] ==> i + k \<le> j + (l::nat)" 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

798 
by (rule add_mono) 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

799 

b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

800 
lemma le_add2: "n \<le> ((m + n)::nat)" 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

801 
by (insert add_right_mono [of 0 m n], simp) 
13449  802 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

803 
lemma le_add1: "n \<le> ((n + m)::nat)" 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

804 
by (simp add: add_commute, rule le_add2) 
13449  805 

806 
lemma less_add_Suc1: "i < Suc (i + m)" 

807 
by (rule le_less_trans, rule le_add1, rule lessI) 

808 

809 
lemma less_add_Suc2: "i < Suc (m + i)" 

810 
by (rule le_less_trans, rule le_add2, rule lessI) 

811 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

812 
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" 
13449  813 
by (rules intro!: less_add_Suc1 less_imp_Suc_add) 
814 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

815 
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" 
13449  816 
by (rule le_trans, assumption, rule le_add1) 
817 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

818 
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" 
13449  819 
by (rule le_trans, assumption, rule le_add2) 
820 

821 
lemma trans_less_add1: "(i::nat) < j ==> i < j + m" 

822 
by (rule less_le_trans, assumption, rule le_add1) 

823 

824 
lemma trans_less_add2: "(i::nat) < j ==> i < m + j" 

825 
by (rule less_le_trans, assumption, rule le_add2) 

826 

827 
lemma add_lessD1: "i + j < (k::nat) ==> i < k" 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

828 
apply (rule le_less_trans [of _ "i+j"]) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

829 
apply (simp_all add: le_add1) 
13449  830 
done 
831 

832 
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" 

833 
apply (rule notI) 

834 
apply (erule add_lessD1 [THEN less_irrefl]) 

835 
done 

836 

837 
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" 

838 
by (simp add: add_commute not_add_less1) 

839 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

840 
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

841 
apply (rule order_trans [of _ "m+k"]) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

842 
apply (simp_all add: le_add1) 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

843 
done 
13449  844 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

845 
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" 
13449  846 
apply (simp add: add_commute) 
847 
apply (erule add_leD1) 

848 
done 

849 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

850 
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" 
13449  851 
by (blast dest: add_leD1 add_leD2) 
852 

853 
text {* needs @{text "!!k"} for @{text add_ac} to work *} 

854 
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" 

855 
by (force simp del: add_Suc_right 

856 
simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) 

857 

858 

859 

860 
subsection {* Difference *} 

861 

862 
lemma diff_self_eq_0 [simp]: "(m::nat)  m = 0" 

863 
by (induct m) simp_all 

864 

865 
text {* Addition is the inverse of subtraction: 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

866 
if @{term "n \<le> m"} then @{term "n + (m  n) = m"}. *} 
13449  867 
lemma add_diff_inverse: "~ m < n ==> n + (m  n) = (m::nat)" 
868 
by (induct m n rule: diff_induct) simp_all 

869 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

870 
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m  n) = (m::nat)" 
13449  871 
by (simp add: add_diff_inverse not_less_iff_le) 
872 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

873 
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m  n) + n = (m::nat)" 
13449  874 
by (simp add: le_add_diff_inverse add_commute) 
875 

876 

877 
subsection {* More results about difference *} 

878 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

879 
lemma Suc_diff_le: "n \<le> m ==> Suc m  n = Suc (m  n)" 
13449  880 
by (induct m n rule: diff_induct) simp_all 
881 

882 
lemma diff_less_Suc: "m  n < Suc m" 

883 
apply (induct m n rule: diff_induct) 

884 
apply (erule_tac [3] less_SucE) 

885 
apply (simp_all add: less_Suc_eq) 

886 
done 

887 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

888 
lemma diff_le_self [simp]: "m  n \<le> (m::nat)" 
13449  889 
by (induct m n rule: diff_induct) (simp_all add: le_SucI) 
890 

891 
lemma less_imp_diff_less: "(j::nat) < k ==> j  n < k" 

892 
by (rule le_less_trans, rule diff_le_self) 

893 

894 
lemma diff_diff_left: "(i::nat)  j  k = i  (j + k)" 

895 
by (induct i j rule: diff_induct) simp_all 

896 

897 
lemma Suc_diff_diff [simp]: "(Suc m  n)  Suc k = m  n  k" 

898 
by (simp add: diff_diff_left) 

899 

900 
lemma diff_Suc_less [simp]: "0<n ==> n  Suc i < n" 

14208  901 
apply (case_tac "n", safe) 
13449  902 
apply (simp add: le_simps) 
903 
done 

904 

905 
text {* This and the next few suggested by Florian Kammueller *} 

906 
lemma diff_commute: "(i::nat)  j  k = i  k  j" 

907 
by (simp add: diff_diff_left add_commute) 

908 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

909 
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j)  k = i + (j  k)" 
13449  910 
by (induct j k rule: diff_induct) simp_all 
911 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

912 
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i)  k = (j  k) + i" 
13449  913 
by (simp add: add_commute diff_add_assoc) 
914 

915 
lemma diff_add_inverse: "(n + m)  n = (m::nat)" 

916 
by (induct n) simp_all 

917 

918 
lemma diff_add_inverse2: "(m + n)  n = (m::nat)" 

919 
by (simp add: diff_add_assoc) 

920 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

921 
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j  i = k) = (j = k + i)" 
13449  922 
apply safe 
923 
apply (simp_all add: diff_add_inverse2) 

924 
done 

925 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

926 
lemma diff_is_0_eq [simp]: "((m::nat)  n = 0) = (m \<le> n)" 
13449  927 
by (induct m n rule: diff_induct) simp_all 
928 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

929 
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat)  n = 0" 
13449  930 
by (rule iffD2, rule diff_is_0_eq) 
931 

932 
lemma zero_less_diff [simp]: "(0 < n  (m::nat)) = (m < n)" 

933 
by (induct m n rule: diff_induct) simp_all 

934 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

935 
lemma less_imp_add_positive: "i < j ==> \<exists>k::nat. 0 < k & i + k = j" 
13449  936 
apply (rule_tac x = "j  i" in exI) 
937 
apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym) 

938 
done 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

939 

13449  940 
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k  i)" 
941 
apply (induct k i rule: diff_induct) 

942 
apply (simp_all (no_asm)) 

943 
apply rules 

944 
done 

945 

946 
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" 

947 
apply (rule diff_self_eq_0 [THEN subst]) 

14208  948 
apply (rule zero_induct_lemma, rules+) 
13449  949 
done 
950 

951 
lemma diff_cancel: "(k + m)  (k + n) = m  (n::nat)" 

952 
by (induct k) simp_all 

953 

954 
lemma diff_cancel2: "(m + k)  (n + k) = m  (n::nat)" 

955 
by (simp add: diff_cancel add_commute) 

956 

957 
lemma diff_add_0: "n  (n + m) = (0::nat)" 

958 
by (induct n) simp_all 

959 

960 

961 
text {* Difference distributes over multiplication *} 

962 

963 
lemma diff_mult_distrib: "((m::nat)  n) * k = (m * k)  (n * k)" 

964 
by (induct m n rule: diff_induct) (simp_all add: diff_cancel) 

965 

966 
lemma diff_mult_distrib2: "k * ((m::nat)  n) = (k * m)  (k * n)" 

967 
by (simp add: diff_mult_distrib mult_commute [of k]) 

968 
 {* NOT added as rewrites, since sometimes they are used from righttoleft *} 

969 

970 
lemmas nat_distrib = 

971 
add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 

972 

973 

974 
subsection {* Monotonicity of Multiplication *} 

975 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

976 
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

977 
by (simp add: mult_right_mono) 
13449  978 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

979 
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

980 
by (simp add: mult_left_mono) 
13449  981 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

982 
text {* @{text "\<le>"} monotonicity, BOTH arguments *} 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

983 
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" 
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

984 
by (simp add: mult_mono) 
13449  985 

986 
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

987 
by (simp add: mult_strict_right_mono) 
13449  988 

14266  989 
text{*Differs from the standard @{text zero_less_mult_iff} in that 
990 
there are no negative numbers.*} 

991 
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" 

13449  992 
apply (induct m) 
14208  993 
apply (case_tac [2] n, simp_all) 
13449  994 
done 
995 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

996 
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)" 
13449  997 
apply (induct m) 
14208  998 
apply (case_tac [2] n, simp_all) 
13449  999 
done 
1000 

1001 
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)" 

15251  1002 
apply (induct m, simp) 
1003 
apply (induct n, simp, fastsimp) 

13449  1004 
done 
1005 

1006 
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)" 

1007 
apply (rule trans) 

14208  1008 
apply (rule_tac [2] mult_eq_1_iff, fastsimp) 
13449  1009 
done 
1010 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

1011 
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" 
13449  1012 
apply (safe intro!: mult_less_mono1) 
14208  1013 
apply (case_tac k, auto) 
13449  1014 
apply (simp del: le_0_eq add: linorder_not_le [symmetric]) 
1015 
apply (blast intro: mult_le_mono1) 

1016 
done 

1017 

1018 
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

1019 
by (simp add: mult_commute [of k]) 
13449  1020 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

1021 
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k > m \<le> n)" 
14208  1022 
by (simp add: linorder_not_less [symmetric], auto) 
13449  1023 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

1024 
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k > m \<le> n)" 
14208  1025 
by (simp add: linorder_not_less [symmetric], auto) 
13449  1026 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

1027 
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n  (k = (0::nat)))" 
14208  1028 
apply (cut_tac less_linear, safe, auto) 
13449  1029 
apply (drule mult_less_mono1, assumption, simp)+ 
1030 
done 

1031 

1032 
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n  (k = (0::nat)))" 

14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset

1033 
by (simp add: mult_commute [of k]) 
13449  1034 

1035 
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" 

1036 
by (subst mult_less_cancel1) simp 

1037 

14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset

1038 
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" 
13449  1039 
by (subst mult_le_cancel1) simp 
1040 

1041 
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" 

1042 
by (subst mult_cancel1) simp 

1043 

1044 
text {* Lemma for @{text gcd} *} 

1045 
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1  m = 0" 

1046 
apply (drule sym) 

1047 
apply (rule disjCI) 

1048 
apply (rule nat_less_cases, erule_tac [2] _) 

1049 
apply (fastsimp elim!: less_SucE) 

1050 
apply (fastsimp dest: mult_less_mono2) 

1051 
done 

9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset

1052 

923  1053 
end 